Design Challenges In Multi-GHz PLL Frequency Synthesizers

Adrian Maxim

Senior RF Design Engineer

Silicon Laboratories
Austin, TX, USA
Email: acmaxim@yahoo.com
OUTLINE

• PLL basics
• PLL second order effects
• PLL building blocks
 – Reference crystal oscillators
 – Reference path squaring buffers
 – Phase-frequency detectors
 – Charge-pumps
 – Loop filters (continuous and sampled)
 – Oscillators (LC and ring)
 – Output clock buffers
 – Dividers
A feedback system that aligns the clock edges of a local controlled oscillator with the edges of a high stability input reference oscillator.

A low jitter output clock is obtained by using a large jitter local oscillator and a low jitter XTAL.

If a divider is present in the feedback loop, frequency multiplication is achieved ($f_{out} = N \times f_{ref}$).
How a PLL Works?

• A phase detector determines the phase difference between the reference clock and the feedback clock and generates a control signal that is smoothened by the loop filter.

• The control voltage/current moves the oscillator frequency in the direction of eliminating the phase difference between the reference and output clock.
 – If reference clock edges lead the feedback clock edges → oscillator frequency is increased
 – If reference clock edges lag the feedback clock edges → oscillator frequency is decreased

• Phase alignment is achieved by means of frequency variation.
Type I versus Type II PLLs

- **Type I** PLLs have a **single pole** at origin (s=0 given by the intrinsic integration in the oscillator)
 - ↓ **finite phase difference** between reference and feedback clocks
 - ↑ potential **faster locking** (higher loop bandwidth)

- **Type II** PLLs have **two poles at origin** (one from the VCO and a second one from the loop filter/charge-pump)
 - ↑ **zero phase difference** between reference and feedback clocks
Process Independent PLLs

- **GOAL**: minimize or eliminate the process and temperature variation of the loop damping factor and/or bandwidth
- **Bandgap referenced**: set the charge-pump current equal to the ratio between a stable V_{bg} bandgap voltage and the on-chip resistor, $\rightarrow \xi = \text{const}$

- **Self-biased**: use as charge-pump current a fraction of the current that controls the oscillator (applicable to ICO only) such that ξ becomes proportional with a ratio of capacitors

- **Calibration**: measure the PLL open loop gain (for example by applying two constant phase differences and determine the output frequency) while the integral loop is held constant and set the charge-pump current with a current-DAC to compensate the process variation of the loop gain (natural frequency)
Up/Down Charge-pump Current Mismatch

• Current mirrors have a finite current error due to:
 – V_T mismatch
 – Finite output impedance

• The PLL loop moves the edges of the feedback clock such that no net charge is injected in the loop filter over one clock cycle
 – Finite phase shift between reference and feedback clock edges → loop filter voltage has a ripple that degrades PLL reference spurs
Up/Down Propagation Times Mismatch

- The finite propagation time through the output PFD inverter gives also a loop filter voltage ripple that degrades PLL reference spurs.
- **Solution**: add a T_{gate} that is always ON in the output path that has one less inverter to match the propagation time of the inverter from the complementary path.
Loop Filter Leakage Current

- A leakage current at the loop filter high impedance node **discharges** the integration capacitance
 - **Reverse current** of drain/source diffusion diodes
 - **Gate leakage** in deep submicron CMOS FETs
- Need to compensate the leakage current by **injecting a net charge-pump current** every reference clock cycle
- The current injected by the CP result in a **VCO control voltage ripple** which degrades PLL reference spurs
CP-PFD Transfer Function Dead-Zone

• If the charge-pump has a large switching time, it cannot react to small pulse width PFD control signals

• The absence of an answer from CP (a Dead-Zone in the PFD-CP transfer function) → the PLL loop is opened and the VCO clock edges can move unrestricted till the point where the CP will start reacting

• This phenomena results in a clock jitter window equal to the dead-zone

• Solution: introduce every clock cycle a period of time when both Up and Down are active such that the charge-pump current legs turn-on before they start measuring the phase difference between reference and feedback clock edges
CP Charge Injection and Clock Feed-through

- Each time the up and down CP switches turn-off, their channel charge is injected into the loop filter determining a VCO control voltage ripple → degrades reference spurs

- **Solution**: Avoid the switch charge injection by adding dummy switches that **capture** the charge released by the turning-off switch and **release** the charge required to create the channel in the turning-on switch

- Finite C_{gd} capacitances of the FET switches determine the clock feed-through from the PFD control lines to the loop filter voltage, resulting in a ripple on the oscillator control signal → degrades reference spurs

- **Solutions**:
 - reduce the size of the switches → decrease C_{gd}
 - Use a smaller control voltage swing
Charge Sharing between CP nodes

- Finite capacitances exist at the drains of the Up/Down CP current mirrors.
- When the CP switches turn-off, the Up/Down currents discharge these nodes to the corresponding supply line (Vdd/Vss).
- When the CP switches turn-on again, these parasitic capacitances need to be charged to the loop filter control voltage (Vctrl).
- Depending on the Vctrl voltage level, a net charge needs to come from the loop filter capacitor to charge the parasitic capacitances → generates a Vctrl ripple which degrades PLL reference spurs.
- **Solution**: Use a bootstrap buffer which keeps the potential at the drains of the current sources equal to Vctrl when the CP switches are OFF.
Delay in the PLL Feedback Loop

• All digital circuits have a finite delay time (inverter buffers, PFD, Feedback Divider)

• A delay block \(\exp(-sT_d) \) introduces a linear varying phase shift as a function of frequency \(\varphi = -\omega T_d \)

• This phase lag degrades PLL’s phase margin by \(\Delta \varphi = \omega_C T_d \)

• Feedback loop delay is particularly troublesome in large bandwidth PLLs (e.g. fast locking ring oscillator PLLs) where \(\Delta \varphi = \omega_C T_d \) can assume large values

• A degraded phase margin leads to:

 – More **peaking in the transient locking waveform** which can stress in frequency the divider if it has a small margin from its maximum operating frequency

 – **Peaking in the jitter input-output transfer function** which degrades the output clock phase noise performance
PLL Sampling Effect

- The phase comparison is not done continuously, but in a discrete time manner → **PFD compares the phases** of the reference and feedback clock only based on their edge position which lead to a **sampled data system**
- After the phase comparison is done, no other action is took till the next reference clock cycle → this is equivalent with a hold operation applied to the phase difference measurement
- The transfer function of a **zero-order hold** sampled data system is \((1-\exp(-s*T))/s*T\)
- This intrinsic PLL phase sample and hold operation introduces a **phase lag** in the feedback loop which degrades the PLL phase margin → jitter peaking
- \(\phi = -\omega T/2 \rightarrow \Delta \phi = \omega_C T_d /2\)
Divider Failure During Transient Locking

• In many multi-GHz PLLs the feedback divider operates close to the maximum frequency allowed by the CMOS process, which leaves very little margin for peaking during the transient locking process.

• There are two main causes for transient peaking:
 – Poor loop damping (small signal behavior) → use a process-independent damping factor architecture which keeps $\xi > 1$
 – Large phase difference between reference and feedback clock at the point when the frequency locking is achieved and the phase locking starts → this peaking can be very large in wide-bandwidth PLLs where the oscillator control voltage can vary with a large Δ even in a single reference clock cycle.

• If during the transient locking the maximum operating frequency of the divider is exceeded and it fails to provide an output edge → PLL fails to lock and fails to recover.
Divider Failure During Transient Locking - Continued

• **Solution 1** (for small signal peaking)
 – The peaking of a linear system is proportional with the input signal step (frequency change)
 – To minimize the transient locking peaking at frequency change in the synthesizer the output frequency range is divided in several sub-ranges and thus the single large step locking process is replaced with several smaller frequency steps locking processes, leading to a much lower peaking amplitude

• **Solution 2** (for nonlinear peaking)
 – Add a circuit in the PFD that limits the maximum Up control signals pulse width to a fraction of the reference clock period (e.g. Tref/4 or Tref/8) — undershoot during transient locking is not an issue
 – Limiting the maximum pump-up time period reduces the nonlinear peaking amplitude
 – Restricting the pump-up period increases the frequency locking process — can become an issue in fast frequency switching PLLs
PLL Phase Noise Analysis

• **Reference clock** path (XTAL, REF-BUF) phase noise is **low-pass filtered** by the PLL → low phase noise output clock asks for a low loop bandwidth

• **Charge-pump** noise is also **low-pass filtered** as all the front-end noise components

• **Controlled oscillator** phase noise is **high-pass filtered** by the PLL → high phase noise oscillators (ring oscillators) require a low loop bandwidth

• **Loop filter** noise is **band-pass filtered** by the PLL

• All corner frequencies of the low-pass/high-pass/band-pass transfer functions are equal to the **loop natural frequency**

• LC oscillator based PLLs use **low loop bandwidths** → does not have demanding requirements for reference path noise

• Ring oscillator based PLLs use **high loop bandwidths** to adequately reject VCO’s large phase noise → need a low phase noise reference path
Example of PLL Output Phase Noise

\[
\Phi(PLL) = 2.00^0 \text{rms} \quad \Phi(ICO) = 1.34^0 \text{rms} \\
\Phi(XTAL) = 0.80^0 \text{rms} \quad \Phi(LF) = 0.65^0 \text{rms} \\
\Phi(CPi) = 0.98^0 \text{rms} \quad \Phi(CPp) = 0.31^0 \text{rms}
\]
PLL Output Clock Spurs

• **DIRECT INJECTION SPURS**
 - Reference spurs → generated by a finite ripple on the oscillator control signal at the reference clock frequency → \(f_{spur} = f_{out} \pm f_{ref} \)
 - Supply injected spurs → determined by a finite PSRR of the PLL blocks → \(f_{spur} = f_{out} \pm f_{perturb} \)

• **MIXING SPURS**
 - Nonlinear operations such as **clock edge squaring** and **charge-pump chopping action** are capable of creating intermodulation frequencies \(f_{spur} = k*f_{ref} \pm p*f_{perturb} \)
 - If the intermodulation spurs fall in the PLL bandwidth where minimal rejection exists → large output spurs can be generated → need high PSRR regulators
 - The spurs in the REF-BUF are amplified by the PLL gain (N)
Crystal Oscillators Requirements

- Keep the amplitude constant with process and temperature → need to use an Automatic Amplitude Control loop (AAC)
- Maximizing the oscillating amplitude (without crashing the active devices) → minimizes the oscillator phase noise
- Reducing thermal noise in amplifier and AAC loop decreases the 1/f² phase noise while reducing 1/f noise in amplifier and AAC loop decreases the 1/f³ phase noise
- Minimize the resistive and capacitive loading on the crystal → keeps a high loaded Q of the tank → improves 1/f² phase noise performance
- Ensure a safe oscillator start-up requires a positive loop gain higher than 1 over all design corners. Optimum value from phase noise perspective is 2 → keep the loop gain 1.5-3 over process and temperature corners
XTAL Oscillators Configurations

- **Common-source** amplifier (Pierce Oscillator)
 - \(\uparrow\) does not need floating capacitors \(\rightarrow\) all capacitors can be MOS
 - \(\downarrow\) need two pins to connect the crystal
 - \(\downarrow\) use both NFETs and PFETs \(\rightarrow\) increased 1/f^3\ phase noise
 - \(\downarrow\) bias network loads the crystal \(\rightarrow\) degraded loaded Q
 - \(\downarrow\) need a linear buffer if the sinusoidal clock need to be driven off-chip

- **Common-drain** Amplifier (Colpitts Oscillator)
 - \(\uparrow\) need a single pin to connect the crystal
 - \(\uparrow\) does not need a linear clock buffer to drive the sine-clock off-chip
 - \(\uparrow\) can use only PFETs \(\rightarrow\) minimize 1/f^3\ phase noise
 - \(\uparrow\) show lower loading on the crystal tank \(\rightarrow\) higher Q \(\rightarrow\) minimize 1/f^2\ phase noise
 - \(\downarrow\) need a floating capacitor (MIM or Metal Cap. which takes large die area) \(\rightarrow\) cannot be implemented with MOS capacitors due to their large substrate noise injection
XTAL Oscillators Configurations - Continued

• **Common-gate** amplifier (also Colpitts Oscillator)

 ↑ need a single pin to connect the crystal
 ↑ can use only PFETs → minimize 1/f3 phase noise
 ↓ need a floating capacitor (MIM or Metal Cap. → large die area)
 ↓ difficulties to bias the amplifier as both the drain and source need to see large impedances → headroom voltage issue

• Pierce oscillator → widely used for their area efficiency

• Colpitts oscillators → preferred in low phase noise applications → require larger die area
Pierce Crystal Oscillator

- **Two solutions** for the amplifier
 - NFET amplifier → requires a PFET AAC mirror
 - PFET amplifier → requires an NFET AAC mirror
- To minimize phase noise the **amplifier need to be operated in class C** → inject noise only at the peak amplitude points where the impulse sensitivity is at its minimum
- AAC loop is ON all the time → prefer to use PFET amplifiers due to their lower 1/f noise
- **Conclusion**: NFET amplifier in class C and PFET AAC loop is the best Pierce oscillator architecture
NFET Amplifier Pierce Oscillator

- Use **thin oxide devices** to reduce the 1/f^3^ phase noise (thick oxide devices have larger 1/f noise at same device area)
- **Amplitude decreases** (lower breakdown voltage) → decrease S/N
- **Rbias** ensures a diode DC connection → need to be large to avoid loading the crystal
- **Rshift** shifts-up the DC voltage in the drain of the amplifier → achieves a larger amplitude → lower phase noise
- Avoid crushing the amplifier → reduce the 1/f^2^ phase noise
PFET Common-drain Oscillator

- Use PFET amplifier and PFET AAC to minimize 1/f3 p. noise
- Using a current load in the source of the amplifier prevents the class C operation → need to use a current mirror architecture
- M20,M21 mirror provides the DC bias current
- Class C operation of the amplifier → inject noise only at minimum impulse sensitivity
- Need a floating capacitor C1 that takes large area (MIM)
Automatic Amplitude Control Loop

- The **AAC noise** generally **dominates the phase noise** of a well designed XTAL oscillator → it is always ON and injects noise also around clock edges
- Without AAC the amplitude of oscillation can vary over a wide range (e.g. 2x) with process and temperature → degrade significantly the phase noise in the worst case corner
- Three available types of AAC:
 - **Continuous time AAC** → adjust continuously the bias current of the amplifier based on the measured peak amplitude → add noise during the entire clock cycle
 - **Hybrid continuous-discrete AAC** → perform the amplitude correction only at discrete time intervals but still use an AAC loop amplifier
 - **Discrete AAC** → replace AAC amplifier with a digital state machine that takes the decision for the loop drive direction
Continuous Time AAC Loops

- Use positive and negative peak detectors to measure the peak-to-peak amplitude
- Prefer AC coupling of peak detectors → separate bias points
- OTA sets the bias current of the amplifier such that the measured amplitude equals the reference voltage (VTp+VTn)
- PFET OTA and PFET bias mirror → minimize 1/f3 p. noise
- Use large resistive degeneration to reduce the thermal noise of the bias mirror
- PN ≈ -125dBc/Hz @1KHz
Discrete Time AAC Loops

- AAC amplifier is the dominant noise contributor → replace it with a digital state machine which takes the decision for driving the AAC loop.
- Need an ADC to convert the measured peak amplitude into a digital control word for the state machine.
- Need a DAC to convert back to current (analog) the state machine output.
- Both ADC and DAC need only moderate resolutions (6-8 bit).
- \(PN \approx -145\text{dBc/Hz} @1\text{KHz} \)
Reference Clock Squaring Buffer

• Square-up the sinusoidal clock from the crystal oscillator with minimal added noise
• Present a rather constant input impedance to the crystal oscillator → do not impact its phase noise
• **First buffer stage** generally dominates the noise of the squaring buffer → need high gain to speed-up the clock edges → second stage need to present a low capacitive load to the first stage
• Spurs present on the supply line are down-converted around the reference clock carrier → need a high PSRR regulator
• Noise on the supply line is up and down-converted around the carrier → need a low noise regulator
Reference Clock Squaring Buffer

- **AC coupled** to avoid pulse width distortion due to XTAL bias point variation with process and temperature
- First inverter need to have a **high gain, low thermal noise** and **low 1/f noise** → large device area and high W/L
- The **second buffer** need to be small to minimize load on the first stage → only large enough to just pass the fast edges created by the first stage
- Scale-up following buffers to ensure PFD driving requirements
- The number of inverters need to be selected such that PFD is driven by the XTAL **edge that has lower phase noise**
Current Starved Squaring Buffer

- Limit the current available to the inverter around the crossover point → minimize phase noise as only one of the two devices in the inverter is ON at a given time (use a $V_{Tp} + V_{Tn}$ supply)
- R_{bias} resistor that provides the DC bias to the first inverter shows a negligible load to the crystal oscillator
- slows-down slightly the edges but the gain from the reduced noise is larger
- Use an open loop shunt regulator to avoid reference spurs leakage to the global PLL supply
 - Low freq. PSRR limited by $r_{out}(i_{bias})/(2/g_m)$
 - High freq. PSRR limited by $C_{gd}(i_{bias})/C_f$
Phase Frequency Detector Requirements

- **Fast reset propagation** time to minimize the width of the up/down pulses in lock condition → improve reference spurs due to less CP mismatch current injected in the loop filter
- **Fast rise/fall times** to reduce the sensitivity to both gate intrinsic noise and supply noise → minimize PFD phase noise contribution
- **Matched propagation times** for up/upb/dw/dwb control signals → improve reference spurs
- **Matched slew-rates** for the four PFD output signals up/upb/dw/dwb
- Provide the voltage level shifting required by the CP
• The faster input of the NAND gate (the NFET closer to the output) need to be used for the reset propagation signal.
• The up/dw pulse width in lock condition is equal with 7*Tdelay of the NAND gate and is limited to 0.35-1ns → reference spurs <50dBc
• If the CP has a slow switching time, additional inverters can be added in the reset path such that the minimum up/dw pulse width is extended in excess of the Tcp switching time → no dead zone in the CP-PFD transfer function.
Dynamic D-Flip-Flop PFD

• To reduce the reset propagation time (which limits the up/dw pulse width) the PFD can be implemented with **dynamic** (pre-charged) DFFs.

• The **NMOS NAND gate** used for the reset decoding is much faster than the standard CMOS gate, reducing the up/down pulse width → DC current.

• DFF sensitive to the XTAL falling edge which has less phase noise (PFET is driving).
Dynamic DFF PFD with Embedded Reset NAND Gate

- To further reduce the reset propagation time the reset NAND gate was built-in the dynamic DFF.
- The up/dw pulse width is reduced to $3 \times T_{delay} = 150\text{ps}$ → reference spurs decrease to -60…65dBc.
- DFF sensitive to rising edge → need an additional inverter at each input in order to still use the lower phase noise edge.
Balancing the Propagation Times and Slew-Rates of PFD Output

- The PFD provides only two outputs (up/dw), while the differential current steering CP requires also the upb/dwb complementary signals.
- Upb/dwb obtained by adding a parallel path having one extra inverter.
- Add **always-ON** transmission gates Tu/Td to balance the extra inverter delay.
- After t-gates the edges are slower in comparison with the inverter output.
- Add two more layers of inverters to balance the slew rates of all 4 PFD outputs.
PFD Level Shifters

• For fast propagation times the PFD need to use the thin oxide devices from a dual gate oxide CMOS process (e.g. 0.13µm from a 0.13µm CMOS) and a low supply voltage (1.3V)

• In contrast the charge-pump need to use thick oxide devices and higher supply voltage (0.35 µm from a 0.13µm CMOS and 2.5-3.3V)

• A level shifter need to be introduced between the PFD and the CP to make the conversion between the two logic signals
 – Need to maintain fast edges
 – Minimize power consumption
Cross-Coupled Level Shifters

• Use a cross-coupled (positive feedback) latch configuration to regenerate the logic levels
• Standard way of building a level shifter
 ↑ does not take DC bias current
 ↓ cannot achieve very fast edge slew-rates due to the large gate capacitance load present at the two output signal nodes
Mirror-Protected Level Shifter

↑ does not use cross-coupled structures that load excessively the signal nodes → much faster edge speed

↓ need a DC bias current

- **pulling-down** is provided by the Mdw low voltage FET
- **pulling-up** is ensured by the Mup high voltage FET
- Mprot high voltage current mirror protects the Mdw FET when the output is High
Charge-Pump Requirements

• Equal I_{up} and I_{down} for all output voltage levels \rightarrow reduce reference spurs

• High output impedance \rightarrow reduce current mismatch and also improves PSRR

• Equal up/down switching times (combined with PFD outputs propagation times)

• Low thermal and 1/f noise \rightarrow large area and low gm devices \rightarrow need large headroom

• Low clock feed-through \rightarrow dummy switches

• Low supply and substrate coupled spurs
Charge-Pump Architectures

• Single ended CP
 ↑ lower loop filter capacitance
 ↓ higher substrate/supply noise coupling

• Differential-In Single-ended-out CP
 ↑ still does not need double loop filter capacitance
 ↑ Faster switching (current steering)
 ↑ less spur sensitivity

• Differential-In Differential-Out CP
 ↑ best supply/substrate/clock feed-through performance
 ↓ need double loop filter capacitance area
 ↓ Need a common-mode feedback circuit that increases CP noise contribution
Charge-Pump Styles

• **All NMOS CP**
 – Use only the fast devices in the switching stages
 – Good matching of up/down current values and switching times
 – Need a turn around PMOS current mirror that adds a supplemental low frequency pole in the loop (also has a finite switching delay time)

• **Complementary NMOS/PMOS CP**
 – Need reasonable fast complementary devices
 – Have a large mismatch between I_{up} and I_{down} switching times \rightarrow degrades reference spurs
Charge-Pump Configurations

- **Drain-switch**
 - Large current spikes at beginning of the turn-on when both the current mirror and the cascode switch are in triode region
 - Large clock feed-through (switch connected directly to the loop filter)
 - Relatively long switching time

- **Source-switch** (best single ended CP)
 - Fast switching (switch connected at a low impedance node)
 - Less clock feed-through (switch is not directly connected to the loop filter)
 - Low switching spikes (devices switch between OFF and On in saturation region)

- **Gate-switch** → slow – not used in single ended form
CHARGE-PUMP ARCHITECTURES

- Drain switch
- Dummy switch
- Gate switch
- Source switch
- Current steering
- All NMOS Switches
- Fully differential current steering

- Clock feed-through
- Charge sharing
- Low speed
- High speed
- dif/high speed
- matched PFD load
- high speed
- high PSRR
CP Charge-Injection Compensation

- Use half size devices to compensate the channel charge-injection → works well for very fast switching when charge splits half/half between source and drain

- For a good cancellation a good matching between up/upb/dw/dwb is required → otherwise charge is cancelled in average over one period, but VCO control voltage has ripple → increase reference spurs
CP with Charge Sharing Cancellation

- OAbuf keep the dummy output at the same potential as the loop filter → **avoid charge sharing** from dummy side
- Use **equal size dummy switches** such that simultaneous charge-injection and clock feed-through is realized → Each output node sees two Cgd capacitors connected at opposite sign signals
- Not perfect cancellation of charge injection → main switches are in saturation while the dummy switches are in triode
Dynamic biasing Charge-Pump

- To ensure a perfect match of up and down currents for a wide range of output voltages → use a DC feedback loop to control the PFET current mirror
- Reference voltage is taken from the dummy leg which is kept by OAbuf at the loop filter voltage
- OAmatch drives the PFET mirror such that the up and down currents are equal for all Vctrl values
- Sense node is given by a replica current leg that is always ON
Reduced Swing Differential-in CP

- The clock feed-through depends on Cgd value and on the **swing of the digital control signals**

- Use a reduced swing control voltage to drive the current steering switches (between the cascode voltage and the corresponding supply line)

- The switches are operated between OFF and **ON in saturation region** → they act also as cascode devices, increasing the output impedance
Single-Sided Switching Current Steering Charge-Pump

- The devices connected to the loop filter have their gates always connected to the constant cascode voltages → minimize clock feed-through

- The **switching devices are connected to the dummy side** of the CP

- Single sided switching works fine for medium output control voltage range, but has leakage issues for wide ranges
Charge-Pump Noise Contribution

- The CP input bias current noise is first order rejected as it is mirrored both to the up and down currents.
- The up/down current mirrors have noise contributed both by their input master devices and output slave devices.
- To cut the CP noise in half a low corner frequency RC filter was interposed between the master and the slave devices of the current mirrors.
- Integrated noise of the master devices is reduced to KT/C.
Spur Down-Conversion Mechanism

• The switching action of the charge-pump is capable of **down-converting** high frequency spurs/noise present on the supply lines (e.g. coming from another PLL or other switching circuits of the ASIC)

• If the down-converted spur falls into the bandwidth of the PLL → minimal rejection is present and the spur appears at the output low-pass filtered with fn corner frequency

• Minimizing the spur down-conversion → requires filtering of the CP supply line
CP Supply Filtering Techniques

• Passive RC filter
 – The R is limited by the headroom voltage loss
 – C is limited by die area
 – Pole position in MHz range

• Active RC filter
 – Need a zero-VT FET follower to provide the load current with a minimal V_{GS} voltage drop
 – R limited by the output voltage noise
 – Pole position in KHz range
Loop Filter Requirements

- **Low noise contribution** → few active devices or passive
- **Low reference spurs** → minimize CP up/down pulses or isolate oscillator control input from CP switching
- **Low supply injected spurs** → no supply connection (passive) or use a regulator
- **Low area** → limit the total capacitors size → compromise with noise
- **Provide gain** → Active loop filter → reduce C size
- **Tunable time constants** → switches add clock feed-through and current leakage → limit reference spurs
Continuous-Time RC Loop Filter

- **Simplicity** → passive configuration
- **Low noise** contribution - no active devices
- Very **high PSRR** → no supply connection
- All capacitors are connected to GND → can be implemented with MOSFETs
- Need large capacitors in low noise applications (small R to reduce noise → large C)
- Does not isolate oscillator from CP switching
Switched Capacitor Resistor RC Filter

- To reduce the noise the stabilizing zero resistor was simulated with a switched capacitor network.
- Noise is limited by $\frac{KT}{C} \rightarrow$ can be made small using large C.
- Need 4 additional switches that may degrade reference spurs due to their clock feed-through and channel charge injection.
- Keep all the other drawbacks of the standard RC loop filter.
Miller Capacitor Multiplication RC Filter

- In low bandwidth PLLs the loop filter time constants are very low → large capacitor area (several nF) that are usually implemented off-chip

- **Solution:** Miller capacitor multiplication $C_{eq} = C(1-M)$ → reduce the physical size of C and integrate it on-chip

- Voltage mode Miller multiplication → hard voltage headroom issues

- Current mode Miller Multiplication → preferred
Noiseless Resistor Multiplication Filter

• Instead of multiplying C we can multiply R to reduce the capacitor size

• Want Req=R*M, but without getting the corresponding noise (noiseless multiplication)

• Use a second charge-pump that injects a current M times larger than the main charge-pump directly into the resistor

• R appears multiplied for the zero position, but not for the pole position → need to increase Cp by the same M factor (Cp << Ci)

• Still a passive filter → low noise contribution

• Require a floating capacitor → large area (MIM or Metal capacitor)
2 OpAmp V-Mode Feed-Forward Filter

- Alternative way to create the stabilizing zero → feed-forward path
- VCOs need a voltage-mode filter (can use or not Miller capacitance multiplication)
- Ci is reduced by the ratio of the two charge-pump currents
- Need two operational amplifiers → more noise and larger power dissipation
- Use active devices → PSRR is a concern
1 OpAmp V-Mode Feed-Forward Filter

• To minimize the noise introduced by the loop filter a single OpAmp architecture was developed
• The OAbuf isolates the Ci capacitor from the proportional path (leakage current)
• The **summation** is done by **connecting in series** the integral and proportional voltages
Current-Mode Feed-Forward Filter

- Appropriate for ICO PLLs
- The integral and proportional control currents are summed directly at the output node without the need of a summing amplifier
- The integral and proportional transconductance stages can be made low noise by using large source resistor degeneration
- For VCO based PLLs an output resistor is used to convert back to voltage (large current for low noise)
Reduce the PLL Reference Spurs

- **Solution 1**: reduce the up/down pulse width (require a fast switching CP and fast reset PFD) → spurs as low as -60dBc

- **Solution 2**: isolate the oscillator from the charge-pump switching and distribute the proportional control energy over an entire reference clock period → use a sample and hold proportional path (ref. spurs –70..80dBc)
 - Measure the phase difference
 - Apply a constant proportional control signal
 - Reset the proportional path each reference cycle
Hybrid Continuous-sampled loop filter

- Only the proportional path is implemented with a sampled structure (higher charge-pump current)

- Need to **separate** the phase sampling and reset operations from the phase holding → provide a continuous control signal to the oscillator → dual proportional path operated in tandem → 2 CPs

- The ripple pole is still implemented with a continuous time RC filter → add some extra noise
Fully sampled loop filter

- For best reference spurs rejection both integral and proportional paths need to use sampled configurations
- If a higher crystal oscillator frequency is available than a different architecture can be used to provide a continuous oscillator control signal – isolation windowing
- The oscillator is isolated only for a $\pm \Delta T_{\text{ref}}/M$ time period around the reference clock active edge (small phase offset when in lock)
- Digital pole \rightarrow lower noise
LC Oscillator Requirements

• Integrated oscillators need a differential amplifier → reduce the *supply and substrate noise* sensitivity

• **High frequency operation** → minimize parasitic capacitances

• **Low oscillator gain** → reduces both output clock phase noise and spurs → requires a wide range control signal

• Good *symmetry* of the waveform → lowers 1/f noise up-conversion

• Reduce the noise coming from the tail bias current

• Minimize supply voltage dependent capacitors connected to the tank → minimize supply pushing
NMOS differential amplifier VCO

- Lower size devices for a given g_m requirement → operate at higher frequency
- Higher oscillation amplitude → low phase noise
- Requires a mid-point in the inductor to bias the circuit
- NFETs have larger $1/f$ noise which degrades the $1/f^3$ oscillator phase noise
- Hard to ensure the tank symmetry if bondwire inductances are used
PMOS differential amplifier VCO

- PFETs have much lower $1/f$ noise (due to their buried channel) → achieve a much lower $1/f^3$ phase noise
- Need a higher current in comparison with the NFET VCO
- Need larger size devices → lowers the maximum operating frequency
- Need a mid-point in the inductor for bias purposes—not suitable for bondwire inductances
CMOS differential amplifier VCO

- Requires a lower supply current due to the stacked gm configuration
- Can use bondwire inductances as no mid-point is required
- Provide a more symmetric waveform → lower 1/f noise up-conversion
- Lower Oscillator amplitude → degrades slightly the phase noise performance
Voltage-mode versus Current-mode LC VCOs

- **Current-mode**
 - The amplitude is determined by the tail current value
 - Tail current 1/f noise is up-converted around the carrier
 - Does not require a precise value supply voltage

- **Voltage-mode**
 - Amplitude determined by the supply voltage value → requires a calibrated regulator
 - Does not have a tail current source → lower 1/f3 phase noise
Reduce the tail current Source Noise

• **Resistor degeneration**
 – Reduce both the 1/f and thermal noise coming from the tail source
 – Takes away headroom → lowers the oscillating amplitude

• **LC filter at 2*fo**
 – Filter the second order harmonic seen by the tail current mirror
 – Effective at 1-5GHz
 – @ high frequency hard to achieve large value inductors with self-resonating frequency > 10-20GHz

• **Tail resistor instead of current**
 – No 1/f noise and lower thermal noise
 – Calibrated resistor to set amplitude
Bondwire versus Planar Inductors

• **Bondwire inductors:**
 – No additional process steps
 – Highest Q available = 40-50
 – High self-resonating frequency >20GHz
 – Limited value (0.2-0.3nH if bonding between two pads, 1-3nH if bonding from the die to the package and then back to the die
 – Poor symmetry if a mid-point is required for bias

• **Planar inductors:**
 – Can provide a well controlled mid-point for bias purposes
 – Lower Q=10-20 due mainly to substrate losses
 – Lower self resonating frequency due to parasitic cap.
 – Need supplementary processing steps to be added to standard CMOS (use thick metal layers)
Supply Voltage Requirements

- Spurs in the LC oscillator supply line are up-converted around the carrier → need a high PSRR reg.
- Noise on the supply lines is up-converted into phase noise skirts → need a low noise regulator
- To minimize second order harmonics on oscillator supply → use a series LC circuit which resonates at 2*fo
- Using a MIM capacitor and a bondwire inductance provides a sharp attenuation
Automatic Amplitude Control Loop

- Maintain the maximum oscillating amplitude allowed by the available supply voltage → optimize phase noise
- AAC loop degrades phase noise
- Use a high frequency peak detector to measure amplitude
- Use an amplifier to compare the amplitude against a reference voltage (need to be low noise)
- Adjust the element that sets the amplitude (current, resistor or voltage)
Reduce the Phase-Noise of the AAC

• **Continuous time AAC loop:**
 – Use PFET stages in both the AAC amplifier and the peak detectors (less 1/f noise)

• **Hybrid continuous-discrete AAC loop:**
 – Close the loop only at discrete times (e.g. at power-up to compensate the process variation, and in the blind spots of the communication link to compensate both process and temperature variations)

• **Discrete time AAC loop:**
 – Eliminate the noise of the amplifier by replacing it with a digital state machine
Reduce the Oscillator Gain

• Achieving a large tuning range while having a low oscillator gain requires frequency calibration → not for fast frequency changing PLLs (e.g. frequency hoping synthesizers)

• First the frequency is calibrated in **open-loop** using a capacitor DAC connected in parallel with the LC tank → bring the frequency to within few % of the target value

• The final frequency tuning is realized in **closed-loop** using a PLL loop that controls a low tuning gain varactor
Calibration Capacitor DAC

- Use a differential capacitor → better tank symmetry
- Floating switch → 1 FET → lower Ron and less parasitic capacitors
- Reduce Ron by **pulling to GND** the drain/source of the OFF switch
- Reduce Cjd/Cjs by **pulling to Vreg** the drain/source of the ON switch
- Rb keep floating the capacitor that is switched-off the LC tank
- Rc reduces the impact of the Cgs and Cgd capacitances
Improve Capacitor DAC Resolution

• Divide the C-DAC in a MSB and a LSB DAC → achieve 10-12 bit resolution that brings the frequency within 0.1-0.5% of the target value

• Use a tap in the inductor to connect the LSB C-DAC → LSB capacitors reduced when reflected on the tank

• Valid only for planar inductor LC oscillators that can have tap points
Improve Capacitor DAC Resolution

- Use a **tap in a capacitor divider** to connect the LSB C-DAC → suited for bondwire inductance LC oscillators that do not have taps in the inductor
- The LSB capacitors appear reduced when reflected on the LC tank
- Need to provide DC bias to the floating nodes between capacitors → avoid device breakdown
Varactor Used in LC oscillators

• **Reverse biased diode varactors**
 – Relatively poor quality factor at multi-GHz frequencies ($Q=5-10$) due to the series resistance of the non-depleted silicon layer $R(freq)$
 – Highly non-linear $C(V)$ characteristic

• **Accumulation MOS capacitors**
 – Higher quality factor at high frequencies $Q=10-20$
 – Larger process and temperature variation \rightarrow need a wider range open-loop calibration
 – Highly non-linear $C(V)$ characteristic
Constant Gain Varactor

- Use several accumulation MOS capacitors connected in parallel which have their DC bias shifted such that their peak gain points are uniformly distributed over the entire control voltage range.
- Gain ripple depends on the number of cells connected in parallel.
- The different DC offset voltages for the parallel varactor legs can be generated with a simple resistor divider biased from a low noise voltage.
Constant Gain Varactor - Continued

• The noise of the resistor divider can dominate the oscillator phase-noise

• Adding filtering capacitors to limit the noise to KT/C requires a large capacitor area

• Use a **switched capacitor biasing** network controlled by a divided down reference clock

 – Low capacitor area (limited by KT/C)

 – Negligible phase noise contribution from the offset voltage generator
Ring Oscillator Requirements

- **Operate at GHz frequencies** → minimize the number of stages in the ring (4 – provide quadrature outputs, 3 – safe operation, 2-highest frequency, but need extra phase shift)

- **Have a wide tuning range** (several GHz) → result in a **very large VCO gain**, which increases the sensitivity to PLL front-end noise and spurs

- Minimize noise coming from biasing circuitry

- Need a high PSRR, low noise regulator to avoid supply noise and spurs injection
Single-Ended versus Differential

- Single-ended inverters offer a lower intrinsic noise due to a lower device count and also a lower power consumption
 - Better in SOI processes that have negligible substrate capacitances
- In large mixed analog-digital ICs the supply and substrate noise and spur injection dominate
- Differential inverters offer better supply and substrate rejection
Single-Ended versus Differential

- Differential inverters give a more symmetric waveform → reduces 1/f noise up-conversion
- **Less supply and substrate injection** particularly in balanced load differential stages
- They have a **larger active device count** → more intrinsic noise
- Need larger supply current for a given operating frequency
Reduce the Tail Current Noise

- Use a **single current leg to bias all the ring inverters** → provide a correlation between the noise of the individual inverter bias current → **first order cancellation** of the noise up to frequencies comparable with the inverter propagation time

- Add an RC filter to further reduce the noise of the bias current (help **only the thermal noise**)

- Use a high resistive degeneration in the bias current mirror (help **both thermal and 1/f noise**)

Saturated Load Differential Inverter

- Saturated load → larger amplitude of oscillation → reduces intrinsic phase noise
- Higher supply noise and spur injection → in the unbalanced condition when one of the load devices is in triode and the other one is OFF
- **NFET inverter**
 - Lower current → higher frequency
 - Larger 1/f noise
- **PFET inverter**
 - Lower 1/f noise
 - Higher bias current for given frequency
Clamped Amplitude Saturated Load

- To avoid strong supply noise and spurs injection, the output amplitude can be clamped both in the positive and negative direction → avoid going in triode of both amplifier and load devices.
- Reduces slightly the amplitude → limited intrinsic phase noise degradation.
Triode Mode Differential Inverter

- Voltage controlled resistor load implemented with MOSFETs in triode region
- **Balanced load** → improve the supply rejection
- **Smaller amplitude** → allows higher oscillating frequency
- Replica bias leg generate a tail current that keeps the amplitude constant
- Triode load FTEs do not have 1/f noise while PFET amplifier has low 1/f noise
Reduced 1/f Noise Up-Conversion

- To reduce 1/f noise up-conversion the waveform need to be as symmetric as possible.
- Use a **weak positive feedback** NFET and PFET latch to balance the waveform rise/fall times.
- However the supplementary gate capacitance load from the latch stage reduces the maximum oscillating frequency.
Pseudo-Differential Inverter Ring

- Two single-ended inverter rings are coupled with weak gain inverter latches → ensure a tight synchronism between the positive and negative clock paths
- High symmetry of the waveform → reduce the 1/f noise up-conversion
Two Stage Ring Oscillator

- Two inverters may not have enough phase shift to ensure a stable oscillation.
- **Additional phase shift** can be provided by:
 - Inductive peaking (either real inductor or active simulated inductor)
 - Local positive feedback loops using cross-coupled latch stages.
- Two stage ring oscillators offer the highest oscillating frequency and the lowest phase noise.
VCO Clock-Buffer Requirements

- Most applications require a **50% duty cycle**
- Present a **low capacitive load** to the oscillator (prefer a constant capacitance rather than C(V))
- Ensure a **symmetric loading** to all the ring inverters
- **Square-up** the sine/triangular waveform provided by the VCO (hard to get large gains at multi-GHz frequencies)
- Avoid coupling supply noise and spurs → VCO-BUF uses the **same regulated supply as the VCO** - the impulsive supply current of the buffer does not impact VCO phase noise as it is in perfect synchronism with the generated clock
- **Second order distortions** resulted from the asymmetry (e.g. VT mismatch) can degrade oscillator’s phase noise
50% Duty Cycle Clock

• At lower frequencies the established way of ensuring a 50% duty cycle is to run the oscillator at twice the required output frequency and then divide by 2
 ↓ power hungry solution → the VCO runs at twice the frequency
 ↓ not applicable to 5-10GHz PLLs due to the limited gain-bandwidth of the CMOS inverters

• Dividing down the VCO output clock also ensures quadrature outputs - required by most communication systems
Dual Shunt-Feedback 50% Duty Cycle VCO-Buffer

- Use a differential pair with dual shunt feedback:
 - Resistor feedback → restricts the output swing around the trip point of the 2nd inverter
 - Inverter feedback → matches the trip point of the first two stages in the VCO-BUF, ensuring a precise 50\% duty cycle over process and temp.
Mixed NMOS-CMOS 50% Duty Cycle VCO-Buffer

- CMOS inverters have a large input capacitance → prefer NMOS inverters which are faster and present a lower input capacitance (but have less drive capability)
- The front-end is built with pseudo-differential NMOS stages → ensure fast edges
- Back-end is CMOS → large drive capability
- Cascaded resistive shunt feedback stages ensure the 50% duty cycle
The highest bandwidth in a given process is achieved by single ended inverter stages.

Use two single ended signal paths to achieve a pseudo-differential clock path.

AC coupling is used to avoid pulse width distortion.

Use Cc after each 2 inverters to avoid large offset voltage accumulation.

First two stages of equal size to square-up the waveform and than scale-up the size for drive capability.
High-frequency Divider Requirements

• Ensure **multi-GHz operation**
• Avoid large supply currents (need a **high reverse PSRR shunt regulator** to isolate the impulsive supply current from the global PLL supply)
• Digital design styles:
 – Standard CMOS → usually not enough fast
 – CML CMOS logic → fastest, but need large DC current
 – Dynamic CMOS logic → fast operation and no DC current
Divider Phase Noise / Jitter

• The different clock paths within the divider can add significant amount of phase noise/jitter

• To minimize divider jitter the output divided-down clock is **re-synchronized** either at the full VCO rate (if possible) or at a lower rate ($f_0/2$, $f_0/4$)

• By re-synchronizing all jitter introduced by the divider is eliminated \rightarrow jitter limited by the last re-synchronization DFF and its clock buffer
The pre-scaler has a controlled division modulus (2/3, 4/5, 8/9, etc.)

The higher the front-end division factor → lower the frequency requirements for the back-end dividers

Back-end modulus control divider determines the N/N+1 division of the front-end

Back-end terminal count divider generates the output clock and resets the entire divider
CONCLUSIONS

• Selecting the architecture for the PLL building blocks is key for achieving high performance multi-GHz frequency synthesizers

• **XTAL oscillators** → move from the widely used Pierce configuration to the lower phase noise all PFET common drain Colpitts architecture

• **REF-BUF** dominates the phase noise in wideband PLLs → current starved inverters offer a significantly lower noise and supply spurs sensitivity

• **PFD** need to have a fast reset propagation time and also fast rise/fall times → migrate from standard CMOS 7 NAND architecture to dynamic D-flip-flop configurations

• **Charge-pumps** need to have a fast switching and accurately matched currents and switching times → current steering is the architecture of choice with dynamic matching DC loop and charge sharing and clock-feedthrough cancellation
CONCLUSIONS - Continued

• **Loop filters** need to add negligible noise and have a very high PSRR. Reference spurs are a big concern in many communication applications → migrate from continuous time filters to hybrid and fully sampled filters that completely isolate the oscillator from the charge-pump switching action and spread the impulsive control energy over an entire reference clock cycle. Digital filtering further reduces the loop filter noise contribution.

• **LC Oscillators** → migrate from current-mode towards voltage-mode architectures that provide a significantly lower 1/f noise up-conversion. Use bondwires for the tuned tank and a high resolution calibration network to reduce the oscillator gain → help both spurs and phase noise.

• **Ring Oscillators** → Differential inverters are preferred in large mixed signal ICs due to their higher supply and substrate noise immunity. Minimize the number of inverters in the ring brings both a high frequency capability and a lower phase noise. Ensure a symmetric waveform for lower 1/f noise up-conversion and minimize the tail current noise.
CONCLUSIONS - Continued

• **Multi-GHz clock buffers** → use the simplest gain stages available for maximum gain-bandwidth. Pseudo-differential inverter chains with AC coupling for pulse-width distortion cancellation became a standard procedure

• **Multi-GHz dividers** → dual modulus architectures became standard, having a high frequency front-end prescalar built with CML or dynamic CMOS logic and a low frequency back-end built with standard CMOS or dynamic logic

• **Power supply partitioning and regulation** is an important part of the synthesizer design → to ensure low supply injected spurs use several series and shunt regulators together with passive and active RC filtering