

Technical Report

Large Scale Placement with
Explicit Cell Movement Control

Tao Luo and David Z. Pan

UT-CERC-06-01

April 19, 2006

Computer Engineering Research Center
The University of Texas at Austin

1 University Station, C8800
Austin, Texas 78712-0323

Telephone: 512-471-8000

Fax: 512-471-8967

http://www.cerc.utexas.edu

Large Scale Placement with Explicit Cell Movement Control

Tao Luo and David Z. Pan
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712

tluo@ece.utexas.edu, dpan@ece.utexas.edu

ABSTRACT
Nowadays a circuit placement algorithm often faces a problem size
of multi-million objects, with excessive fixed blockages. We present
a new efficient quadratic placement algorithm that scales well to the
large-scale circuit placement problems. Instead of adding spread-
ing forces into the quadratic system to push cells away from con-
gestions, we simulate the cell diffusion process and use dummy
anchor cellsto guide the real cell movements. By using the con-
cept of anchor cells, our placer has explicit control on how and
where to move cells. Meanwhile, the usage of anchor cells sig-
nificantly reduces the complexity of the Hessian of the quadratic
system, which encapsulates the netlist conductivity. The Hessian
matrix in our quadratic placer is extremely sparse, with 2-3 non-
zero entries in most of rows/colums. Such a matrix is trivial to
solve. From our experiments on the large-scale ISPD 2005 place-
ment benchmarks, our placer achieved a23x speedup on the CPU
usage of the quadratic solver, and comparable wirelengths to exist-
ing state-of-art placers.

1. INTRODUCTION
Circuit placement has been studied for decades and continuously

attracts research attentions because the placement algorithms are
facing exponential growth of problem size and complexity. Nowa-
days, some industry placement problems are multi-million gate de-
signs with a large amount of fixed blockages[1], which further in-
creases the complexity of the placement.

Historically, existing circuit placement algorithms can be roughly
classified into three major categories, such as the simulated anneal-
ing based approach [2], iterative partitioning based approach [3, 4,
5], and the analytical placement approach[6, 7, 8, 9, 10, 11, 12, 13].

Among all existing placement approaches, the force-directed an-
alytical placements have been successful in recent years and achieved
impressive results on speed of convergence and the scalability. Ac-
cording to the results of ISPD 2005 placement contest [14], 4 of
the 5 top ranked placers are force-directed placers. Existing force-
directed placers either formulate the placement objectives, such as
the quadratic wirelength as the quadratic optimization problem, or
use other continuous approximation of the linear wirelength.

Most of existing force-directed quadratic placements are derived
from the framework in presented in [7]. There have been well de-
veloped theories for quadratic optimizations. Quadratic optimiza-
tions gives large penalty on long wires, and its flexibility makes the
force-directed quadratic placement a promising technique for tim-
ing driven placement. A force-directed quadratic placer involves
solving a quadratic system. Overlap constraints are not embedded
in the formulation from the beginning. To reduce excessive over-
lap, typically, the spreading forces or the perturbing fixed points
are added to the system to push cells away highly congested region

[7, 9, 11] [12]. Most of existing cell spreading forces are similar as
the electron charge repulsive force. Uplace [13] adopts a frequency
domain based method, which approximates the density constraints
into convex functions and adds in to original quadratic form.

Currently, the spreading force is used as an estimation of where
to push cells. The explicit and precise control of the cell move-
ments are not handle well by existing force-direct approaches. How-
ever, such explicit control is important to cope with challenging
placement objectives, such as the timing-driven placement with
fixed blockages. Besides, for all quadratic placement approaches,
the growing of the problem sizes is a challenge for the scalability
of the quadratic solver.

In this paper, we present a newAnchor Cell based quadratic
Pplacement algorithm (ACP). ACP is guided by a diffusion process
[15] and uses the concept ofanchor cellsto explicitly control the
movement of cells. The method to create anchor cells is the same
as the one to create stars in [11]. However, the concept and usage
of anchor cells are different. In ACP, anchor cells are not active
entries appear in the Hessian matrix. Instead, anchor cells are just
used to mark the desired target positions for real cells, and also,
anchor cells are used as the attractors to pull cells around, as well
as the reference positions to restrict the movements of cells. In this
paper, we also describe how to smoothly handle the fixed blockages
in ACP. We believe that the following are a few advantages of our
algorithm.

• Explicit and precise control on cell movement. Once we get
the ideal target positions where we should move cells, the
anchor cells will guarantee cells to moved around the ideal
position under the quadratic placement framework.

• Our formulation is extremely efficient. By using anchor cells,
the Hessian matrix in our quadratic formulation has much
lower dimension as well as extremely low density, which
scales well for the large-scale problems. We achieved an
impressive 23x speedup on every iteration of the quadratic
solver. For example, it takes only 4 seconds to solve one it-
eration of the quadratic system in ACP for a 2-million gates
design, while it takes 76 seconds if using conventional for-
mulation. Yet, our placer get comparable results to existing
placers. Since ACP is a very new idea, we believe it has a lot
of room to improve.

The rest of the paper is organized as follows: The overview and
motivations are in section follows 2. We describe the details of
our global placement in section 3, and the legalization and detail
placement in section 4. In section 5, we show the experimental
results and we conclude in section 6.

2. OVERVIEW AND MOTIVATIONS

The following section gives a brief overview of the force-directed
quadratic placement. Through analyzing the advantages and disad-
vantages of different force-directed placement strategies, we moti-
vate our approach.

2.1 Quadratic placement
One of the most important objectives of the circuit placement

is to minimize the wirelength. Typically, the netlist is modeled as
a hypergraph, with nodes representing cells and edges represent-
ing the nets. Letxi andyi denote the coordinates of each cell, the
bounding box wirelength/HPWL is commonly used as the estima-
tion of the routing wirelength. However, the HPWL wirelength
function is not convex, the quadratic placement minimize thelx
norm of the length and width of the bounding box of a net, com-
monly referred as the quadratic wirelength. For a two pin netei, j
that connects celli and j, the quadratic wirelength isWi, j ((xi −
x j)2+(yi−y j)2). Wi, j denotes the weight of netei, j . The quadratic
placement minimizes the sum of all quadratic wirelength. The opti-
mization inx andy direction are separable,and we can consider one
direction for discussion purpose. The cost function in x direction is
given by

Φ(x) =
1
2

xTAx +bT
x x+const (1)

Assuming there aren movable objects in the netlist,A is the
Hessian of the quadratic problem, an x n netlist connectivity ma-
trix. A is symmetric, positive definite.x is the vector of all cells’x
coordinates.b is the vector containing the connectivity information
between movable objects and fixed objects, and the pin offsets are
also captured ind. The minimizer of the cost function (1) is ob-
tained by the zero gradient of the cost function,∂(Φ(x)) = 0 which
is determined by the following systems of linear equations

Ax +b = 0 (2)

2.2 Force-directed method
Solving the unconstrained minimization problem in (1) results

a placement with significant overlap among cells. A placer should
spread cells to reduce the overlap. To reduce the overlap and spread
cells, some quadratic placers recursively partition the placement
region, and a typical force-directed placer modifies the objective or
constraints of the linear system of equation in (2) and iteratively
adding overlap constraints.

Existing force-directed quadratic placers mainly use two types
of spreading strategies, the constant force based approach and the
fixed point addition based approach. In each placement iteration,
Kraftwork [7] and FDP [12] add a constant spreading force vec-
tor (f) to equation (2). The force vectorf is used to perturb the
placement such that overlap is reduced. The force vector in each it-
eration is accumulated to prevent cells collapsing back to previous
positions. The modified equation with constance forces is given by

Ax +b+
i−1

∑
k=1

fk + f i = 0 (3)

The other types of force-directed quadratic placement use fixed
point based approaches to move cells away from congested area.
[9] uses two or three fixed point for each cell in every iteration, one
fixed point is used to maintain a cell into force equilibrium state,
and other fixed points are used to adjust the movability of a cell or
adding perturbing force to the cell. [11] uses one fixed point per

cell for both preventing the cell from collapsing back and moving
away from congested region.

2.3 Existing forces directed approaches
There are advantages and disadvantages for different types of

force-directed approach.

2.3.1 Constant forces
For the constant force based approach, in equation 2, the connec-

tivity matrix is never changed. Only the vector is updated in each
solving iteration. Therefore, there is no need to pre-conditioning
the matrix in each iteration. The matrix pre-conditioning is often
more costly than solving the linear system of equations. However,
the connectivity matrix is not strictly diagonal dominant, and of-
ten ill- conditioned. It is not trivial to scale a proper magnitude of
the spreading forces, especially in the initial spreading stages. The
physical meaning of adding a spreading force to one cell in the sys-
tem can be understand as shifting its connected pins and cells. If
a large amount of forces are pointing to the same direction, which
often happens in the earlier spreading iterations, the large forces
will “throw” cells out of the chip boundary.

Without a proper force scaling strategy, the spreading process
will be either too slow, or causing stability problems. FDP [12]
proposed to solve the stability problem by adding “friction” to a
portion of the cells, which will increase the connectivity weight of
those cells. One potential problem is, adding virtual connections to
a cell will change the original relative movability of the cell, and
also affect the meaning of the original cost function.

2.3.2 Fixed point forces
In fixed-point methods, the forces or the target positions of cells

are computed first, then virtual fixed points and nets are added to
the original linear system of equations to perturb the placement.
For fixed-point based methods, adding a virtual fixed-point connec-
tion to a cell is to add a diagonal term in the corresponding entry of
the cell in matrixA. Adding a virtual connection to a cell will make
the corresponding row and column strictly diagonal dominant, thus
improve the condition number of the matrix. Therefore, in general,
the fixed-point addition based method is more stable.

The fixed point addition method guarantees cells moving inside
the convex hull defined by the fixed points. If uses a large weight
for the virtual nets, cells tend to move toward pure force direction
and cell movements are under tight control. However, the large
virtual net weights added to theA may dominate the actual net
connections, and affecting the meaning of the optimization objec-
tive. On the contrary, if uses a small weight for virtual nets, fixed-
points will be off chip and the movement of cells is less stable. In
mFar[9], the success of the fixed addition based method relies on a
proper virtual net weighting and perturbing strategy.

FastPlace [11] uses one virtual pin on the chip boundary for both
perturbing cells and preventing cells collapse back. Cell shifting
is used to generate a target position for each cell, and compute a
large enough force to pull the cell away connected cells to the target
position. The force computed in such way is very large in the early
stage of placement. In the first a few spreading iterations, cells will
“explode” out and may move hundreds of times further than their
target positions. Such a method converges fast, but also requires
non-trivial efforts to control the wirelength damage caused by cell
explosion in the earlier stages.

Although fixed-point based methods is more stable, virtual nets
added to the original connectivity will change the diagonal term of
the original connectivity matrix, and affect the cost function. At
meantime, matrix recondition is needed in each solving iteration.

2.4 Motivation of the proposed approach
It is difficult to explicitly control the distance and direction of

the cell movements by using existing force-directed methods. A
typical force-directed approach computes the directions of spread-
ing forces to move cells, and uses a scaling method to control the
magnitudes of the forces. Where a cell eventually go is usually
out of control. Such precise control may not be very important
for many global placement problems. However, the technique that
explicitly controls cell movements will have advantages for con-
strained placement, such as placement with excessive blockages
and the timing driven placement.

To explicitly control the movement of cells, ACP simulates the
diffusion process to guide the movement of cells. Anchor cells are
used to “memorize’ the target positions, and to pull real cells close
to where the placer want them be. Furthermore, the fast growing of
the problem sizes is a challenge to existing quadratic solvers. We
need a method that scales well to the scaling of the problem size.
The concept of anchor cells significantly simplifies the solving of
the quadratic problem .

3. THE GLOBAL PLACEMENT
APC has a standard two stage placement steps, the global place-

ment stage and the legalization and improvement step. The global
placement in ACP is guided by a diffusion process and the anchor
cells formulation.

3.1 The diffusion
Diffusion is a natural process that material from highly concen-

trated areas flow into less concentrated area. Diffusion has been
used for placement migration successfully [15]. The cell spread-
ing in placement shares a similar as the nature diffusion process,
where cells are driven from high density area to low density area.
Diffusion in placement is driven by the density gradient, i.e. the
slope and steepness of the density difference. Mathematically, the
diffusion process is given by the following differential equation

∂dx,y(t)
∂t

= D∇2dx,y(t) (4)

In the context of placement,dx,y(t) is the cell density at position
(x,y) at timet. D is the diffusivity constant, which determines the
speed of the diffusion process. We used the discrete approximation
method in [15] to solve the diffusion equation .

To use diffusion to move cells, first, the placement region is cut
into equal size bins, with each bin holds a certain number of cells,
e.g. 50 cells. The bin density is computed as the areas of cells
covered by the bin dividing by the bin area. The discrete solver
for the diffusion equation in [15] is straightforward, basically is to
even out the densities between neighboring bins as time proceeds.
In every global placement iteration of ACP, cells areimaginarily
diffused from high density area to low density area. Every virtual
diffusion process takesk iterations.k is a small number in the ear-
lier stages of the global placement and becomes larger in the later
stages. The actual cell movements will not happen until we place
and lock anchor cells. Anchor cell positions are updated into vec-
tor b as fixed pins. Real cells are move by solving the system of
linear equations in 2. Anchor cells ensure that their connected cells
will be pull around the target positions. The anchor cell concept is
described in the following subsection.

3.2 Anchor cells
To build the connectivity matrixA from a netlist, a hyperedge,

which is a net connecting more than two cells, will be transformed

The number of non-zero entries in marix A and A'

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11
=>
77

Matrix A

Matrix A'

Figure 1: The comparison of non-zero entries in all rows in the
sparse matrix A and A

′
. The x-axis is the number of non-zero

entries, the y-axis is the row counts. Note: most of rows in
matrix A ′ has only 2-3 non-zero entries

into cliqueor star model. Thecliquemodel for an pins net will be
transformed into2n clique edges, which are non-zero entries in the
HessianA. Because a large number of non-zero entries in the ma-
trix A will significantly increase the runtime of the quadratic solver,
a common approach is to transform nets with high conductivity into
star model [11].

Stars are virtual cells with no width and height, and are used
to reduce the number of non-zero entries in matrixA. However,
adding stars will increase the dimension of the matrix. Table 1 is
statistics of the ISPD 2005 benchmark sponsored by IBM [1]. The
ISPD 2005 benchmarks are derived from real industry designs with
circuit size up to 2-million gates. Column #Star in table 1 are the
number of stars added to HessianA if setting a connectivity thresh-
old of 5. Note that by transform cliques into stars, the dimension of
the matrix will increase up to 40% percent. For the largest bench-
mark, the dimension of HessianA grows from 2.2 million to 2.8
million. Even uses a very efficient quadratic solver, to solve one it-
eration of the system of linear equations with the dimension of 2.8
million using conventional formulation will take minutes.

The anchor cell use in ACP is similar as the the stars used in star
model, but are used for different purpose. By setting a connectivity
thresholdt, we assign a anchor cell to the net with the number
of pin connections larger or equal tot. We set thet as 3 in our
experiments. The smallert is, the more steadily cells will move
to the target position. Note that a smallt may over constraint the
movement of cells.

To transform the netlist, we use a weighting strategy similar as
that in[11]. However, anchor cells are not movable objects and will
not appear in the new Hessian matrixA’ . The new HessianA’ in
ACP has a dimension the same as the number of movable objects
in netlist. In each placement iteration in ACP, Anchor cells are
ignored in the cell diffusion, then placed to the gravity centers of
their connected cells and locked after diffusion. Anchor cells are
used to mark the positions diffusion wants cells to move, and act
as anchors to pull real cells around target region in the subsequent
quadratic optimization step. The new HessianA’ has a dimension
much smaller than that in the conventional quadratic placement
methods. Meanwhile, the number of non-zero entries in each row
of A’ is the number of pins on the cell. Such an extremely sparse
matrix is trivial to solve.

Figure 1 shows the statistics of the number of non-zero entries
in old HessianA and new HessianA′ for circuit adaptec2 in figure
5. The dimension of the HessianA is 354K, while only 254K for
the new HessianA′. In most of rows, the number of non-zero en-
tries inA are around 3-6, and 1-2 in new HessianA’ . Through our

experiments, for the 2M cells circuitbigblue4 in table 1, it takes
200 seconds for pre-conditioning and 75 seconds for solving if us-
ing the conventional quadratic formulation. However, it takes 11
seconds for preconditioning and 4 seconds for solving if using our
anchor cells based formulation.

3.3 Global placement
The initial placement seed is generated by the conventional quadratic

formulation. Then all following iterations in ACP start with the
previous placement solutions, and cells areimaginarily diffused to
reach a desired density distribution extent. Then anchor cells are
used to mark the suggested positions and fixed. Because quadratic
wirelength is an indirect estimation of the linear HPWL wirelength,
to further reduce the wirelength, wirelength improving heuristics
are performed between each iteration. Figure 4 illustrates how to
formulate an efficient diffusion guided placement.

In figure 2(a), an initial placement is generated after one iteration
of the standard quadratic placement. Cell are congested in the mid-
dle of the placement region and the initial HPWL is24045. After
a few iterations of diffusion process performed, cells are imaginar-
ily spread in figure 2(b). Note that cells have not actually moved
yet. Although diffusion improves the density distribution, it does
not have explicit control on wirelength, and the total wirelength
increases to35493in figure 2(b).

As we described earlier, every net with a connectivity larger than
k has a anchor cell assigned. Anchor cells are moved to the gravity
center of its connected cells basing on the imaginary cell positions.
By locking all anchor cells, ACP remembers where diffusion sug-
gested cells to go. The fixed anchor cells are treated as fixed pins
and their positions are updated to vectorb in equation 2. After
solving equation 2, cells are spreading out as shown in figure 2(c),
and the new HPWL became 27582, which only increases slightly.

(a) Initial place-
ment. HPWL:
24045

(b) Diffusion sim-
ulation. HPWL:
35493

(c) Actual movement
of cells: HPWL:
27582

Figure 2: One iteration of the diffusion guided placement

3.4 Fixed blockages
Fixed blockages are barriers to block cells’ spreading path. How-

ever, modern design may contain a large number of fixed-blockages,
for example, the circuitadaptec2 in figure 5. Figure 5 shows an
initial solution of the quadratic placement iteration, and cells are
mostly placed over fixed-blockages. Fixed blockages are density
obstacles to prevent cells to pass over, and the cost for cells to flow
around fixed-blockage is very high.

Aplace [16] applies a landscape smoothing technique to smooth
the density distribution. mFar [17] proposes a set of techniques,
such as the constrained global placement as well as the ignoring
and repairing strategies to cope with blockages. In ACP, we use a
contour-based density smoothing technique to alleviate the density
obstacles.

First, we identify large blockages, which are those fixed macros

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

S 1

S 3

S 5

S 7

S 9

S 1 1

S 1 3

S 1 5

S 1 7

S 1 9

S 2 1

S 2 3

S 2 5

S 2 7

S 2 9

S 3 1

Figure 3: Initial adjusted densities for blockages

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

S 1

S 4

S 7

S 1 0

S 1 3

S 1 6

S 1 9

S 2 2

S 2 5

S 2 8

S 3 1

Figure 4: Blockage densities increase gradually during the
placement

with width and height larger than a certain threshold, such as 1%
size of the chip size. In the beginning of the global placement,
we adjust the density on bins covered by blockages, the adjusted
density distribution is contour based. For a bin covered by a big
blockage, the bin density is set to be proportional to the distance
between the bin to the blockage boundary. Therefore the highest
density is in the middle bin. Figure 4 shows the adjusted blockage
density distribution of circuitadaptec2 in figure 5.

In the earlier stages of the global placement, the adjusted fixed
blockage density is set to a very small value to allow cells pass-
ing over. As the cells spreading stabilized, the adjusted density
increases gradually, as shown in figure 4. The density in the middle
of the fixed blockage rises to push overlap cells out of blockages
smoothly.

4. LEGALIZATION AND THE DETAILED
PLACEMENT

4.1 Overall algorithm
The overall algorithm of ACP is summarized inalgorithm 1

4.2 HPWL improvement heuristics
Equation 2 optimizes the quadratic wirelength, which is an indi-

rect estimation of the linear wirelength. In certain extent, the wire-
length improvement heuristics determine the quality of final linear
wirelength. The inaccuracy of using the quadratic wirelength as the
objective is magnified in large-scale ISPD2005 benchmarks, which
contains a large amount of fixed macros.

Figure 5 is the initial quadratic solution for circuitadaptec2.
Without any spreading, the unconstrained quadratic optimizer gen-
erates a solution of 8.306e+7 in HPWL, which is already close
to the our final solution in figure 6 (HPWL 9.895e+7). Some of
the circuits, for example, the bigblue2, has an initial HPWL of
2.25e+7, which is much larger than most of the final solutions in
table 2. Therefore, in quadratic placement, the wirelength improv-
ing heuristics are crucial for the final HPWL results. In our placer,
the quadratic optimization step is extremely fast, most of CPU time
is on wirelength improving heuristics.

Figure 5: Initial placement of adaptec2: with 254K movable
objects and 566 blockages. The initial HPWL: 8.306e+7

Figure 6: ACP solution of adaptec2 with HPWL: 9.895e+7

From our experiments, the medium improvement heuristics used
in FDP[12] is very effective in the earlier stages of the global place-
ment. And the iterative local refinement [11] is more helpful in the
later stages of placement. We used different heuristics in different
stages of ACP.

4.3 Legalization and detailed placement
The legalization algorithm in ACP is similar as the Tetris[18].

The first step in our legalization stage is to legalize all movable
macros and adjust movable macros slightly to ensure no overlaps
exist between all macros. All movable macros were fixed before
the standard cell legalization. Blockages will split the placement
region into row segments. We identify all row segments, sort all
cells and pack cells into the closet row segment with the minimum
cost.

The detailed placement is performed on standard cells only. We
use a window-based greedy swapping technique to further improve
the wirelength. That is, we use a fixed window to slide through the
placement region and test each cell pairs inside the window. We
greedily swap two cells if such swapping helps reducing the total
wirelength.

5. EXPERIMENTS
We implemented our placer in C++ and run the experiments on a

Linux box with 3.4 GHZ 64-bit Xeon processor and 16G of mem-
ory, we tested our placer on ISPD 2005 placement contest bench-
marks [1] and use the ISPD 2005 placement contest results [14] for
comparison. The quadratic solver is an important part of a force-
directed quadratic placer. We tested the LASPack CG solver [19]

Algorithm 1 Major steps in our algorithm
1: The global placement
2: Build matrix A, and matrixA′
3: Generate an initial quadratic placement with matrixA
4: Repeat
5: Diffuse cells fork iterations
6: Move anchor cells to the gravity centers
7: Lock the anchor cells, update vectorb
8: Solve the quadratic systemx = A′−1b
9: if (earlier iterations)

10: Use medium heuristic to repair wirelength
11: else if(Later iterations)
12: Use iterative local refinement to repair wirelength
13: Until reaches a desired density distribution)
14: Further diffuse cells to remove remaining overlap
15: The legalization
16: Legalize the macros
17: legalize the standard cells
18: The detailed placement
19: Further check the cell density and congestion
20: Greedy window based standard cell swapping

Table 1: Benchmarks from ISPD 2005 placement contest.
adaptec2 is shown in Figure 6

Circuits #Obj #Fix #Net Util.% #Stars
adaptec2 255K 566 266K 44.32 100K
adaptec4 496K 1329 516K 27.23 179K
bigblue1 278K 560 284K 44.67 114K
bigblue2 558K 23084 577K 37.94 193K
bigblue3 1097K 1293 112K 56.68 293K
bigblue4 2177K 8170 2230K 44.35 662K

and the Hybrid solver [20]. In our experiments, the Hybrid solver
is at least twice faster than the LASpack CG solver. We use the
Hybrid solver as the quadratic engine in our placer.

The statistics of the ISPD 2005 contest benchmarks are shown
in table 1. Column #Star shows the number of star cells added
to the linear system if setting the connectivity threshold as5. All
HPWL results are shown in table 2. There is no runtime informa-
tion available for other placers. We show our runtime for the global
placement and the detailed placement in table 4. Although there
is no subject comparisons for runtime, we can get a feeling about
how fast is our placer from the data in table 4. e.g. our placer fin-
ished the 255K cells circuitadaptec2 within 15 minutes. From the
HPWL results in table 2, in current stage, our placer produces a re-
sult close to existing stage-of-art placers, such as the FastPlace and
Capo.

Table 3 shows the statistics of the new HessianA’ used in our
placer, versus the HessianA in conventional formulation. Column
Sizeshows the dimension of the Hessian, and column #Non-zeros

Table 4: Statistics of ACP CPU time on ISPD2005 benchmarks
Circuits HPWL (e+6) Global (s) Detail(s)
adaptec2 98.95 839 48
adaptec4 215.72 1375 158
bigblue1 104.95 1058 45
bigblue2 191.62 1751 180
bigblue3 426.81 3754 339
bigblue4 980.07 14741 1405

Table 2: Wirelength results (All wirelength results except those for ACP are from ISPD2005 placement contest slides)
Placers Adaptec2 Adaptec4 bigblue1 bigblue2 bigblue3 bigblue4 ratio
Aplace 87.31 187.65 94.64 143.82 357.89 833.21 1.00
mFAR 91.53 190.84 97.70 168.70 379.95 876.28 1.06
dragon 94.72 200.88 102.39 159.71 380.45 903.96 1.08
mPL 97.11 200.94 98.31 173.22 369.66 904.19 1.09

FastPlace 107.86 204.48 101.56 169.89 458.49 889.87 1.16
Capo 99.71 211.25 108.21 172.30 382.83 1098.76 1.17
ACP 98.95 215.72 104.95 191.62 426.81 980.07 1.18

NTUP 100.31 206.45 106.54 190.66 411.81 1154.15 1.21
fs50 122.89 337.22 114.57 285.43 471.15 1040.05 1.50
K&D 157.65 352.01 149.44 322.22 656.19 1403.79 1.84

Table 3: Statistics on new Hessian A’ and the Hessian A for conventional formulation, and the quadratic solver CPU time
Matrix A Matrix A’ Solving time
Size #Non-0s Precond.(s) Solve (s) Size #Non-0s Precond.(s) Solve(s) speedup

adaptec2 355K 2099K 25.61 7.38 254K 557K 0.9 0.3 24.6x
adaptec4 674K 3713K 38.18 15.61 494K 1131K 1.74 0.58 26.9x
bigblue1 392K 2287K 29.78 6.87 278K 603K 1.16 0.36 19.1x
bigblue2 729K 3937K 47.79 22.78 535K 1178K 2.29 0.82 27.8x
bigblue3 1389K 7290K 103.93 39.32 1096K 2714K 4.54 1.70 23.1x
bigblue4 2831K 16850K 221.47 75.70 2169K 5190K 10.66 3.91 19.4x

23.5x

shows the non-zero entries in the Hessian. ColumnPrecond. shows
the CPU time to preconditioning each Hessian matrix. Same pre-
conditioning quality targets are used for the comparison. Column
Solveshows the CPU time to solve one iteration of the quadratic
system. All data are the average of 2 solving iterations. Compar-
ing with the conventional HessianA, new HessianA’ is about 30%
smaller on matrix dimension. Furthermore, becauseA’ is extremely
sparse (figure 1 and table 3), both the preconditioning and the solv-
ing CPU time forA’ are much less than those forA. The quadratic
solver achieved an23x times speeding up on solving time.

6. CONCLUSIONS AND FUTURE WORKS
In this paper, we proposed theACP, anAnchorCell based quadratic

Placer, which is guided by the diffusion process, and uses anchor
cells to explicitly control the movement of cells. The anchor cell
structure makes the Hessian in the quadratic system extremely sparse.
As a result, our new method significantly improves the runtime the
quadratic solving process, which is the CPU dominant part of exist-
ing quadratic placers. We achieved a very impressive23x speedup
on the quadratic solver on large-scale ISPD 2005 placement bench-
mark, and our placement results are comparable to existing state-
of-art placers.

Since ACP is a brand new placement engine, we believe there is
still a lot of room to improve, given that it is ultra fast. Further-
more, since it has explicit cell movement control, we believe it has
significant advantage for timing and congestion driven placement
where precise cell movement control is needed.

7. REFERENCES
[1] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and

M. Yildiz, “The ispd2005 placement contest and benchmark
suite,” in ISPD ’05: Proceedings of the 2005 international
symposium on Physical design, (New York, NY, USA),
pp. 216–220, ACM Press, 2005.

[2] TimberWolf Systems, Inc., “Timberwolf placement & global

routing software package,” in
http://www2.twolf.com/benchmark.html.

[3] A. E. Caldwell, A. B. Kahng, and I. L.Markov, “Can
recursive bisection alone produce routable, placements?,” in
Proc. Design Automation Conf., pp. 477–482, 2000.

[4] M. Wang, X. Yang, and M. Sarrafzadeh, “Dragon2000:
Standard-cell placement tool for large industry circuits,” in
Proc. Int. Conf. on Computer Aided Design, pp. 260–263,
2000.

[5] M. C. Yildiz and P. H. Madden, “Improved cut sequences for
partitioning based placement,” inProc. Design Automation
Conf., (New York, NY, USA), pp. 776–779, ACM Press,
2001.

[6] J. Kleinhans, G. Sigl, F. M. Johannes, and K. Antreich,
“GORDIAN: VLSI placement by quadratic programming
and slicing optimization,”IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. CAD-10,
pp. 356–365, Mar. 1991.

[7] H. Eisenmann and F. M. Johannes, “Generic global
placement and floorplanning,” inProc. Design Automation
Conf., pp. 269–274, 1998.

[8] T. F. Chan, J. Cong, T. Kong, and J. R. Shinnerl, “Multilevel
optimization for large-scale circuit placement,” inICCAD
’00: Proceedings of the 2000 IEEE/ACM international
conference on Computer-aided design, (Piscataway, NJ,
USA), pp. 171–176, IEEE Press, 2000.

[9] B. Hu and M. Marek-Sadowska, “Far: fixed-points addition
& relaxation based placement,” inProc. Int. Symp. on
Physical Design, (New York, NY, USA), pp. 161–166, ACM
Press, 2002.

[10] A. B. Kahng and Q. Wang, “An analytic placer for
mixed-size placement and timing-driven placement,” in
Proceedings of the IEEE/ACM international conference on
Computer-aided design, pp. 565–572, November 2004.

[11] N. Viswanathan and C. C. N. Chu, “Fastplace: Efficient

analytical placement using cell shifting, iterative local
refinement and a hybrid net model,” inProc. Int. Symp. on
Physical Design, pp. 26–33, 2004.

[12] A. K. K. Vorwerk and A. Vannelli, “Engineering details of a
stable force-directed placer,” 2004.

[13] B. Yao, H. Chen, C.-K. Cheng, N.-C. Chou, L.-T. Liu, and
P. Suaris, “Unified quadratic programming approach for
mixed mode placement,” inISPD ’05: Proceedings of the
2005 international symposium on Physical design, (New
York, NY, USA), pp. 193–199, ACM Press, 2005.

[14] ISPD 2005PlacementContest,
“http://www.sigda.org/ispd2005/ispd05/slides/10-1-
placement-contest-ispd05.ppt,”
2005.

[15] H. Ren, D. Z. Pan, C. J. Alpert, and P. Villarrubia,
“Diffusion-based placement migration,” inProc. Design
Automation Conf., June, 2005.

[16] S. R. A. B. Kahng and Q. Wang, “Aplace: A general analytic
placement framework,” inInternational Symposium on
Physical Design, pp. 233–235, April 2005.

[17] B. Hu and M. Marek-Sadowska, “Multilevel
expansion-based vlsi placement with blockages,” inICCAD
’04: Proceedings of the 2004 IEEE/ACM International
conference on Computer-aided design, (Washington, DC,
USA), pp. 558–564, IEEE Computer Society, 2004.

[18] D. Hill, “Method and system for high speed detailed
placement of cells within an integrated circuit design,” US
patent 6,370,673, 2002.

[19] LASpack,
“http://www.mgnet.org/mgnet/codes/laspack/html/laspack.html,”
1995.

[20] H. Qian and S. S. Sapatnekar, “A hybrid linear equation
solver and its application in quadratic placement,” inProc.
Int. Conf. on Computer Aided Design, 2005.

