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Abstract

Achieving high-performance while reducing power consumption is the key question as tech-
nology scaling is reaching its limits. It is well-accepted that application-specific custom hard-
ware can achieve orders of magnitude improvements in efficiency. The question is whether such
efficiency can be maintained while providing enough flexibility to implement a broad class of op-
erations. In this paper, we aim to answer this question for the domain of matrix computations.
We propose a design of a novel linear algebra processor and demonstrate that it can achieve
orders of magnitude improvements in efficiency for matrix-matrix multiplication, an operation
that is indicative for a broad class of matrix computations. A feasibility study shows that 46
double- and 113 single-precision GFLOPS/W can be achieved in 13.6 and 11 GFLOPS/mm?,
respectively with current components and standard 45nm technology.

1 Introduction

It is predicted that advances in semiconductor technology will allow for many billions of transistors
on a single chip while power concerns will limit the number of transistors that can be active at
any given time. The key question going forward is how to minimize, or at least greatly reduce, the
power consumption while retaining or improving the achieved performance per unit area. Required
efficiencies and optimality requires specialization. At the same time, dark silicon provides us with
the opportunity to include such heterogeneous cores on a chip that can be effectively utilized only
when needed.

It is well known that full custom, application-specific design of on-chip hardware accellerators
can provide orders of magnitude improvements in efficiencies for a wide variety of application do-
mains [11, 32]. The flexibility provided by programmable general purpose machines comes at the
expense of inherent instruction handling inefficiencies. Both control and data paths are designed to
process an unknown, sequential stream of general fine-grain operations. To achieve performance,
aggressive architectural optimizations, such as deep caching and pipelining with associated specula-
tion, reordering and prediction are applied in an effort to dynamically recover inherent parallelism
and locality. However, these techniques tend to incur tremendous overheads.

By contrast, in application-specific designs, the order and type of operations to be performed
is known at design time. Both control and data paths are hardwired to directly realize the desired



computation. This is possible in domains, such as multimedia or signal processing, where applica-
tions are standardized. There, functionality can be realized into fixed hardware, and exponentially
growing costs of chip design can be reaped across a large volume of units. The question is whether
these concepts can be applied to a broader class of other, more general applications. If in the future
neither fine-grain programmable computing nor full custom design are feasible, can we design spe-
cialized on-chip cores that maintain the efficiency of full custom hardware while providing enough
flexibility to execute whole classes of coarse-grain operations?

In this paper, we aim to answer these questions for the domain of matrix computations, which
build the basis for many algorithms in communications, control and scientific computing. It is
well understood that linear algebra problems can be efficiently reduced down to a canonical set
of Basic Linear Algebra Subroutines (BLAS), such as matrix-matrix and matrix-vector operations
[6]. Highly efficient realization of matrix computations on existing general-purpose processors have
been studied extensively. Among the highest profile efforts is the currently fastest method for
(general) matrix-matrix multiplications (GEMM) [10], which was later generalized to the broader
set of BLAS operations [9]. These results have shown that a single approach can achieve high
performance across this important set of operations on a broad range of traditional processors.

By contrast, the long-term vision of our project is to design high-performance, low-power linear
algebra processors by essentially aiming to realize this method directly in specialized hardware.
In the present paper we examine how this can be achieved for GEMM, with an eye on keeping
the resulting architecture sufficiently flexible to compute all operations in this class. Our analysis
suggests that it should be possible to achieve a performance of 45 double- and 110 single-precision
GFLOPS/W in 11-13 GFLOPS/mm? with currently available components and technologies as
published in literature. This represents a two order of magnitude improvement over current general
purpose architectures and a one order of magnitude improvement over current GPUs.

The paper is organized as follows: after a brief discussion and reexamination of deficiencies
in related work, we develop our proposed matrix processor architecture aimed at removing such
inefficiencies in Section 3. In Section 4 and Section 5 we show the mapping of matrix multiplication
onto this processor and we analyze both its theoretical performance and performance characteristics
of a realistic implementation based on current technology. The paper concludes with a summary
and an outlook on future work in Section 6.

2 Related Works

GEMM implementation on traditional general-purpose architectures has received a lot of attention.
Modern CPUs include SIMD units that provide data parallelism without an increased instruction
count, which can be exploited for high performance in matrix computations [9, 2, 30]. However,
general instruction handling overhead remains and even with SIMD instructions, long computations
have to be split into multiple operations that exchange data through a wide register file.

In recent years, GPUs have become a popular target for acceleration. Originally, GPUs were
developed as specialized hardware for graphics processing that provided massive parallelism but was
not a good match for matrix computations [7]. More recently, GPUs have shifted away from spe-
cialization back towards general-purpose architectures. Such GPGPUs essentially replicate a large
number of SIMD processors on a single shared memory chip. GPGPUs can be effectively used
for matrix computations [3, 28] with throughputs of more than 300 GFLOPS for single-precision
GEMM (SGEMM), utilizing around 30-60% of the theoretical peak performance. Since early GPG-
PUs only included a limited number of double-precision units, their DGEMM performance is less



than 100 GLFOPS (at utilizations of 90-100%). In the latest GPGPUs, single-precision units can
be configured as half the number of double-precision ones, achieving up to 600 or 300 GFLOPS at
around 60% utilization, respectively [20]. In all cases, however, utilization and achievable perfor-
mance will drop for smaller kernel sizes (e.g. matrix sizes less than 256).

Over the years, many other parallel architectures for high-performance computing have been
proposed and in most cases benchmarked using GEMM as a prototypical application. Systolic
arrays were popularized in the 80s [19]. With increasing memory walls, recent approaches have
brought the computation units closer to memory, including hierarchical clustering of such combined
tiles [23, 16]. Despite such optimization, utilizations for GEMM range from 60% down to less than
40% with increasing number of tiles. Instead of a shared memory hierarchy, the approach in [26]
utilizes a dedicated network-on-chip interconnect with associated routing flexibility and overhead.
It seems closest to our design, but it is not specifically designed for matrix multiplication and is
reported to only achieve around 40% utilization for this application. More recently, Intel developed
the Single-chip Cloud Computer (SCC) research processor with 48 Pentium cores [13] arranged as
a 2D array with local memory. This processor intended to study question about programmability
more than that it targets high performance.

As utilization numbers indicate in all these cases, inherent general-purpose characteristics of
data paths and interconnects, coupled with associated instruction inefficiencies make it difficult to
fully exploit all available parallelism and locality. By contrast, while we will build on the SIMD and
GPU concept of massive parallelism, we aim to provide a natural extension that is further targeted
at leveraging the specifics of matrix operations. We can recognize that our class of linear algebra
operations essentially consists entirely of multiply-accumulate (MAC) computations with regular
and predicable access patterns. As such, we can design a data path that consists of specialized
MAC units, which include local accumulators that avoid the need for unnecessary shared storage
accesses between basic arithmetic operations. Similarly, partitioned and distributed memories and
interconnects can be specifically designed to realize available locality and required access patterns.
Finally, control can be predominantly hardwired with a minimal set of micro-coded commands
to switch between different coarse-grain matrix processing modes. As such, we focus our work
on improved linear algebra processors that can replace traditional SIMD cores for the domain of
matrix computations. In the same manner as in GPGPUs, these basic cores can in the future be
replicated and dropped into a larger linear algebra processor arrangement.

Specialized hardware implementations of GEMM on FPGAs have been explored before, either as
dedicated hardware implementations [34, 33] or in combination with a flexible host architecture [17].
Such approaches show promising results (up to 99% utilization) but are limited by the performance
and size restrictions in FPGAs. By contrast, we target an ASIC implementation that will allow
us to fully exploit state-of-the-art technologies. Within this context, our goal is to develop a fixed
architecture that is flexible yet specialized enough to optimally execute many matrix operations.

3 Basic Design of a Linear Algebra Processor

A high-level design for a Linear Algebra Processsor (LAP) is shown in Figure 1. It consists of
a 2D array of n, x n, processing elements (PEs), each of which has a MAC unit with a local
accumulator, local storage, simple distributed control, and bus interfaces to communicate data
within rows and columns. For illustrative purposes we will focus our discussion on the case of a
mesh with n, x n, =4 x 4 PEs.
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Figure 1: LAP Architecture. The highlighted PEs on the left illustrate the PEs that own the
current column of 4 x k. matrix A and the current row of k. x 4 matrix B for the second rank-1
update (p = 1). It is illustrated how the roots (the PEs in second columns and row) write elements
of A and B to the buses and the other PEs read these.

3.1 Basic Operation

A special case of GEMM will be used in this section to describe the Linear Algebra Processor: Let

C, A, and B be 4 x 4, 4 X k., and k. x 4 matrices, respectively!. Then C' += AB can be computed
as

70,0 -+ 70,3 Q0,0 Q0,1
+= (Boo -+ Pos) + (Bro-Prs)+---

Y3,0 - V3,3 as.0 Qas1

so that C is updated in the first iteration with

0,0 + 20,0800 -+ 70,3+ @0,000,3
3,0 +@30080,0 -0 733+ @3,0003
and the second iteration with
Y,0 + 20,1810 -+ 0,3+ 01613
: . : ; (1)
30 +taszibio o 33+ 31613

and so forth. Each such update is known as a rank-1 update. In our discussions, upper case letters
denote (sub)matrices while Greek lower case letters denote scalars.

Let us assume that 4 x k. matrix A and k. x4 matrix B are distributed to the array in a 2D cyclic
round-robin fashion, much like one distributes matrices on distributed memory architectures [12, 5].

The choice of parameter labes like n, and k. mirrors those used in [10].



In other words, «; j and f3; ; are assigned to PE (i mod 4,j mod 4). Also, element ~; ; of matrix
C' is assumed to reside in an accumulator of PE (4, j). Then a simple algorithm for performing this
special case of GEMM among the PEs is to, for p =0,..., k. — 1, broadcast the pth column of A
within PE rows, the pth column of B within PE columns, after which a local MAC operation on
each PE updates the local element of C'.

3.2 LAP Architecture

The prototypical rank-1 update given in Eqn. 1 gives a clear indication of possible parallelism:
all updates to elements of C' can be performed in parallel. We also note that elements of C' are
repeatedly updated by a multiply-add operation. This suggests a natural top-level design for a
processor performing repeated rank-1 updates as a 2D mesh of PEs, depicted in Figure 1 (left).
Each PE (4, j) will update element ~; ;.

Details of the PE-internal architecture are shown in Fig. 1 (right). At the core of each PE is a
MAC unit to perform the computations v; ; += ;3 ;. Each MAC unit has a local accumulator
register that holds the intermediate and final values of one inner dot product of the result matrix
C being updated. Apart from preloading accumulators with initial values of v, all accesses to
elements of C' are performed directly inside the MAC units, avoiding the need for any register file
or memory accesses. We utilize pipelined units that can achieve a throughput of one MAC operation
per cycle. Such throughputs can be achieved by postponing normalization of results until the last
accumulation [27]. Being able to leverage a fused MAC unit with delayed normalization will also
significantly decrease power consumption while increasing precision.

As outlined in Section 3.1, we store the 4 x k. matrix A and the k. x 4 matrix B distributed
among the PEs in local memories. It is well-understood for dense matrix operations [5, 12] that
communication is greatly simplified and its cost is reduced if it is arranged to be only within PE
rows and columns. When considering v; ; += «; 3, ;, one notes that if «;, is stored in the same
PE row as v; j, it only needs to be communicated within that row. Similarly, if 3, ; is stored in
the same column as v; j, it only needs to be communicated within that PE column. This naturally
leads to the choice of a 2D round-robin assignment of elements, where «;,, is assigned to PE (i, p
mod n,) and B, ; to PE (p mod n,,j).

Each rank-1 update (fixed p, Eqn. 1) then requires simultaneous broadcast of elements «; ;, from
PE (i,p mod n,) within PE rows and of elements 3, ; from PE (p mod n,, j) within PE columns.
This is illustrated for the p = 1 update in Figure 1. In our design, we connect PEs by horizontal
and vertical broadcast busses. Interconnect is realized in the form of simple, data-only busses that
do not require overhead for address decoding or complex control. PEs are connected to horizontal
and vertical data wires via separate read and write latches. This allows for simultaneous one-cycle
broadcast of two elements «;j, and 3, ; to all PEs in the same row and column.

The simple, symmetric and regular 2D mesh is scalable and easy to route during physical design
and layout. However, length and capacitive load of data busses is determined by the number of
PEs. As such, wire delays put limits on the possible size n, of a LAP array that can perform
one-cycle broadcasts. In this case, busses can be pipelined and latencies are hidden by overlapping
with successive computations in the pipelined MAC units. This would make the design reminiscent
of a systolic array, with the major difference being that we locally store inputs and results. Hence,
we only pipeline a subset of input data but no results through the array.

Column busses in the PE mesh are multiplexed to both perform column broadcasts and transfer
elements of A, B and C to/from external memory during initial preloading of input data and writing
back of results at the end of computation. For the latter purpose, PEs can internally read and



write column bus values from/to the MAC accumulator or local memory. In regular operation, row
and column busses carry «;, and 3, ; values that continuously drive PE-internal MAC inputs in a
pipelined fashion. Sending PEs (i,p mod n,) and (p mod n,, j) drive the busses in each row and
column with values out of their local memories, where diagonal PEs (i = j) simultaneously load
two values from local memory onto both busses. For simplicity and regularity, sending PEs receive
their own broadcasted values back over the busses into the MAC inputs like all other PEs. In such
a setup, no additional registers or control are necessary.

Alternatively, we can consider a setup in which all elements 3, ;, p = 0,...,k. —1 of B are
replicated among all PEs in each row j. This eliminates the need to broadcast these values across
columns. Instead, elements of B are always accessed locally through an additional register file?.
Trading off storage for communication requirements, this setup avoids all column transfers, freeing
up column busses for prefetching of subsequent input data in parallel to performing computations
(see Section 4).

Overall, the local storage in each PE consists of a dual-ported memory and a small register file
with one write and two read ports. Access patterns are predictable and in most cases sequential.
As such, only simple, auto-incrementing address generators are required. Furthermore, memories
can be efficiently banked to increase bandwidth and reduce power. All combined, the data path
is regular and simple without any overhead associated with tags, large multiplexers or complex
address computations to support random accesses.

3.3 LAP Control

LAP control is distributed and each PE has a state machine that drives a predetermined sequence
of communication, storage and computation operations. Local controllers in each PE are equally
smart and all agents operate in parallel and in lock step. PE executions are implicitly coordinated
and synchronized without any additional handshaking. Instead, inter- and intra-PE data movement
is predetermined, and each PE implicitly knows when and where to communicate. Global control
and handshaking is limited to coarse-grain coordination for simultaneous triggering or stalling of all
PEs at the start of operation or in combination with external memory accesses. State machines are
microprogrammed via a few external control bits to select the type of linear algebra operation that
the PE should perform. Using only these control signals and counter presets, we expect to be able
to support the full flexibility we want for executing, for example, all level-3 BLAS (matrix-matrix
operations) [6].

The state machine for local PE control is shown in Figure 2. In the Init and Fetch states, the PE
is initialized, and input data is loaded from external memory and distributed across accumulators
and PE memories. The external memory interface in combination with global control drives column
busses with 4-element vectors of C', A and B in a row-by-row fashion. Based on the row indices and
distribution patterns, individual PEs independently determine which values to latch and where to
store them internally. Note that as shown in the example here, the A panel is fetched in 4 x 4 blocks
by looping over its k. columns in 4-column chunks®. Furthermore, note that if B is replicated, every
PE will locally store all four row values of every complete column it receives.

2We include a small, general register file that carries little additional overhead but provides the flexibility of
storing a number of intermediate values that can be (re)used as MAC inputs and can be read or written from/to
local memory. This will be beneficial in supporting other linear algebra operations in the future.

3When extending the approach to larger matrix multiplications in Section 4, we will locally keep multiple panels
of a complete A matrix that can then be fetched in different patterns.



After preloading of input data,
the following BC and Update states
perform the actual computations.
The broadcast state BCO fills the
pipeline by re-initializing the address
registers and letting the sending PEs
write the set of elements (for p = 0)
out onto the row and column bus
write latches and busses. From there,
values will be latched by all bus read
registers with one cycle delay. In the
case of replicated B, column busses
are bypassed. Instead, values of B
are loaded from local memory directly
into the local register file.

Once the first set of MAC in-
puts are available on the busses,
the BC&Update state operates the
pipeline by performing subsequent
broadcasts in parallel with MAC com-
putations for a total of k. rank-1 up-
date cycles. Once the last set of items
has been written into the bus read
latches, it is processed in the Update0
state. Finally, after applying the last
set of elements to the MAC inputs,
the state machine transitions to the
final Flush and Out states in which
the MAC pipeline is flushed and final
accumulator values of v are written
back to the column busses and exter-
nal memory.

The basic state machine in each
PE requires eight states, two address

registers and one loop counter. In the following sections, we will discuss LAP and PE operation
for bigger matrix multiplications that are broken into a sequence of basic rank-k updates using a
hierarchical blocking of input matrices. Each additional level of blocking will require an additional
loop and loop counter. Since there are no loop-carried dependencies, we pipeline the outer loops
to effectively overlap the rank-k computation of the current kernel with prefetching of the next

If (p%4)==i: CBR—Accum (y;))
Addr1 = Apase
Addr2 = Byase

Istart,
p=0:3

p = Otke-1 ( If (p%4)==i: CBR—MEMIAAAr++] (2,4 y1.)
0= Okt If Brepicate: CBR—MEM[Addr2++] (8,)
e Else: If (p%4)==i: CBR—MEM[Addr2++] (,,)

Addr1 = Apsse; Addr2 = Bpase
If (j == 0): MEM[Addr1++]>RBW (a;,)
I 1Brepicate && (i == 0): MEM[Addr2++]->CBW (55,)

If (p%4 == j)&&(p<ke-1)::MEM[Addr1++]>RBW (a;5.7)
If (p>0): RBR—MACh (-1
0= Oked BC & ) (B ,yices MEM[AAAr2++]RFI0] (5,,)
e Update if (p>0) RF[0]—~MACs (,-1,)
Else: If (p%4 == i)&&(p<kc-1)):MEM[Addr2++]—-CBW (8,,)
if (p>0) CBR—MACs (8,.1,)

RBR—MACAx (@4-1)
If Brepiicate: RF[0]>MACg (Bc-1,)
Else: CBR—MACg (Bic-1,)

Update0

MAC depth -1 (
p=0:3 (

Null=MACa
Null-MACg

If (p%4 == j): Accum—CBW (y;))

Figure 2: State machine for basic operation of PE (3, j).

kernel’s input data and writeback of the previous kernel’s results. As such, functionality of Init,

Fetch and Out is merged into the BC, Rank-1 and Flush states. With B replicated and all of a
larger A local, the resulting state machine has a combined inner core state that runs all operations

in a single-cycle loop with full parallelism and essentially 100% sustained LAP utilization. With
three levels of blocking, such PE control only requires a total of four counters and ten states.



Blocks of C;; A in Local Store of PEs By, Bpjjst
1-Stream Out ' '

2-Current kc n,
3-Prefetch

Accumulator
(Register Level)

Local Store
Level

Cache/ Memory C’}/
Level /
/
/
/

Figure 3: Memory hierarchy while doing GEMM, resident blocks are shown with thick lines in the
pyramid.

4 Mapping GEMM to the LAP

In the previous section, we showed how a LAP can easily compute with data that already resides
in its memory. The question is now how to compose the GEMM C += AB for general (larger)
matrices from the computation that can occur on the LAP. The key is to amortize the cost of
moving data in and out of the LAP. We describe that in this section with the aid of Figure 3, which
depicts the proposed design and use of the memory hierarchy.

4.1 Algorithm

Assume the matrices A, B, and C are stored in memory external to the LAP. We can observe that
C += AB can be broken down into a sequence of smaller matrix multiplications (rank-k updates
with k& = k. in our discussion):

By
C+=(A - Ag_1) : = AoBo+ -+ Ax_1Bk-1
Bi 1

so that the main operation to be mapped to the LAP becomes C' += A,B,. This partitioning of
matrices is depicted in the bottom layer in Figure 3.

In the next higher layer (third from the top), we then focus on a single update C' += A, B,,. If
one partitions

Co Ao p
C= : and A, = : ,
Crr—1 Arv—1p

then each panel of C, C;, must be updated by C; += A; , B, to compute C += A,B,.

Let us further look at a typical C; += A; ,B,. At this point, the m. x k. block A; ), is loaded
into the local memories of the PEs using the previously described 2D round-robin distribution. We
partition C; and B, into panels of n,(= 4) columns:

C; = (Ci,O Ci,N—l) and B, = (Bp,o Bp,N—l)‘



Now C; += A; ,B), requires the update C; ; += A; , B ; for all j. For each j, B, ; is loaded into the
local memories of the PEs in a replicated column-wise fashion. The computation to be performed
is now described by the second layer (from the top) of the pyramid, which is also magnified to its
right.

Finally, A;, is partitioned into panels of four rows and C;; into squares of 4 x 4, which are
processed from top to bottom in a blocked row-wise fashion across 7. The multiplication of each
row panel of A;, with B, ; to update the 4 x 4 block of C; ; is accomplished by the LAP via the
rank-1 updates described in Section 3. What is still required is for the 4 x 4 blocks C;; to be
brought in from main memory.

The described blocking of the matrices facilitates reuse of data, which reduces the need for high
bandwidth between the memory banks of the LAP and the external memory:

e Fetching of a 4 x 4 block C; ; is amortized over 4 x 4 x k. MAC operations (4 x 4 of which
can be performed simultaneously).

e Fetching of a k. x 4 block B, ; is amortized over m. x 4 x k. MAC operations.
e Fetching of a m. x k. block A;, is amortized over m. x n x k. MAC operations.

Note that when this approach is mapped to a general purpose architecture, A;, is stored in
the L2 cache, B, ; is kept in the L1 cache, and the equivalent of the 4 x 4 block of C is kept in
registers [10].

4.2 Architecture

We now translate the theoretical insights about the hierarchical implementation of GEMM into
a practical implementation in hardware. In doing so, we derive formulas for the size of the local
store, the bandwidth within the LAP, and the bandwidth between the external memory and the
LAP. Note that in our subsequent discussion 4 x 4, the size of the submatrices of C; ;, is generalized
to n, X N

The local memory requirements for the LAP are that matrices A;, and B, ; must be stored
in the aggregate memories of the PEs. It was decided to keep duplicates of B, ; within all PEs
of a column. It was also decided that computation with the current submatrix of C;; was to be
overlapped with the prefetching of the next such submatrix. Thus, the size of the local store,
aggregated over all PEs, is given by

e m. X k. elements for A; ;, and
® 2 x k. x n, x n, elements for the current and next B, ; and Bpy1 ;.

In total, the local memory must be able to hold mck. + 2k.n? = (m. + 2n2)k. single or double
precision floating point numbers. Note that the n, x n, submatrix of C;; is always in the accu-
mulators and never stored. However, concurrent prefetching and streaming out of the next and
previous such submatrix, respectively, occupies two additional entries in the register file of each
PE. Together with a register each for internal transfers of locally replicated 3, ;, every PE requires
a register file of size 4 (rounded up to the next power of two).

To analyze performance, let us assume an effective bandwidth of = elements/cycle and focus
on one computation C; += A, ,B),. Reading A; , requires m.k./x cycles. Reading and writing the
elements of C; and reading the elements of B), requires (2m.n + k.n)/x cycles. Finally, computing
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Figure 4: Estimated performance as a function of the external memory bandwidth and the size of
local memory with n, = 4, m. = k., and n = 512.

C; += A; B, assuming peak performance requires (mck.n)/n? cycles. Overlapping the communi-
cation of C; and B, with the computation of C; gives us an estimate for computing C; += A; , B,

of
CkC 2 C kjc c kc
o +max<( me + ke)n men > cycles.

2
T T n;

Given that at theoretical peak this computation would take m.k.n cycles, the attained efficiency
is estimated as

menke

n?
mcke (2mC+kC)n menke '
p +max< e T2

Notice that the complete computation C += AB requires loops around this “inner kernel” for one
C; and thus it is the performance of this inner kernel that dictates the performance of the overall
matrix multiplication.

Figure 4 reports performance as a function of the size of the local memory and the bandwidth to
external memory. Here we use n, =4, m. = k. (the submatrix A, is square) and n = 512 (which
is relatively small). This graph clearly shows that a trade-off can be made between bandwidth and
the size of the local memory, which in itself is a function of the kernel size (k., m. and n,).
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5 LAP Implementation

To investigate and demonstrate the performance and power benefits of the LAP, we have studied
the feasibility of a LAP implementation in current, standard 45nm bulk CMOS technology using
publicly available components and their characteristics as published in literature. We stress that
the point of this section is not to present the ultimate design. Rather, we are giving evidence
that high-performance and low power consumption can be attained by our design using reasonable
technology and component choices.

We validated LAP operation and its theoretical performance analysis presented in the previous
section by developing a cycle-accurate LAP simulator. The simulator is configurable in terms of
PE pipeline stages, bus latencies, and memory and register file sizes. Furthermore, by plugging
in power consumption numbers for MAC units, memories, register files and busses, our simulator
is able to produce an accurate power profile of the overall execution. We accurately modeled the
cycle-by-cycle control and data movement for GEMM), and we verified functional correctness of
the produced results. The simulator provides a testbed for investigation of other linear algebra
operations, and we were already able to successfully realize Cholesky Factorization with minimal
changes to the LAP control and data paths.

5.1 Component Selection

MAC Units: State of the art implementations of Fused Multiply Add (FMA) units use many
optimizations techniques to reduce latency, area and power consumption [21]. Fused Multiply
Accumulate (FMAC) units use similar architectures but can have delayed normalization to achieve
a throughput of one, accumulation per cycle [26, 27]. This technique can also save around 15% of
total power since it eliminates two stages of the pipeline for the bulk of operation [14].

Most current designs support floating-point addition, multiplication, multiply-add and multiply-
accumulate operations with varying latencies, and pipeline depths, where the number of pipeline
stages typically ranges between 5 and 9. Note that these same units can also do integer operations
and can be reconfigured to support either single- or double-precision operations [24].

A precise and comprehensive study of different FMA units across a wide range of both current
and estimated future implementations, design points and technology nodes was presented in [8].
The authors report efficiencies of 120 GFLOPS/W for a standalone double-precision FMA unit in
45nm technology. Furthermore, paired with a 3-port register file, efficiencies of 90 GFLOPS/W are
obtained. These numbers give us an indication of the upper limits that can be achieved.

In the superthreshold regime, frequency and voltage scaling leads to a cubical drop in power
consumption while performance only decreases linearly. When aiming for the best possible per-
formance over power ratio, it is therefore beneficial to operate the design at a low voltage and
frequency point. In doing so, however, we will also keep in mind that we want to maintain or even
exceed the raw performance per unit area of existing processors.

For our analysis, we use area and performance data reported in [8]. We estimate that a single-
and double-precision FMAC unit occupies an area of 0.04mm? and 0.01mm?, respectively. Fur-
thermore, all recent literature reports similar power consumption estimates of around 8-10mW and
40-50mW (at ~ 1GHz and 0.8V operation), respectively.

Local Storage: Our design utilizes around 16 KBytes of dual-ported SRAM per PE with no tags
and no associativity. Given the sequential nature of access patterns to 64-bit wide double-precision
numbers, we carefully selected memories with one or two banks to minimize power consumption.
Using CACTI [22] with low-power ITRS models and aggressive interconnect projection, we ob-
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Speed [ Area | Memory [ FMAC | PE PE PE PE
Precision | [GHz] | [mm?] | [mW] [mW] [mW] | [W/mm?] | [GFLOPS/mm?] | [GFLOPS/W)]
2.08 | 0.148 15.22 32.3 | 475 0.331 28.12 84.8
SP 1.32 | 0.146 9.66 134 | 23.1 0.168 18.07 107.5
0.98 | 0.144 7.17 871 159 0.120 13.56 113.0
0.50 | 0.144 3.66 3.3 7.0 0.059 6.94 117.9
1.81 | 0.181 13.25 105.5 | 118.7 0.670 19.92 29.7
DP 0.95 | 0.174 6.95 31.0 | 38.0 0.235 10.92 46.4
0.33 | 0.167 241 6.0 8.4 0.068 3.95 57.8
0.20 | 0.169 1.46 3.4 4.8 0.046 2.37 51.1

Table 1: 45nm scaled performance and area for LAP with 16KBytes of dual-ported SRAM.

tained area estimates of around 0.13mm? and we calculated the dynamic power of local SRAM at
frequencies over 2.5 GHz to be around 13.5mW per port. For the overall system estimation (see
Section 5.2), we project the dynamic power results reported by CACTI to the target frequencies
of the MAC units. According to the CACTI results, leakage power is estimated to be negligible in
relation to the dynamic power.

Interconnect: To estimate latencies and power consumption of row and column busses, we use
data reported in [31] and [18]. Since we do not have any of the complex logic for bus arbitration and
address decoding, we only consider the power consumption of the bus wires themselves as reported
in the papers. With a n, x n, 2D array of PEs, our design contains a total of 2 x n, 32-bit (single
precision) or 64-bit (double-precision) row and column busses. The numbers reported in [18] are for
a 32-bit wide AMBA AHB data bus only and are around 1.5 mW. [31] reports around 1.2-2 mW
for the same scenario. However, per PE we only have 2/n, of the power consumption of a single
bus. Hence, the power consumption of the bus wires is around 1.5-3 mW per PE, where we take
the upper limit and double it to account for larger bus widths.

5.2 System Comparison

Overall area, power and performance estimates for our LAP design at various operating points are
shown in Table 1. We compare single- and double-precision realizations of our design against other
state-of-the-art academic and commercial systems, such as CPUs and GPUs*. With efficiency as the
primary optimization goal going forward, we compare raw performance, raw power consumption
and the critical ratios for performance per unit power and unit area. In relation to efficiency,
it is crucial to not only analyze peak performance and power, but to rather consider processor
utilization when running a particular application as a key factor. With GEMM being an operation
that exhibits amble parallelism and locality and that has been studied extensively through careful
and tedious hand-tuning on conventional architectures, many systems, including our LAP, are able
to achieve close to peak performance. In contrast to other architectures, however, we expect to be
able to sustain such utilization rates for almost all other, more complex linear algebra operations.

For overall comparison of peak performance and power, we extended the analysis presented
in [16] by including estimates for our LAP design, the 80-tile network-on-chip architecture from [26],
the Power7 processor [29], and a NVidia Fermi GPU (C2050) [1, 20] (Table 2) all scaled to 45nm

4Note that comparisons have to be interpreted considering that our analysis uses component numbers available in
the public domain, which typically lag several generations behind the state-of-the-art. As such, we can expect even
further improvements when transferring our design into a commercial industry-setting in the future.
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Power density [ Performance density Efficiency
Architecture [W/mm? [GFLOPS/mm?] | [GFLOPS/W]
Cell (sP) 0.3 1.8 6.0
Nvidia GTX280 (SP) 0.3 3.3 11.0
ATI R700 (SP) 0.6 6.4 10.7
Rigel (OPs) 0.3 8.0 26.6
80-Tile @ 0.8V (SP) 0.2 3.3 17.7
Fermi C2050 (SP) 0.6 2.5 4.3
LAP (Sp) 0.1 13.6 113.0
Intel Quad-Core (DP) 0.5 0.4 0.8
IBM Power7 (DP) 0.5 0.5 1.0
Fermi C2050 (DP) 0.5 1.3 2.1
LAP (DP) 0.2 11.0 46.4

Table 2: 45nm scaled performance and area of various systems.

technology. For the Fermi GPU, we base our estimates on a reported power consumption of 238
Watts for 224/448 double/single precision cores operated at 1.15 GHz with a performance of 1030
single-precision or 515 double-precision GFLOPS.

We note that for a single-precision LAP at around 1GHz clock frequency, the estimated perfor-
mance/power ratio is an order of magnitude better than GPUs. The double-precision LAP design
shows around 58 times better efficiency compared to CPUs. The power density is also significantly
lower as most of the LAP area is used for local store. Finally, the performance/area ratio of our
LAP is in all cases equal to or better than other processors. All in all, with a double-precision LAP
we can get up to 27 times better performance in the same area as a complex conventional core but
using less than half the power.

6 Conclusions and Future Directions

This paper provides initial evidence regarding the benefits of custom hardware for linear algebra
computations. The basic conclusion is that, as had been postulated [11], one to two orders of mag-
nitude improvement in power and performance density can be achieved. The paper also suggests
many possible extensions some of which we discuss now. For example, Figure 4 clearly shows the
tradeoff between the size of the local memory and bandwidth to external memory. One question
that remains is the careful optimization of this tradeoff across the multi-dimensioanl power, perfor-
mance, utilization and area design space. Using a combination of simulations and further physical
prototyping, we plan to address these questions in our future work.

The GEMM operation is in and by itself a sufficiently important operation to warrant the
proposed hardware support. GEMM indirectly enables high performance for the level-3 Basic
Linear Algebra Subprograms (BLAS) [6, 15] as well as most important operations in packages
like LAPACK [4] and 1libflame [25]. For this purpose, we plan to investigate integration of our
proposed LAP with such libraries.

The choice of the size of the LAP, n, = 4 is arbitrary: it allows our discussion to be more
concrete. A natural study will be how to utilize more PEs yet. As n, grows, the busses that
connect the rows and columns of PEs units will likely become a limiting factor. This could be
overcome by pipelining the communication between PEs. Furthermore, bandwidth to an external
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memory or host may become a bottleneck. Finally, we can envision a hierarchical clustering of
multiple LAPs and second- or third-level memory into large arrays on a single chip.

We started out research by initially designing a LAP for Cholesky factorization, an operation
that requires the square root and inversion of scalars. As such, our LAP simulator is already
able to simulate both matrix multiplication and Cholesky factorization. It is well-understood that
an approach that works for an operation like Cholesky factorization also works for GEMM and
level-3 BLAS. Additional evidence that the LAP given in this paper can be extended to other such
operations can be found in [9], in which the techniques on which our GEMM is based are extended
to all level-3 BLAS. The conclusion, which we will pursue in future work, is that with the addition
of a square-root unit, a scalar inversion unit, and some future ability to further program the control
unit, the LAP can be generalized to accommodate this class of operations.
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