

Technical Report

High-Speed Hybrid Ring Generator
Design Providing Maximum-Length

Sequences with Low Hardware Cost

Laung-Terng Wang, Nur A. Touba, Richard P. Brent, Hui Wang,

and Hui Xu

UT-CERC-12-01

October 4, 2011

Computer Engineering Research Center
The University of Texas at Austin

1 University Station, C8800
Austin, Texas 78712-0323
Telephone: 512-471-8000
Fax: 512-471-8967
http://www.cerc.utexas.edu

1

High-Speed Hybrid Ring Generator Design Providing Maximum-Length
Sequences with Low Hardware Cost

Laung-Terng Wang1, Nur A. Touba2, Richard P. Brent3, Hui Wang4, and Hui Xu4

1 SynTest Technologies, 505 S. Pastoria Ave., Suite 101, Sunnyvale, CA 94086, USA

2 Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78712, USA
3 Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200, Australia

4 School of Microelectronics, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract
A new class of hybrid ring generators is developed to
generate maximum-length sequences with low hardware
cost. The new design improves the operational speed of the
hybrid linear feedback shift register (LFSR) proposed in
[12] to receive the high speed and simplified layout
benefits of the ring generator offered in [6]. As a result,
the hybrid ring generator offers unmatched benefits over
existing linear feedback shift register (LFSR) based
designs. Assume k 2-input XOR gates are required in a
standard or modular LFSR design. These benefits include
requiring only (k+1)/2 XOR gates, having at most one
level of a 2-input XOR gate between any pair of flip-flops,
enabling the output of each flip-flop to drive at most 2
fanout nodes, and creating a highly regular structure that
makes the new design more layout and timing friendly.

1. Introduction

With rapid advances in semiconductor process
technologies and the explosive growth of the consumer
electronics market, design of maximum-length sequence
generators (MLSGs) to generate binary sequences for
high-performance applications has reemerged as an
important research topic. These applications range from
computer engineering [1, 2] to communications [3] to
cryptography [4].

The authors in [5] further commented that in
communications and digital broadcasting, these high-
speed MLSGs, such as ring generators [5-7], can
randomize transmitted bitstreams, which prevent short
repeating sequences from forming spectral lines that can
complicate symbol tracking at the receiver or interfere
with other transmissions. The global positioning system
(GPS) can use these MLSGs to rapidly produce a
sequence indicating high-precision relative time offsets.
Cellular telephony and Bluetooth systems can use MLSGs
as shrinking or alternating step generators in stream
ciphers. These MLSGs can be deployed in a direct-
sequence spread-spectrum radio or in various
programmable sound generators. Finally, high-definition
television (HDTV), digital audio broadcasting systems,
gigabit Ethernet scramblers, and satellite communication
systems might also adapt MLSGs due to their high
performance and generic design flexibility.

Such MLSGs are often realized by maximum-length
linear feedback shift registers (LFSRs). These
maximum-length LFSRs are typically constructed in a
standard or modular form, where one or more XOR gates
are interspersed between a flip-flop and the feedback path
to generate a desired maximum-length sequence (often
called an m-sequence) [8]. If k 2-input XOR gates are
required to generate an m-sequence, then the signal on the
feedback path would have to propagate through k XOR
gates (as in the standard LFSR) or must be strong
enough to drive k+1 fanout nodes (as in the modular
LFSR). In either case, the circuit is slowed and may not
be applicable for high-performance applications.

To improve the performance of these conventional
LFSRs, many approaches have been proposed. Most
noticeable are the solutions that include decimations that
allow summing up several m-sequences produced by
independent devices with a multiphase clock generator
[9]; windmill machines that elevate a state transition rate
but need additional registers [10]; hybrid LFSRs that
reduce the number of XOR gates to (k+1)/2 when the
characteristic polynomial generating an m-sequence meets
certain requirement [11, 12]; and ring generators that
enable each flip-flop output to drive at most 2 fanout
nodes and introduce at most one level of one 2-input XOR
gate between any two flip-flops, if its characteristic
polynomial does not contain consecutive terms [5-7].

These MLSGs, however, do not offer the combined
benefits of using a smaller number of XOR gates and
enabling any flip-flop to drive no more than 2 fanout
nodes. This paper addresses this problem by constructing
a new class of MLSGs (hybrid ring generators). When
its characteristic polynomial meets certain requirement,
the MLSG will use the same number of XOR gates as the
hybrid LFSR [12] and preserve the high speed and
simplified layout benefits of the ring generator [6]. The
only benefit that the proposed hybrid ring generator does
not preserve is that when a ring generator using k XOR
gates couples to a phase shifter, the phase shifter used to
drive multiple scan chains can have lower hardware cost
than one coupled to a hybrid ring generator using only
(k+1)/2 XOR gates, given a minimum interchannel
separation criterion placed between any two m-sequences
appearing at any two scan chain inputs [5, 13].

2

2. Background

There are two conventional forms of LFSR designs:
standard LFSR and modular LFSR. Despite different state
trajectories, both structures are capable of generating an
m-sequence for each stage output.

2.1 Standard LFSRs

Fig. 1 shows an n-stage standard LFSR. It consists of n
flip-flops and a number of XOR gates. Since XOR gates
are placed on the external feedback path, the standard
LFSR is also referred to as an external-XOR LFSR [8].

Figure 1. An n-stage (external-XOR) standard LFSR.

2.2 Modular LFSRs

Similarly, an n-stage modular LFSR with each XOR
gate placed between two adjacent flip-flops, as shown in
Fig. 2, is referred to as an internal-XOR LFSR [8]. This
circuit runs faster than its corresponding standard LFSR,
because each stage introduces at most one XOR-gate
delay.

Figure 2. An n-stage (internal-XOR) modular LFSR.

2.3 LFSR Properties

The internal structure of the n-stage LFSR in each figure
can be described by specifying a characteristic
polynomial of degree n, f(x), in which the symbol hi is
either 1 or 0, depending on the existence or absence of the
feedback path, where

 f(x) = 1 + h1x + h2x
2 + … + hn-1x

n-1 + xn. (1)

Let Si represent the contents of the n-stage LFSR after
ith shifts of the initial contents, S0, of the LFSR, and Si(x)
be the polynomial representation of Si, where i 0. Then,
Si(x) is a polynomial of degree n–1, where

 Si(x) = xiS0(x) mod f(x)

 = Si0 + Si1x + Si2x
2 + … + Sin-2x

n-2 + Sin-1x
n-1. (2)

If T is the smallest positive integer such that f(x) divides
1+ xT, then the integer T is called the period of the LFSR.
If T = 2n – 1, then the n-stage LFSR generating the
maximum-length sequence or m-sequence is called a
maximum-length LFSR and thus can serve as an MLSG.

Define a primitive polynomial of degree n over Galois
field GF(2), p(x), as a polynomial that divides 1 + xT, but
not 1 + xi, for any integer i < T, where T = 2n–1 [8]. A
primitive polynomial is irreducible. For illustration
purpose, Figs. 3 and 4 show a 5-stage standard LFSR and
a 5-stage modular LFSR with f(x) = 1 + x2 + x3 + x4 + x5,
respectively. As can be seen, each circuit uses a total of 3
2-input XOR gates. The output signal at flip-flop 4 needs
to propagate through 3 XOR gates to reach flip-flop 0 in
Fig. 3 or must be strong enough to drive 4 fanout nodes in
Fig. 4. The characteristic polynomial, f(x), used to
construct the circuits is a primitive polynomial, and thus
each LFSR can serve as an MLSG. Let

 r(x) = f(x)-1 = xnf(1/x). (3)

Then, r(x) is defined as a reciprocal polynomial of f(x)
[8]. A reciprocal polynomial of a primitive polynomial is
also a primitive polynomial. Hence, if the reciprocal
polynomial of f(x) is used to construct a standard or
modular LFSR with r(x) = 1 + x2 + x3 + x4 + x5, then the
LFSR can also serve as an MLSG.

Figure 3. A 5-stage standard LFSR implementing
f(x) = 1+x2+x3+x4+x5.

Figure 4. A 5-stage modular LFSR implementing
f(x) = 1+x2+x3+x4+x5.

2.4 Hybrid LFSRs

Let a polynomial over GF(2), 1 + a(x) = b(x) + c(x), be
said to be fully decomposable iff both b(x) and c(x) have
no common terms and there exists an integer j such that
c(x) = xjb(x), where j > 1. For example, if 1 + f(x) is fully
decomposable such that

 f(x) = 1 + b(x) + xjb(x) (4)

then a (hybrid) top-bottom LFSR [12] can be constructed
using the feedback connection notation

 s(x) = 1 + ^xj + xjb(x) (5)

where ^xj indicates that the XOR gate with one input taken
from the jth stage output of the LFSR is connected to the
feedback path, not between stages. Similarly, if f(x) + xn is
fully decomposable such that

 f(x) = b(x) + xjb(x) + xn (6)

then a (hybrid) bottom-top LFSR [12] can be constructed
using the feedback connection notation

 s(x) = b(x) + ^xn-j + xn. (7)

4433 22 1100

4433 22 1100

Si0 Si1 Sin-2 Sin-1

hn-1 hn-2 h2 h1

Si0 Si1 Sin-2 Sin-1

h1 h2 hn-2 hn-1

3

Assume a maximum-length LFSR uses k 2-input XOR
gates to generate an m-sequence. It was shown in [12] that
if 1 + f(x) or f(x) + xn for constructing a standard or
modular LFSR is fully decomposable, then a hybrid LFSR
can be realized with only (k+1)/2 XOR gates. Also, if a
top-bottom LFSR exists for f(x), then a bottom-top LFSR
will exist for its reciprocal polynomial r(x), and vice versa.

Figure 5. A 5-stage top-bottom LFSR using s(x) =
1+^x2+x4+x5 to implement f(x) = 1+x2+x3+x4+x5.

Figure 6. A 5-stage bottom-top LFSR using s(x) =
1+x2+^x4+x5 to implement f(x) = 1+x+x2+x3+x5.

Fig. 5 shows an example 5-stage top-bottom LFSR. The
circuit implements the same f(x), 1 + x2 + x3 + x4 + x5, as
that for Figs. 3 and 4. Since f(x) = 1 + (x2+x3) + x2(x2+x3),
by Eq. 5, s(x) = 1 + ^x2 + x2(x2+x3) = 1 + ^x2 + x4 + x5. As
f(x) is a primitive polynomial, the top-bottom LFSR will
generate an m-sequence.

Fig. 6 shows a bottom-top LFSR that implements the
reciprocal polynomial, 1+x+x2+x3+x5, of the primitive
polynomial for Fig. 5. Since f(x) = (1+x2) + x(1+x2) + x5,
by Eq. 7, s(x) = (1+x2) + ^x5-1 + x5 = 1 + x2 + ^x4 + x5. As
a reciprocal polynomial of a primitive polynomial is a
primitive polynomial, the bottom-top LFSR will also
generate an m-sequence.

As can be seen, each circuit illustrated in Figs. 5 and 6
uses only two 2-input XOR gates, rather than three XOR
gates for Figs. 3 and 4. Assume k XOR gates are required
to implement a standard LFSR or a modular LFSR to
produce an m-sequence, where the integer k must be an
odd number. The hybrid LFSR design will require only
(k+1)/2 2-input XOR gates. Since the feedback path of the
hybrid LFSR will drive fewer fanout nodes than that of
the standard or modular LFSR, the hybrid design will
have better operating performance.

3. Hybrid Ring Generators

One common drawback of using the standard LFSR,
modular LFSR, and hybrid LFSR to generate
pseudorandom bit sequences is the long delay associated
with the feedback path. In the standard LFSR case, data at
the output of the rightmost flip-flop would need to pass
through k 2-input XOR gates to reach the leftmost flip-
flop. In the modular LFSR case, the rightmost flip-flop
would need to be strong enough to drive k+1 (fanout)
nodes. In the hybrid LFSR case, the rightmost flip-flop

would need to pass through one 2-input XOR gate before
or after driving (k+1)/2 fanout nodes. Combined with
their respective irregularity in design style, these types of
LFSR designs may have difficulty to meet frequency
requirement for high-performance applications.

3.1 Top-Bottom Ring Generator Design

Consider the circuit given in Fig. 7. Any two adjacent
flip-flops contain at most one 2-input XOR gate and each
flip-flop output drives at most 2 fanout nodes. The circuit
is constructed in a ring structure so there is no long
feedback path connecting the rightmost flip-flop to the
leftmost flip-flop. A circuit in so constructed is referred to
as a ring generator [6]. Since the XOR gates are placed on
the top and bottom rows simultaneously, a ring generator
constructed with this additional property is referred to as a
hybrid ring generator. Also, if the first XOR gate
connecting to the leftmost stages is placed on the top row,
then the hybrid ring generator is referred to as a (hybrid)
top-bottom ring generator (see Fig. 7). Similarly, if the
first XOR gate connecting to the rightmost stages is
placed on the bottom row, then the hybrid ring generator
is referred to as a (hybrid) bottom-top ring generator
(see Fig. 9). Note that in each top-bottom or bottom-top
ring generator, there will be one and only one 2-input
XOR gate connected to the top row, according to the
construction methods of the hybrid LFSRs given in [12].

Figure 7. A 5-stage top-bottom ring generator constructed
by s(x) = 1+^x2+x4+x5 given in Fig. 5.

Let X = {x0 … x4} and Z = {z0 … z4} represent the
circuit’s present state and next state, respectively. Linear
equations over GF(2) governing the operation of the
circuit can be expressed as follows:

z0 = x4

z1 = x0
z2 = x1 + x2 (8)
z3 = x2
z4 = x0 + x3

The set of linear equations can be further described by:

 Z = M * X (9)
or

)10(

01001
00100
00110
00001
10000

4

3

2

1

0

4

3

2

1

0

x
x
x
x
x

z
z
z
z
z

where matrix M is simply a companion matrix [8] whose
characteristic polynomial f(x) is defined as the
determinant of M – Ix, or symbolically:

33

22 11 00

44

xx22 xx44

4433 22 11 00

xx22 xx44

4433 22 11 00

xx44 xx22

4

 f(x) = | M – Ix | (11)

Then, Eq. 11 can be rewritten as:

)12(

1001
0100
00110
0001
1000

)(

x
x

x
x

x

xf

This yields f(x) = x4(1+x) + x2(1+x) + 1 = 1 + x2 + x3 +

x4 + x5, which is a primitive polynomial used to construct
the three circuits shown in Figs. 4, 5, and 7. This finding
implies that given f(x), if a top-bottom LFSR can be
constructed, then a top-bottom ring generator can also be
constructed with the same f(x).

Consider the circuits shown in Figs. 8a to 8c. Fig. 8a is

an equivalent circuit of Fig. 5; Fig. 8c is an equivalent
circuit of Fig. 8b. Figs. 8a and 8b are represented in a
one-dimensional view to reflect their feedback tap
relationship. Fig. 8a is transformed to Fig. 8b, according
to the transformations given in [6], by shifting the x4 arc
in Fig. 8a to the left by one bit without crossing the x2 arc,
while keeping the x2 arc of Fig. 8a intact. One may now
find Fig. 7 is isomorphic to Fig. 8c with only one
difference in flip-flop labeling. This proof confirms our
finding above.

(a) Equivalent circuit of Fig. 5

(b) Circuit by shifting the x4 arc in (a) to the left by 1 bit

(c) Equivalent circuit of (b)

Figure 8. Equivalent circuits of Figs. 5 and 7.

3.2 Bottom-Top Ring Generator Design

Consider the 5-stage bottom-top ring generator shown
in Fig. 9. The characteristic polynomial, 1 + x + x2 + x3 +
x5, chosen to construct the hybrid circuit is the same
reciprocal polynomial used to realize the bottom-top
LFSR shown in Fig. 6.

Figure 9. A 5-stage bottom-top ring generator constructed
by s(x) = 1+x2+^x4+x5 given in Fig. 6.

Looking into Fig. 9, the operation of the circuit relating
next state Z to present state X can be expressed as:

)13(

01000
00110
00010
01001
10000

4

3

2

1

0

4

3

2

1

0

x
x
x
x
x

z
z
z
z
z

Then, by Eq. 11, f(x) can be rewritten as:

)14(

1000
0110
0010
0101
1000

)(

x
x

x
x

x

xf

This yields f(x) = (1+x2) + x(1+x2) + x5 = 1 + x + x2 +
x3 + x5, which is the primitive polynomial used to
construct the bottom-top LFSR given in Fig. 6. According
to Eq. 5, s(x) = 1 + x2 + ^x4 + x5. The successive
transformations of the circuit of Fig. 6 into that of Fig. 9
are shown in Figs. 10a to 10c. Fig. 10a is an equivalent
circuit of Fig. 6. Fig. 10b was obtained by shifting the x2
arc in Fig. 10a to the right by one bit. Fig. 10c is an
equivalent circuit of Fig. 10b, and is isomorphic to Fig. 9
with different labeling in flip-flops. This proves that given
f(x), if a bottom-top LFSR can be constructed, then a
bottom-top ring generator can also be constructed with
the same f(x).

(a) Equivalent circuit of Fig. 6

(b) Circuit by shifting the x2 arc in (a) to the right by 1 bit

(c) Equivalent circuit of (b)

Figure 10. Equivalent circuits of Figs. 6 and 9.

00

44 33 22

11

xx22 xx44

44

33 22 11

00

xx22 xx44

4433 22 11 00

xx44 xx22

4433 22 11 00

xx44 xx22
4433 22 1100

xx22

4433 221100

xx44xx22

33

22 11 00

44

xx22 xx44

xx44

5

3.3 Properties

Recall that the output of the rightmost flip-flop in a top-
bottom LFSR must be strong enough to drive k+1 fanout
nodes; whereas the output signal of the rightmost flip-flop
in a bottom-top LFSR must propagate through k 2-inout
XOR gates. A hybrid ring generator constructed either in
a top-bottom or bottom-top form, however, will exhibit
the same properties:

1. Every output of a flip-flop in the hybrid design will
drive at most 2 fanout nodes.

2. There will be at most one 2-input XOR gate placed
between any two flip-flops, and thus each output signal of
any flip-flop will only have to propagate through at most
one 2-input XOR gate.

3. There will be no long feedback path, as the circuit is
implemented in a ring structure.

4. Its regular and modular structure will result in
simplified layout and routing, making the circuit timing
and layout friendly.

5. The number of 2-input XOR gates used in the hybrid
ring generator will be (k+1)/2.

The hybrid ring generator is able to preserve the first 4
benefits given in [5, 6]. This has enabled the circuit to run
at a higher speed than its standard, modular, and hybrid
LFSR counterparts. As the goal of the paper is to design a
modified (maximum-length) LFSR that has the least
hardware cost, it is beyond the scope of the paper to
discuss techniques that will meet a minimum interchannel
separation criterion, say 4,096 or 10,000 bits, between
any two scan chains [5, 7, 13]. Instead, we will prove that
any modified LFSR (such as a hybrid LFSR, ring
generator, or hybrid ring generator) implementing the
same f(x) as a standard or modular LFSR using k 2-input
XOR gates cannot use fewer than (k+1)/2 XOR gates,
when k = 1, 3, or 5.

Before the proof, consider the two circuits given in
Figs. 11 and 12 first. Both circuits were taken from FIGS.
9 and 14 in [14], respectively. Fig. 11 is to illustrate a
particular situation where it is required to add an extra 2-
input XOR gate in a modular LFSR when a source tap
crossing a destination tap while moving to the left (SDL)
transformation is used to construct a modified LFSR. Fig.
12 is to illustrate another situation where the inserted
extra gate can cancel an available XOR gate, thereby
reducing the number of XOR gates in the circuit by one.

In Fig. 11a, two feedback connections 58 and 59 are
arranged in such a way that an XOR gate 60 at the
destination tap of the first feedback connection is
separated from a source tap 62 of the second feedback
connection by a single flip-flop. An elementary shift left
(EL) transformation described in [6, 14] is applied to the
circuit so the source tap 62 shifts across this flip-flop (see
Fig. 11b). The XOR gate 64 at the destination tap of the

second feedback connection also shifts to the left
accordingly. This operation preserves the m-sequence
property of the LFSR as described in [6, 14]. Next, the
source tap 62 moves to cross the XOR gate 60 of the first
feedback connection 58 (see Fig. 11c). Logic value on the
second feedback connection 59 is now no longer
equivalent to a mod b; instead, it is now equal to just b.
To maintain the same functionality on the output of the
destination XOR gate 64, logic value a must be provided
by the source tap 66 of the first feedback connection 58 to
the XOR gate 64. This is accomplished by adding a
feedback connection line 68 between the source tap 66
and the XOR gate 64 at the shifted destination tap. One
can see now an extra XOR gate is added to the modified
LFSR to preserve the same m-sequence property.

(a)

(b)

(c)

Figure 11. A circuit to illustrate an SDL transformation can
lead to insertion of an extra XOR gate.

Fig. 12a shows a modular LFSR implementing f(x) = 1
+ x2 + x3 + x7 + x8. First, transformation EL is applied 4
times to the feedback connection represented by
coefficient x7 (feedback connection 30 with source tap 32
and destination gate 34). This leads to the circuit shown in
Fig. 12b. Next, transformation SDL is applied to shift the
feedback connection 30 further to the left by one flip-flop
and adds a feedback connection line 36 at the input to the
XOR gate 34 as shown in Fig. 12c. Because another XOR
gate 38 with the same connectivity already exists at the
output of flip-flop 1, the XOR gate 34 and connection 36

6644

aa bb

 gg :: hh

5599

5588

6666

6622

6600 aa

bb

5599

6644

aa bb

 gg :: hh

5588

6666

6622

6600 aa

bb

5599

6644

 gg :: hh

5588

6666

6622

6600 aa

bb

6688

6

can be discarded. This reduces the number of XOR gates
in the LFSR from 3 to 2. To reduce the load of flip-flop 2
that drives XOR gates 40 and 34 in Fig. 12c, an additional
transformation EL is applied in Fig. 12d that shifts the
feedback connection 30 further to the left. As a result, the
modified LFSR uses only 2 XOR gates and every flip-
flop output drives at most two fanout nodes.

(a)

(b)

(c)

(d)

Figure 12. An 8-stage modified LFSR constructed using the
transformations given in [14] for f(x) = 1+x2+x3+x7+x8.

The above two examples (Figs. 11 and 12) illustrate that
applying transformations to a modular LFSR can lead to
insertion or deletion of one or more XOR gates. The
number of 2-input XOR gates used in the resultant
modified LFSR, however, will be at least (k+1)/2, when k
= 1, 3, or 5. The same results apply to transformations of
a standard LFSR too. We now provide the proof below:

Theorem 1: given a maximum-length standard or
modular LFSR using k 2-input XOR gates, a modified
LFSR implementing the same f(x) as the standard or
modular LFSR cannot use fewer than (k+1)/2 2-input
XOR gates, when k = 1, 3, or 5.

Proof: We will prove the theorem by contradiction.
When k = 1, the condition follows immediately;

otherwise, the modified LFSR would not contain any
XOR gates and would have implemented 1 + xn, which is
different from the primitive trinomial (a primitive
polynomial with 3 terms) used as f(x) to construct the
maximum-length standard or modular LFSR.

Next, we show that if k = 3, then the condition will still
hold. A maximum-length standard or modular LFSR
constructed to implement f(x) with k = 3 implies that the
LFSR uses 3 2-input XOR gates and f(x) is a primitive
pentanomial (a primitive polynomial with 5 terms). For
instance, a modular LFSR is constructed to implement
f1(x) = p(x) = 1 + xa + xb + xc + xn, where 1 < a < b < c < n.
According to [14], when a source tap of one arc in {xa, xb,
xc} and a destination tap of another arc in {xa, xb, xc} cross
each other, it will be required to add a proper feedback
connection (a 2-input XOR gate) in the modified LFSR to
preserve the m-sequence property in the standard or
modular LFSR. If the extra gate is to be cancelled, then
there must exist an available XOR gate at the position
where the extra gate will be added. For instance, the xb
and xc arcs have a distance of n-b and n-c to the rightmost
stage of the modular LFSR, respectively; the xa arc must
be in the same position as the to-be-added feedback
connection. That is, distance n-a must be equal to (n-b) +
(n-c), or a + n = b + c. When this condition holds, the xa
arc will be cancelled. This also implies that 1 + f1(x) is
fully decomposable. The modified LFSR will now have
only 2 XOR gates (representing the original xb arc and the
transformed xc arc) left. If the number of XOR gates used
in this modified LFSR could be reduced to 1 (instead of
2), this means there must exist transformation(s) that can
cause the transformed xc arc to cancel the original xb arc,
or vice versa. If this were possible, then the modified
LFSR would have implemented f2(x) = 1 + xc + xn or 1 + xb
+ xn, which becomes a primitive trinomial. This will
contradict the condition that the modified LFSR must
implement the same characteristic polynomial f1(x) as the
maximum-length standard or modular LFSR.

We now prove a modified LFSR that implements the same
f3(x) as a maximum-length standard or modular LFSR
using 5 2-input XOR gates will use no fewer than 3 2-
input XOR gates. As shown in Fig. 12, to reduce the
number of XOR gates used in a modified LFSR by one, a
feedback connection at the same flip-flop output of the
source or destination tap must already exist in the original
LFSR to cancel the added XOR gate; otherwise, the XOR
gate count would be increased. Let the modular LFSR
implement f3(x) = p(x) = 1 + xa + xb + xc + xd + xe + xn,
where 1 < a < b < c < d < e < n, with k = 5 feedback taps
{xa, xb, xc, xd, xe}. For instance, f3(x) = p(x) = 1 + x5 + x10 +
x14 + x19 + x24 + x29. Only when c + n = d + e and a + n = b
+ e, can the combined xe and xd arcs as well as the
combined xe and xb arcs cancel the xc and xa taps,
respectively. This also implies that 1 + f3(x) is fully

3344

00 11

33003322

33 :: 66 22 77

3300

00

3322

11 22 33

4400

3344

44::77

3300

00 11 22 33

4400

3322

3388 3366

3344

44::77

00 11 22

4400

33

3344

3300

3322
44::77

7

decomposable. The modified LFSR now has 3 arcs {xb, xd,
xe} left. The only chance to cancel one more feedback
connection (the xb tap) would be when the condition b + n
= d + e holds. This condition cannot hold because c + n =
d + e. One scenario that needs to consider is whether
creating an intermediate XOR gate could lead to other
reductions in later steps when k = 5. If there were such
transformations that could further reduce the circuit to one
that contains only 2 arcs, then the 2 arcs in the transformed
circuit would take on one of the two following structures:
1) in a disjoint form where both destination taps point to
the same direction (left or right), similar to Fig. 8b or 10b;
or 2) in a closed form where one arc is included in another
arc and both destination taps point to the same direction
(left or right). A disjoint circuit structure with both source
or destination taps pointed to each other is isomorphic to
Structure 2) when one arc rotates across the feedback path.
Similarly, a closed circuit structure with both source or
destination taps pointed to different directions is
isomorphic to Structure 1) when one arc rotates across the
feedback path. By retransforming the circuit back to a
standard or modular LFSR, Structure 1 will yield an LFSR
that uses 3 2-input XOR gates or k = 3; whereas Structure
2 will yield an LFSR that uses only 2 2-input XOR gates
or k = 2. Structure 2 cannot exit because k must be odd for
realizing a maximum-length LFSR. Structure 1 cannot
exist either, because the retransformed circuit would have
implemented a primitive pentanomial instead. Both circuit
structures also contradict the condition that the modified
LFSR must implement the same characteristic polynomial
f3(x) as the standard or modular LFSR with k = 5. Hence,
any modified LFSR that implements the same f(x) as the
maximum-length standard or modular LFSR with k 2-
input XOR gates will use at least (k+1)/2 2-input XOR
gates, when k = 1, 3, or 5. This concludes the proof.

Note that while Theorem 1 is mainly provided for
construction of hybrid ring generators that use primitive
polynomials as characteristic polynomials to yield the
lowest hardware cost and guarantee the m-sequence
property, the theorem can also be applied to construction
of any modified LFSR from a standard or modular LFSR
whose characteristic polynomial does not necessarily
implement a primitive polynomial, when 1 < k < 5.

4. Construction Method

To better understand how a hybrid ring generator can
be designed via visual inspection or by a construction
method, consider the 8-stage top-bottom ring generator
illustrated in Fig. 13 for implementing f(x) = p(x) = 1 + x2

+ x3 + x7 + x8. This primitive polynomial, p(x), is the
reciprocal polynomial, r(x), of the primitive polynomial
1 + x + x5 + x6 + x8 listed in [1]. Also, the same f(x) has
been used to construct the modified LFSR in Fig. 12.
Because f(x) = 1 + (x2+x3) + x5(x2+x3), this means s(x) = 1
+ ^x5 + x7 + x8. A corresponding 8-stage bottom-top ring

generator implementing r(x) is shown in Fig. 14. Since
r(x) = (1+x) + x5(1+x) + x8, this yields s(x) = 1+ x + ^x3 +
x8.

By visual inspection of the hybrid ring generators
shown in Figs. 7, 9, 13, and 14, one may find the
feedback connections in each circuit are exactly arranged
in the same way as that described in [5]: given tap xi,
create a feedback connection by encompassing i adjacent
flip-flops, always beginning with the leftmost ones. The
difference is only the numbers labeled in the flip-flops.
We decide to label the flip-flop numbers from 0 to n–1
counterclockwise starting with the leftmost bottom flip-
flop in the hybrid ring generator design because its circuit
structure will be more in line with the standard and
modular LFSR designs.

Figure 13. An 8-stage top-bottom ring generator using
s(x) = 1+^x5+x7+x8 to implement f(x) = 1+x2+x3+x7+x8.

Figure 14. An 8-stage bottom-top ring generator using
s(x) = 1+x+^x3+x8 to implement r(x) = 1+x+x5+x6+x8.

A construction method following the definitions in [6]
for designing a top-bottom or bottom-top ring generator
from a hybrid LFSR is now given below [15]:

Step 1: Let Ti represent the span (coefficient c) of the ith
tap (xc); Si and Di indicate the locations of the source and
destination taps (as inputs to a 2-input XOR gate) in the
resultant hybrid ring generator, respectively; and L be the
number of flip-flops in a hybrid LFSR. If L is an odd
number, let L = L + 1; next, label 0 to L – 1 on each flip-
flop counterclockwise, starting with an entry 0 on the
leftmost bottom flip-flop; then, calculate locations of the
source and destination taps according to the following
formulas:
 Si = (L – Ti) / 2 + L / 2 – 1 (15)

 Di = (Si + Ti) mod L. (16)

Consider Fig. 13 again. L = 8. The two x5 and x7 taps in
s(x) = 1 + ^x5 + x7 + x8 is represented by a sequence T1 =
5, T2 = 7 (entries 0 and 8 do not have to be processed as
they are not subject to transformations). Thus, applying
Eqs. 15 and 16 will yield the following feedback
connections: S1 = (8–5)/2 + 8/2 – 1 = 4, D1 = (4+5) mod 8

66

00

77

xx55

4455

xx77

22 11 33

66

00

77

xx33

4455

xx

22 11 33

8

= 1; S2 = (8–7)/2 + 8/2 – 1 = 3, D2 = (3+7) mod 8 = 2. The
two taps can be expressed as a list of pairs: (4,1), (3,2).

Step 2: Reverse the direction of the leftmost (or
rightmost) tap to create the ^xc tap on the top row for a
top-bottom (or bottom-top) ring generator.

Step 3: (Required only when the circuit has an odd
number of stages) Delete the entry L/2 from the label and
decrement all entries on the top row by 1.

For example, Fig. 7 has 5 flip-flops. The circuit will be
first labeled with {0, 1, 2, 3, 4, 5} for L = 6 (not 5). Then,
delete the entry 3 and renumber the rest to {0, 1, 2, 3, 4}.

A set of minimum-weight primitive polynomials (each
consisting of 3 or 5 terms [a.k.a. weights, exponents, or
coefficients]) of degree up to 100 that can be used to
construct hybrid LFSRs has been listed in [2, 12]. Stahnke
was the first to report a list of minimum-weight primitive
polynomials of degree up to 168 that satisfies the full
decomposable requirement [16]. A new list of minimum-
weight primitive polynomials of degree up to 800 is now
given in the Appendix generated using modified NTL [17]
and Magma [18] programs with prime factors provided in
[19]. For every primitive polynomial of degree up to 800,
we found a primitive pentanomial that meets the fully
decomposable requirement always exists when a primitive
trinomial does not exist.

Quite a few tables have been reported earlier for
different objectives, including minimum-weight primitive
polynomials of degree up to 300 in [20]; minimum-weight
primitive polynomials of degree 310 through 500 in [21];
and primitive polynomials of degree 9 through 660 with
uniformly distributed coefficients in [22].

Based on the construction method, each polynomial
listed in the Appendix can now be used to construct hybrid
ring generators. It is interesting to note that for any n-stage
hybrid ring generator, n < 800, only one or two 2-input
XOR gates are required to generate an m-sequence.

5. Comparative Analysis

Here, we first make two observations on how the design
of ring generators is related to hybrid ring generator
design. The benefits of the proposed hybrid ring generator
design over other types of MLSGs are then discussed.

Fig. 15a shows an original ring generator design using
the synthesis method given in [6] to implement f(x) = p(x)
= 1 + x2 + x3 + x7 + x8. The same f(x) has been used to
construct the hybrid ring generator shown in Fig. 13.

Comparing the structures of both Figs. 13 and 15a, one
can find that Fig. 15a has 2 levels of 2-input XOR gates
placed between flip-flops 4 and 5, and uses one more
XOR gate than Fig. 13. Conversely, one may construct a
ring generator as shown in Fig. 15b so the output of flip-
flop 3 drives 3 fanout nodes, instead of 2 nodes [5].

(a) An 8-stage ring generator based on [6]

(b) Another 8-stage ring generator based on [5]

Figure 15. An 8-stage ring generator constructed using the
synthesis method given in [5, 6] for f(x) = 1+x2+x3+x7+x8.

This problem was mainly caused by the chosen
primitive polynomial that contains consecutive terms (i.e.,
x2 and x3; 1 and x as well as xn-1 and xn do not count). If
the chosen primitive polynomial does not contain
consecutive terms, then the ring generator will always
have only one-level of a 2-input XOR gate placed
between any pair of flip-flops and enable any flip-flop
output to drive at most 2 fanout nodes.

Fortunately, we were able to find a primitive
polynomial of degree 8 that does not contain consecutive
terms, 1 + x + x3 + x5 + x8 [17]. This leads to our first
observation: when designing a ring generator, it is
important to choose a primitive polynomial, p(x) as
characteristic polynomial, f(x), which does not contain
consecutive terms; however, choosing such a primitive
polynomial may not be an issue for designing a hybrid
ring generator, as long as these consecutive terms can be
factored out.

Our second observation is associated with the ring
generator design: the ring generator does not implement
the chosen characteristic polynomial, f(x), but the
reciprocal polynomial, r(x), of the chosen f(x). For
instance, in Figs. 15a-b, while an m-sequence is always
generated, neither circuit implements f(x) = 1 + x2 + x3 +
x7 + x8, but the reciprocal polynomial of f(x), or r(x) = 1 +
x + x5 + x6 + x8. One can verify the resultant polynomial
by building a companion matrix using the approach we
discussed in Section 3.

This problem was caused by an incorrect design for
placing a wrong order of feedback taps on the modular
LFSR which was referred to as a Galois LFSR in [5]. To
correct this error, one can simply renumber the flip-flops
and construct the feedback taps by Eqs. 15 and 16. The
correct modified ring generator is shown in Fig. 16,
where the direction of the feedback path is reversed from
Fig. 15a and the flip-flops are labeled differently.

44

33

xx33
xx77

22 0011

66 55 77

xx22

44

33

xx33

xx77

22 0011

66 55 77

xx22

9

Figure 16. A correct 8-stage modified ring generator
implementing f(x) = 1+x2+x3+x7+x8.

Table 1 now summarizes the design features of various
MLSGs. The table provides a more accurate measure than
Table 1 given in [6] on the top-bottom and bottom-top
LFSR design features. The top-bottom (or bottom-top)
LFSR will have one level (or two levels) of XOR logic
because it is constructed to have only one 2-input XOR
gate connected to the feedback path according to Eq. 5 (or
Eq. 7). On the other hand, the feedback path in each top-
bottom or bottom-top LFSR will always drive (k+1)/2
fanout nodes due to the nature of the design. As to cellular
automaton (CA), in general, the total number of 2-input
XOR gates used in a CA design will be equal to 2n-2 for
providing better randomness [23, 24].

Table 1. Features of LFSR-Based MLSG Designs

 XOR Gates Levels of Logic Fanout

Standard LFSR k log2k 2
Modular LFSR k 1 k + 1
Top-Bottom LFSR (k + 1) / 2 1 (k + 1) / 2
Bottom-Top LFSR (k + 1) / 2 2 (k + 1) / 2
Cellular Automaton 2n – 2 2 3
Ring Generator k 1 2
Hybrid Ring Generator (k + 1) / 2 1 2

Note that the Level of Logic and Fanout columns given
in the ring generator row assume that the chosen primitive
polynomial as f(x) to design the ring generator does not
contain consecutive terms. If one chooses a primitive
polynomial that contains consecutive terms, then the Level
of Logic or Fanout would have to be increased by one.
Similar assumption also applies to hybrid ring generator
design: the chosen primitive polynomial must be the one
such that its corresponding feedback connection notation,
s(x), does not contain consecutive terms. Fortunately, such
primitive polynomials for the degree (not every degree) up
to 660 listed in [25] and every degree up to 800 listed in
the Appendix always exist.

The researchers in [14] have shown an example (as
depicted in Fig. 12) using a series of transformations to
reduce the number of XOR gates to 2 for Fig. 15a.
Interestingly, the transformed LFSR (t-LFSR) converges
to a hybrid ring generator. However, one major difference
between a transformed LFSR and a hybrid ring generator
is that the proposed hybrid design approach does not need
to go through any transformations once a proper primitive
polynomial is found. As we have proved in Theorem 1 that
given a maximum-length standard or modular LFSR using
k 2-input XOR gates, a modified LFSR implementing the

same f(x) as the standard or modular LFSR cannot use
fewer than (k+1)/2 XOR gates, when k = 1, 3, or 5, the
proposed hybrid ring generator will be able to match or
outperform all other LFSR-based designs having the
lowest hardware cost.

6. Conclusion

This paper described a high-speed design of hybrid ring
generators that has yielded the lowest hardware cost
among all LFSR-based designs practiced today. It provides
quick visual inspection rule of thumb and a simple
construction method to design the circuit without going
through any transformations. We found that for each n-
stage hybrid ring generator, n < 800, only one or two 2-
input XOR gates are required to generate an m-sequence.
This enables the circuit to be deployed to generate
pseudorandom bit sequences for high-performance
applications.

In future work, we plan to extend Theorem 1 to find the
true minimum number of 2-input XOR gates required to
construct a modified LFSR out of a standard or modular
LFSR using k 2-input XOR gates. The characteristic
polynomial does not have to be primitive. We also plan to
explore the implications of the proposed hybrid ring
generators on the design of dense ring generators [7],
phase shifters [13], and event counters [26, 27], and seek
minimum-weight primitive polynomials of degree 801
through 1200 using the prime factors provided in [19].

7. Acknowledgments

The authors sincerely express our gratitude to Professor
Samuel S. Wagstaff, Jr. in the Departments of Computer
Sciences and Mathematics at Purdue University for
providing the needed prime factors so we can use NTL for
computations to generate desired primitive polynomials
and check the results with those generated by Magma, or
vice versa. We also would like to thank Alice Yu of the
University of California at San Diego and Teresa Chang of
SynTest Technologies for drawing all figures. This
research was supported in part by the National Science
Foundation under Grant No. CCF-0916837.

References

[1] M.L. Bushnell and V.D. Agrawal, Essentials of Electronic Testing

for Digital, Memory & Mixed-Signal VLSI Circuits, Springer, New
York, 2000.

[2] L.-T. Wang, C.-W. Wu, and X. Wen, editors, VLSI Test Principles
and Architectures: Design for Testability, Morgan Kaufmann, San
Francisco, 2006.

[3] W.W. Peterson and E.J. Weldon, Jr., Error-Correcting Codes, MIT
Press, Cambridge, Massachusetts, 1972.

[4] W. Trappe and L.C. Washington, Introduction to Cryptography
with Coding Theory, Second Edition, Prentice Hall, Upper Saddle
River, New Jersey, 2005.

00

77

xx33 xx77

66 4455

22 11 33

xx22

10

[5] N. Mukherjee, J. Rajski, G. Mrugalski, A. Pogiel, and J. Tyszer,
“Ring Generator: An Ultimate Linear Feedback Shift Register,”
IEEE Computer, pp. 64-71, June 2011.

[6] G. Mrugalski, J. Rajski, and J. Tyszer, “High Speed Ring
Generators and Compactors of Test Data,” IEEE VLSI Test Symp.,
pp. 57-62, 2003.

[7] G. Mrugalski, N. Mukherjee, J. Rajski, and J. Tyszer, “High-
Performance Dense Ring Generators,” IEEE Trans. on Computers,
vol. 55, no. 1, pp. 83-87, Jan. 2006.

[8] S.W. Golomb, Shift Register Sequence, Aegean Park Press, Laguna
Hills, California, 1982.

[9] C. Arvillias and D.G. Maritsas, “Toggle-Registers Generating in
Parallel k kth Decimations of m-sequences Xp + Xk + 1 Design
Tables,” IEEE Trans. on Computers, vol. C-28, no. 2, pp. 89-101,
Feb. 1979.

[10] W.W. Warlick and J.E. Hershey, “High-Speed m-Sequence
Generators,” IEEE Trans. on Computers, vol. C-29, no. 5, pp. 398-
400, May 1980.

[11] L.-T. Wang and E.J. McCluskey, “A Hybrid Design of Maximum-
Length Sequence Generators,” Proc. IEEE Int. Test Conf., pp. 38-
47, 1986.

[12] L.-T. Wang and E.J. McCluskey, “Hybrid Designs Generating
Maximum-Length Sequences,” IEEE Trans. on Computer-Aided
Design, vol. 7, no. 1, pp. 91-99, Jan. 1988.

[13] J. Rajski and J. Tyszer, “Automated Synthesis of Phase Shifters for
Built-In Self-Test Applications,” IEEE Trans. on Computer-Aided
Design, vol. 19, no. 10, pp. 1175-1188, Oct. 2000.

[14] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Method for
Synthesizing Linear Finite State Machines,” United States Patent
No. 6,353,842, March 5, 2002.

[15] L.-T. Wang and N.A. Touba, “Method and Apparatus for Hybrid
Ring Generator Design,” United States Patent Application No.
13/195,524, August 1, 2011.

[16] W. Stahnke, “Primitive Binary Polynomials,” Mathematics of
Computation, vol. 27, no. 124, pp. 977-980, Oct. 1973.

[17] NTL: http://www.shoup.net/ntl/.
[18] Magma: http://www.math.ufl.edu/help/magma/MAGMA.html.
[19] J. Brillhart, D.H. Lehmer, J.L. Selfridge, B. Tuckerman, and S. S.

Wagstaff, Jr., Contemporary Mathematics - Factorizations of bn±1,
b = 2, 3, 5, 6, 7,10, 11, 12 up to High Powers, Third Edition,
American Mathematical Society, vol. 22, 2002; also available in
http://www.ams.org/publications/online-books/conm22-index.

[20] P.H. Bardell, W.H. McAnney, and J. Savir, Built-In Test for VLSI:
Pseudorandom Techniques, Somerset, New Jersey: John Wiley &
Sons, 1987.

[21] P.H. Bardell, “Primitive Polynomials of Degree 301 through 500,”
J. Electronic Testing: Theory and Applications, vol. 3, no. 2, pp.
175-176, May 1992.

[22] J. Rajski and J. Tyszer, “Primitive Polynomials over GF(2) of
Degree up to 660 with Uniformly Distributed Coefficients,” J.
Electronic Testing: Theory and Applications, vol. 19, no. 6, pp.
645-657, Dec. 2003.

[23] P.D. Hortensius, R.D. McLeod, W. Pries, D.M. Miller, and H.C.
Card, “Cellular Automata-Based Pseudorandom Number
Generators for Built-In Self-Test,” IEEE Trans. on Computer-
Aided Design, vol. 8, no. 8, pp. 842-859, Aug. 1989.

[24] G. Mrugalski, J. Rajski, and J. Tyszer, “Cellular Automata-Based
Test Pattern Generators with Phase Shifters,” IEEE Trans. on
Computer-Aided Design, vol. 19, no. 8, pp. 878-893, Aug. 2000.

[25] G. Mrugalski, N. Mukherjee, J. Rajski, and J. Tyszer, “Planar High
Performance Ring Generators,” IEEE VLSI Test Symp., pp. 193-
198, 2004.

[26] N. Mukherjee, A. Pogiel, J. Rajski, and J. Tyszer, “High-Speed On-
Chip Event Counters for Embedded Systems,” Proc. IEEE Int.
Conf. on VLSI Design, pp. 275-280, 2009.

[27] D.W. Clark and L.-J. Weng, “Maximal and Near-Maximal Shift
Register Sequences: Efficient Event Counters and Easy Discrete
Logarithms,” IEEE Trans. on Computers, vol. 43, no. 5, pp. 560-
568, May 1994.

11

 Appendix: Minimum-Weight Primitive Polynomials of Degree up to 800 over GF(2)
 ===

 2 1 0 3 1 0 4 1 0 5 2 0
 6 1 0 7 1 0 8 6 5 1 0 9 4 0 10 3 0
 11 2 0 12 7 4 3 0 13 4 3 1 0 14 12 11 1 0 15 1 0
 16 5 3 2 0 17 3 0 18 7 0 19 6 5 1 0 20 3 0
 21 2 0 22 1 0 23 5 0 24 4 3 1 0 25 3 0
 26 8 7 1 0 27 8 7 1 0 28 3 0 29 2 0 30 16 15 1 0
 31 3 0 32 28 27 1 0 33 13 0 34 15 14 1 0 35 2 0
 36 11 0 37 12 10 2 0 38 6 5 1 0 39 4 0 40 21 19 2 0
 41 3 0 42 23 22 1 0 43 6 5 1 0 44 27 26 1 0 45 4 3 1 0
 46 21 20 1 0 47 5 0 48 28 27 1 0 49 9 0 50 27 26 1 0
 51 16 15 1 0 52 3 0 53 16 15 1 0 54 37 36 1 0 55 24 0
 56 22 21 1 0 57 7 0 58 19 0 59 22 21 1 0 60 1 0
 61 16 15 1 0 62 57 56 1 0 63 1 0 64 4 3 1 0 65 18 0
 66 10 9 1 0 67 10 9 1 0 68 9 0 69 29 27 2 0 70 16 15 1 0
 71 6 0 72 53 47 6 0 73 25 0 74 16 15 1 0 75 11 10 1 0
 76 36 35 1 0 77 31 30 1 0 78 20 19 1 0 79 9 0 80 38 37 1 0
 81 4 0 82 38 35 3 0 83 46 45 1 0 84 13 0 85 28 27 1 0
 86 13 12 1 0 87 13 0 88 72 71 1 0 89 38 0 90 19 18 1 0
 91 84 83 1 0 92 13 12 1 0 93 2 0 94 21 0 95 11 0
 96 49 47 2 0 97 6 0 98 11 0 99 47 45 2 0 100 37 0
 101 7 6 1 0 102 77 76 1 0 103 9 0 104 11 10 1 0 105 16 0
 106 15 0 107 65 63 2 0 108 31 0 109 7 6 1 0 110 13 12 1 0
 111 10 0 112 45 43 2 0 113 9 0 114 82 81 1 0 115 15 14 1 0
 116 71 70 1 0 117 20 18 2 0 118 33 0 119 8 0 120 118 111 7 0
 121 18 0 122 60 59 1 0 123 2 0 124 37 0 125 108 107 1 0
 126 37 36 1 0 127 1 0 128 29 27 2 0 129 5 0 130 3 0
 131 48 47 1 0 132 29 0 133 52 51 1 0 134 57 0 135 11 0
 136 126 125 1 0 137 21 0 138 8 7 1 0 139 8 5 3 0 140 29 0
 141 32 31 1 0 142 21 0 143 21 20 1 0 144 70 69 1 0 145 52 0
 146 60 59 1 0 147 38 37 1 0 148 27 0 149 110 109 1 0 150 53 0
 151 3 0 152 66 65 1 0 153 1 0 154 129 127 2 0 155 32 31 1 0
 156 116 115 1 0 157 27 26 1 0 158 27 26 1 0 159 31 0 160 19 18 1 0
 161 18 0 162 88 87 1 0 163 60 59 1 0 164 14 13 1 0 165 31 30 1 0
 166 39 38 1 0 167 6 0 168 17 15 2 0 169 34 0 170 23 0
 171 19 18 1 0 172 7 0 173 100 99 1 0 174 13 0 175 6 0
 176 119 118 1 0 177 8 0 178 87 0 179 34 33 1 0 180 37 36 1 0
 181 7 6 1 0 182 128 127 1 0 183 56 0 184 102 101 1 0 185 24 0
 186 23 22 1 0 187 58 57 1 0 188 74 73 1 0 189 127 126 1 0 190 18 17 1 0
 191 9 0 192 28 27 1 0 193 15 0 194 87 0 195 10 9 1 0
 196 66 65 1 0 197 62 61 1 0 198 65 0 199 34 0 200 42 41 1 0
 201 14 0 202 55 0 203 8 7 1 0 204 74 73 1 0 205 30 29 1 0
 206 29 28 1 0 207 43 0 208 62 59 3 0 209 6 0 210 35 32 3 0
 211 46 45 1 0 212 105 0 213 8 7 1 0 214 49 48 1 0 215 23 0
 216 196 195 1 0 217 45 0 218 11 0 219 19 18 1 0 220 15 14 1 0
 221 35 34 1 0 222 92 91 1 0 223 33 0 224 31 30 1 0 225 32 0
 226 58 57 1 0 227 46 45 1 0 228 148 147 1 0 229 64 63 1 0 230 46 45 1 0
 231 26 0 232 100 99 1 0 233 74 0 234 31 0 235 10 9 1 0
 236 5 0 237 26 25 1 0 238 168 167 1 0 239 36 0 240 121 119 2 0
 241 70 0 242 132 131 1 0 243 76 75 1 0 244 40 39 1 0 245 168 167 1 0
 246 35 34 1 0 247 82 0 248 65 63 2 0 249 86 0 250 103 0
 251 228 227 1 0 252 67 0 253 7 6 1 0 254 19 18 1 0 255 52 0
 256 100 99 1 0 257 12 0 258 83 0 259 15 14 1 0 260 21 20 1 0
 261 64 63 1 0 262 97 96 1 0 263 93 0 264 10 9 1 0 265 42 0
 266 47 0 267 86 85 1 0 268 25 0 269 7 6 1 0 270 53 0
 271 58 0 272 108 107 1 0 273 23 0 274 67 0 275 23 22 1 0
 276 89 88 1 0 277 70 69 1 0 278 5 0 279 5 0 280 42 41 1 0
 281 93 0 282 35 0 283 60 59 1 0 284 119 0 285 106 105 1 0
 286 69 0 287 71 0 288 11 10 1 0 289 21 0 290 134 133 1 0
 291 107 105 2 0 292 97 0 293 96 95 1 0 294 61 0 295 48 0
 296 34 33 1 0 297 5 0 298 30 29 1 0 299 47 46 1 0 300 7 0
 301 66 65 1 0 302 41 0 303 29 28 1 0 304 196 195 1 0 305 102 0
 306 226 225 1 0 307 117 115 2 0 308 297 296 1 0 309 155 154 1 0 310 16 15 1 0
 311 31 30 1 0 312 308 305 3 0 313 79 0 314 15 0 315 10 9 1 0
 316 135 0 317 96 95 1 0 318 115 114 1 0 319 36 0 320 4 3 1 0
 321 31 0 322 67 0 323 204 203 1 0 324 256 255 1 0 325 76 75 1 0
 326 90 89 1 0 327 34 0 328 93 91 2 0 329 50 0 330 16 15 1 0
 331 324 323 1 0 332 123 0 333 2 0 334 27 26 1 0 335 42 41 1 0
 336 212 211 1 0 337 55 0 338 104 103 1 0 339 194 193 1 0 340 93 92 1 0
 341 24 23 1 0 342 125 0 343 75 0 344 260 259 1 0 345 22 0
 346 180 179 1 0 347 338 337 1 0 348 128 127 1 0 349 12 11 1 0 350 53 0
 351 34 0 352 76 75 1 0 353 69 0 354 119 118 1 0 355 6 5 1 0
 356 49 48 1 0 357 70 69 1 0 358 333 332 1 0 359 68 0 360 26 25 1 0
 361 45 44 1 0 362 63 0 363 8 7 1 0 364 67 0 365 72 71 1 0
 366 29 0 367 21 0 368 114 113 1 0 369 91 0 370 139 0
 371 16 15 1 0 372 196 195 1 0 373 100 99 1 0 374 64 63 1 0 375 16 0
 376 142 141 1 0 377 41 0 378 43 0 379 114 113 1 0 380 47 0
 381 185 183 2 0 382 81 0 383 90 0 384 164 163 1 0 385 6 0
 386 83 0 387 68 67 1 0 388 69 68 1 0 389 154 153 1 0 390 89 0
 391 28 0 392 346 345 1 0 393 7 0 394 135 0 395 270 269 1 0
 396 25 0 397 67 66 1 0 398 101 100 1 0 399 86 0 400 118 117 1 0

 Note: “24 4 3 1 0” means p(x) = x24 + x4 + x3 + x1 + x0 = x24 + x4 + x3 + x + 1, where 4 = 3 + 1.

12

 Appendix: Minimum-Weight Primitive Polynomials of Degree up to 800 over GF(2) – Cont’d
 ===

 401 152 0 402 341 339 2 0 403 150 149 1 0 404 189 0 405 340 337 3 0
 406 157 0 407 71 0 408 382 381 1 0 409 87 0 410 156 155 1 0
 411 136 131 5 0 412 147 0 413 282 281 1 0 414 46 45 1 0 415 102 0
 416 144 143 1 0 417 107 0 418 18 17 1 0 419 166 163 3 0 420 131 130 1 0
 421 302 297 5 0 422 149 0 423 25 0 424 66 65 1 0 425 12 0
 426 59 57 2 0 427 106 105 1 0 428 105 0 429 412 411 1 0 430 39 38 1 0
 431 120 0 432 350 345 5 0 433 33 0 434 164 163 1 0 435 302 301 1 0
 436 165 0 437 38 37 1 0 438 65 0 439 49 0 440 4 3 1 0
 441 31 0 442 7 5 2 0 443 16 15 1 0 444 55 54 1 0 445 58 57 1 0
 446 105 0 447 73 0 448 124 123 1 0 449 134 0 450 79 0
 451 196 195 1 0 452 35 34 1 0 453 227 225 2 0 454 36 35 1 0 455 38 0
 456 328 327 1 0 457 16 0 458 203 0 459 190 189 1 0 460 61 0
 461 7 6 1 0 462 73 0 463 93 0 464 187 186 1 0 465 59 0
 466 16 15 1 0 467 360 359 1 0 468 193 189 4 0 469 282 281 1 0 470 149 0
 471 1 0 472 25 23 2 0 473 126 125 1 0 474 191 0 475 382 381 1 0
 476 15 0 477 193 191 2 0 478 121 0 479 104 0 480 121 115 6 0
 481 138 0 482 50 49 1 0 483 428 427 1 0 484 105 0 485 64 63 1 0
 486 59 58 1 0 487 94 0 488 4 3 1 0 489 83 0 490 219 0
 491 15 14 1 0 492 8 7 1 0 493 204 203 1 0 494 137 0 495 76 0
 496 186 185 1 0 497 78 0 498 476 475 1 0 499 372 371 1 0 500 249 248 1 0
 501 359 357 2 0 502 153 152 1 0 503 3 0 504 364 363 1 0 505 156 0
 506 95 0 507 152 146 6 0 508 109 0 509 255 254 1 0 510 49 48 1 0
 511 10 0 512 108 105 3 0 513 85 0 514 22 21 1 0 515 240 239 1 0
 516 26 25 1 0 517 346 345 1 0 518 33 0 519 79 0 520 224 221 3 0
 521 32 0 522 470 469 1 0 523 202 201 1 0 524 167 0 525 199 197 2 0
 526 135 134 1 0 527 47 0 528 302 301 1 0 529 42 0 530 132 131 1 0
 531 19 18 1 0 532 1 0 533 100 99 1 0 534 89 88 1 0 535 52 51 1 0
 536 52 51 1 0 537 94 0 538 271 270 1 0 539 362 361 1 0 540 179 0
 541 180 177 3 0 542 18 17 1 0 543 16 0 544 220 217 3 0 545 122 0
 546 119 116 3 0 547 247 245 2 0 548 99 98 1 0 549 247 245 2 0 550 193 0
 551 135 0 552 88 87 1 0 553 39 0 554 364 363 1 0 555 263 261 2 0
 556 153 0 557 240 239 1 0 558 61 60 1 0 559 34 0 560 210 209 1 0
 561 71 0 562 76 75 1 0 563 80 79 1 0 564 163 0 565 82 81 1 0
 566 153 0 567 143 0 568 218 215 3 0 569 77 0 570 67 0
 571 277 275 2 0 572 285 284 1 0 573 568 567 1 0 574 13 0 575 146 0
 576 116 115 1 0 577 25 0 578 72 71 1 0 579 466 465 1 0 580 61 60 1 0
 581 140 139 1 0 582 85 0 583 130 0 584 74 73 1 0 585 121 0
 586 118 117 1 0 587 46 45 1 0 588 151 0 589 520 519 1 0 590 93 0
 591 50 49 1 0 592 352 351 1 0 593 86 0 594 19 0 595 10 9 1 0
 596 245 244 1 0 597 58 57 1 0 598 7 6 1 0 599 30 0 600 11 10 1 0
 601 201 0 602 35 33 2 0 603 20 19 1 0 604 64 63 1 0 605 19 18 1 0
 606 133 132 1 0 607 105 0 608 108 107 1 0 609 31 0 610 127 0
 611 39 38 1 0 612 82 81 1 0 613 219 217 2 0 614 75 74 1 0 615 211 0
 616 21 19 2 0 617 200 0 618 370 369 1 0 619 202 201 1 0 620 29 28 1 0
 621 184 183 1 0 622 297 0 623 68 0 624 16 15 1 0 625 133 0
 626 298 297 1 0 627 251 250 1 0 628 223 0 629 362 361 1 0 630 427 426 1 0
 631 307 0 632 400 399 1 0 633 101 0 634 315 0 635 188 187 1 0
 636 88 87 1 0 637 603 599 4 0 638 6 5 1 0 639 16 0 640 17 15 2 0
 641 11 0 642 119 0 643 233 231 2 0 644 229 228 1 0 645 596 595 1 0
 646 249 0 647 5 0 648 23 22 1 0 649 37 0 650 3 0
 651 152 151 1 0 652 93 0 653 176 175 1 0 654 367 366 1 0 655 88 0
 656 248 247 1 0 657 38 0 658 55 0 659 112 111 1 0 660 412 411 1 0
 661 204 203 1 0 662 297 0 663 257 0 664 40 39 1 0 665 33 0
 666 34 31 3 0 667 631 629 2 0 668 171 170 1 0 669 406 405 1 0 670 153 0
 671 15 0 672 106 105 1 0 673 28 0 674 81 79 2 0 675 280 279 1 0
 676 241 0 677 31 30 1 0 678 367 366 1 0 679 66 0 680 234 231 3 0
 681 193 192 1 0 682 78 77 1 0 683 63 62 1 0 684 155 154 1 0 685 4 3 1 0
 686 197 0 687 13 0 688 249 247 2 0 689 14 0 690 541 539 2 0
 691 90 85 5 0 692 299 0 693 23 22 1 0 694 70 69 1 0 695 212 0
 696 550 549 1 0 697 267 0 698 215 0 699 340 339 1 0 700 238 237 1 0
 701 118 117 1 0 702 37 0 703 63 62 1 0 704 156 153 3 0 705 19 0
 706 133 131 2 0 707 136 135 1 0 708 287 0 709 4 3 1 0 710 15 14 1 0
 711 92 0 712 202 201 1 0 713 41 0 714 23 0 715 7 6 1 0
 716 183 0 717 271 269 2 0 718 30 29 1 0 719 150 0 720 215 209 6 0
 721 9 0 722 231 0 723 32 31 1 0 724 19 18 1 0 725 160 159 1 0
 726 5 0 727 180 0 728 336 335 1 0 729 58 0 730 147 0
 731 35 34 1 0 732 77 76 1 0 733 96 95 1 0 734 227 226 1 0 735 44 0
 736 354 351 3 0 737 5 0 738 347 0 739 24 23 1 0 740 153 0
 741 290 289 1 0 742 241 240 1 0 743 90 0 744 110 109 1 0 745 258 0
 746 351 0 747 167 166 1 0 748 304 303 1 0 749 7 6 1 0 750 284 283 1 0
 751 18 0 752 656 653 3 0 753 158 0 754 19 0 755 274 273 1 0
 756 349 0 757 7 6 1 0 758 235 234 1 0 759 98 0 760 61 59 2 0
 761 3 0 762 83 0 763 126 125 1 0 764 181 180 1 0 764 181 180 1 0
 766 67 66 1 0 767 168 0 768 122 121 1 0 769 120 0 770 191 189 2 0
 771 202 201 1 0 772 7 0 773 350 349 1 0 774 185 0 775 367 0
 776 208 207 1 0 777 29 0 778 375 0 779 270 269 1 0 780 239 237 2 0
 781 52 51 1 0 782 329 0 783 68 0 784 274 273 1 0 785 92 0
 786 32 31 1 0 787 232 231 1 0 788 112 111 1 0 789 226 225 1 0 790 63 62 1 0
 791 30 0 792 662 661 1 0 793 253 0 794 143 0 795 346 345 1 0
 796 228 227 1 0 797 70 69 1 0 798 311 310 1 0 799 25 0 800 248 245 3 0

 Note: “800 248 245 3 0” means p(x) = x800 + x248 + x245 + x3 + x0 = x800 + x248 + x245 + x3 + 1, where 248 = 245 + 3.

