Technical Report

High-Speed Hybrid Ring Generator Design Providing Maximum-Length Sequences with Low Hardware Cost

Laung-Terng Wang, Nur A. Touba, Richard P. Brent, Hui Wang, and Hui Xu

UT-CERC-12-01
October 4, 2011

Computer Engineering Research Center

The University of Texas at Austin

1 University Station, C8800
Austin, Texas 78712-0323
Telephone: 512-471-8000
Fax: 512-471-8967
http://www.cerc.utexas.edu

ELECTRICAL \& COMPUTER ENGINEERING

High-Speed Hybrid Ring Generator Design Providing Maximum-Length Sequences with Low Hardware Cost

Laung-Terng Wang ${ }^{1}$, Nur A. Touba ${ }^{2}$, Richard P. Brent ${ }^{3}$, Hui Wang ${ }^{4}$, and Hui Xu ${ }^{4}$
${ }^{1}$ SynTest Technologies, 505 S. Pastoria Ave., Suite 101, Sunnyvale, CA 94086, USA
${ }^{2}$ Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78712, USA
${ }^{3}$ Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200, Australia
${ }^{4}$ School of Microelectronics, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

A new class of hybrid ring generators is developed to generate maximum-length sequences with low hardware cost. The new design improves the operational speed of the hybrid linear feedback shift register (LFSR) proposed in [12] to receive the high speed and simplified layout benefits of the ring generator offered in [6]. As a result, the hybrid ring generator offers unmatched benefits over existing linear feedback shift register (LFSR) based designs. Assume k 2-input XOR gates are required in a standard or modular LFSR design. These benefits include requiring only $(k+1) / 2$ XOR gates, having at most one level of a 2-input XOR gate between any pair of flip-flops, enabling the output of each flip-flop to drive at most 2 fanout nodes, and creating a highly regular structure that makes the new design more layout and timing friendly.

1. Introduction

With rapid advances in semiconductor process technologies and the explosive growth of the consumer electronics market, design of maximum-length sequence generators (MLSGs) to generate binary sequences for high-performance applications has reemerged as an important research topic. These applications range from computer engineering [1, 2] to communications [3] to cryptography [4].

The authors in [5] further commented that in communications and digital broadcasting, these highspeed MLSGs, such as ring generators [5-7], can randomize transmitted bitstreams, which prevent short repeating sequences from forming spectral lines that can complicate symbol tracking at the receiver or interfere with other transmissions. The global positioning system (GPS) can use these MLSGs to rapidly produce a sequence indicating high-precision relative time offsets. Cellular telephony and Bluetooth systems can use MLSGs as shrinking or alternating step generators in stream ciphers. These MLSGs can be deployed in a directsequence spread-spectrum radio or in various programmable sound generators. Finally, high-definition television (HDTV), digital audio broadcasting systems, gigabit Ethernet scramblers, and satellite communication systems might also adapt MLSGs due to their high performance and generic design flexibility.

Such MLSGs are often realized by maximum-length linear feedback shift registers (LFSRs). These maximum-length LFSRs are typically constructed in a standard or modular form, where one or more XOR gates are interspersed between a flip-flop and the feedback path to generate a desired maximum-length sequence (often called an \boldsymbol{m}-sequence) [8]. If $k 2$-input XOR gates are required to generate an m-sequence, then the signal on the feedback path would have to propagate through k XOR gates (as in the standard LFSR) or must be strong enough to drive $k+1$ fanout nodes (as in the modular LFSR). In either case, the circuit is slowed and may not be applicable for high-performance applications.
To improve the performance of these conventional LFSRs, many approaches have been proposed. Most noticeable are the solutions that include decimations that allow summing up several m-sequences produced by independent devices with a multiphase clock generator [9]; windmill machines that elevate a state transition rate but need additional registers [10]; hybrid LFSRs that reduce the number of XOR gates to $(k+1) / 2$ when the characteristic polynomial generating an m-sequence meets certain requirement [11, 12]; and ring generators that enable each flip-flop output to drive at most 2 fanout nodes and introduce at most one level of one 2-input XOR gate between any two flip-flops, if its characteristic polynomial does not contain consecutive terms [5-7].
These MLSGs, however, do not offer the combined benefits of using a smaller number of XOR gates and enabling any flip-flop to drive no more than 2 fanout nodes. This paper addresses this problem by constructing a new class of MLSGs (hybrid ring generators). When its characteristic polynomial meets certain requirement, the MLSG will use the same number of XOR gates as the hybrid LFSR [12] and preserve the high speed and simplified layout benefits of the ring generator [6]. The only benefit that the proposed hybrid ring generator does not preserve is that when a ring generator using k XOR gates couples to a phase shifter, the phase shifter used to drive multiple scan chains can have lower hardware cost than one coupled to a hybrid ring generator using only $(k+1) / 2$ XOR gates, given a minimum interchannel separation criterion placed between any two m-sequences appearing at any two scan chain inputs [5, 13].

2. Background

There are two conventional forms of LFSR designs: standard LFSR and modular LFSR. Despite different state trajectories, both structures are capable of generating an m-sequence for each stage output.

2.1 Standard LFSRs

Fig. 1 shows an n-stage standard LFSR. It consists of n flip-flops and a number of XOR gates. Since XOR gates are placed on the external feedback path, the standard LFSR is also referred to as an external-XOR LFSR [8].

Figure 1. An n-stage (external-XOR) standard LFSR.

2.2 Modular LFSRs

Similarly, an n-stage modular LFSR with each XOR gate placed between two adjacent flip-flops, as shown in Fig. 2, is referred to as an internal-XOR LFSR [8]. This circuit runs faster than its corresponding standard LFSR, because each stage introduces at most one XOR-gate delay.

Figure 2. An n-stage (internal-XOR) modular LFSR.

2.3 LFSR Properties

The internal structure of the n-stage LFSR in each figure can be described by specifying a characteristic polynomial of degree $n, f(x)$, in which the symbol h_{i} is either 1 or 0 , depending on the existence or absence of the feedback path, where

$$
\begin{equation*}
f(x)=1+h_{1} x+h_{2} x^{2}+\ldots+h_{n-1} x^{n-1}+x^{n} . \tag{1}
\end{equation*}
$$

Let S_{i} represent the contents of the n-stage LFSR after $i t h$ shifts of the initial contents, S_{0}, of the LFSR, and $S_{i}(x)$ be the polynomial representation of S_{i}, where $i \geq 0$. Then, $S_{i}(x)$ is a polynomial of degree $n-1$, where

$$
\begin{align*}
S_{i}(x) & =x^{i} S_{0}(x) \bmod f(x) \\
& =S_{i 0}+S_{i 1} x+S_{i 2} x^{2}+\ldots+S_{i n-2} x^{n-2}+S_{i n-1} x^{n-1} \tag{2}
\end{align*}
$$

If T is the smallest positive integer such that $f(x)$ divides $1+x^{T}$, then the integer T is called the period of the LFSR. If $T=2^{n}-1$, then the n-stage LFSR generating the maximum-length sequence or m-sequence is called a maximum-length LFSR and thus can serve as an MLSG.

Define a primitive polynomial of degree n over Galois field GF(2), $p(x)$, as a polynomial that divides $1+x^{T}$, but not $1+x^{i}$, for any integer $i<T$, where $T=2^{n}-1$ [8]. A primitive polynomial is irreducible. For illustration purpose, Figs. 3 and 4 show a 5-stage standard LFSR and a 5-stage modular LFSR with $f(x)=1+x^{2}+x^{3}+x^{4}+x^{5}$, respectively. As can be seen, each circuit uses a total of 3 2-input XOR gates. The output signal at flip-flop 4 needs to propagate through 3 XOR gates to reach flip-flop 0 in Fig. 3 or must be strong enough to drive 4 fanout nodes in Fig. 4. The characteristic polynomial, $f(x)$, used to construct the circuits is a primitive polynomial, and thus each LFSR can serve as an MLSG. Let

$$
\begin{equation*}
r(x)=f(x)^{-1}=x^{n} f(1 / x) \tag{3}
\end{equation*}
$$

Then, $r(x)$ is defined as a reciprocal polynomial of $f(x)$ [8]. A reciprocal polynomial of a primitive polynomial is also a primitive polynomial. Hence, if the reciprocal polynomial of $f(x)$ is used to construct a standard or modular LFSR with $r(x)=1+x^{2}+x^{3}+x^{4}+x^{5}$, then the LFSR can also serve as an MLSG.

Figure 3. A 5-stage standard LFSR implementing

$$
f(x)=1+x^{2}+x^{3}+x^{4}+x^{5}
$$

Figure 4. A 5-stage modular LFSR implementing $f(x)=1+x^{2}+x^{3}+x^{4}+x^{5}$.

2.4 Hybrid LFSRs

Let a polynomial over GF(2), $1+a(x)=b(x)+c(x)$, be said to be fully decomposable iff both $b(x)$ and $c(x)$ have no common terms and there exists an integer j such that $c(x)=x^{j} b(x)$, where $j \geq 1$. For example, if $1+f(x)$ is fully decomposable such that

$$
\begin{equation*}
f(x)=1+b(x)+x^{j} b(x) \tag{4}
\end{equation*}
$$

then a (hybrid) top-bottom LFSR [12] can be constructed using the feedback connection notation

$$
\begin{equation*}
s(x)=1+\wedge x^{j}+x^{j} b(x) \tag{5}
\end{equation*}
$$

where $\wedge x^{j}$ indicates that the XOR gate with one input taken from the j th stage output of the LFSR is connected to the feedback path, not between stages. Similarly, if $f(x)+x^{n}$ is fully decomposable such that

$$
\begin{equation*}
f(x)=b(x)+x^{j} b(x)+x^{n} \tag{6}
\end{equation*}
$$

then a (hybrid) bottom-top LFSR [12] can be constructed using the feedback connection notation

$$
\begin{equation*}
s(x)=b(x)+\wedge x^{n-j}+x^{n} . \tag{7}
\end{equation*}
$$

Assume a maximum-length LFSR uses k 2-input XOR gates to generate an m-sequence. It was shown in [12] that if $1+f(x)$ or $f(x)+x^{n}$ for constructing a standard or modular LFSR is fully decomposable, then a hybrid LFSR can be realized with only $(k+1) / 2$ XOR gates. Also, if a top-bottom LFSR exists for $f(x)$, then a bottom-top LFSR will exist for its reciprocal polynomial $r(x)$, and vice versa.

Figure 5. A 5-stage top-bottom LFSR using $s(x)=$ $1+\wedge x^{2}+x^{4}+x^{5}$ to implement $f(x)=1+x^{2}+x^{3}+x^{4}+x^{5}$.

Figure 6. A 5-stage bottom-top LFSR using $s(x)=$ $1+x^{2}+\wedge x^{4}+x^{5}$ to implement $f(x)=1+x+x^{2}+x^{3}+x^{5}$.

Fig. 5 shows an example 5 -stage top-bottom LFSR. The circuit implements the same $f(x), 1+x^{2}+x^{3}+x^{4}+x^{5}$, as that for Figs. 3 and 4. Since $f(x)=1+\left(x^{2}+x^{3}\right)+x^{2}\left(x^{2}+x^{3}\right)$, by Eq. $5, s(x)=1+\wedge x^{2}+x^{2}\left(x^{2}+x^{3}\right)=1+\wedge x^{2}+x^{4}+x^{5}$. As $f(x)$ is a primitive polynomial, the top-bottom LFSR will generate an m-sequence.
Fig. 6 shows a bottom-top LFSR that implements the reciprocal polynomial, $1+x+x^{2}+x^{3}+x^{5}$, of the primitive polynomial for Fig. 5. Since $f(x)=\left(1+x^{2}\right)+x\left(1+x^{2}\right)+x^{5}$, by Eq. $7, s(x)=\left(1+x^{2}\right)+\wedge x^{5-1}+x^{5}=1+x^{2}+\wedge x^{4}+x^{5}$. As a reciprocal polynomial of a primitive polynomial is a primitive polynomial, the bottom-top LFSR will also generate an m-sequence.

As can be seen, each circuit illustrated in Figs. 5 and 6 uses only two 2-input XOR gates, rather than three XOR gates for Figs. 3 and 4. Assume k XOR gates are required to implement a standard LFSR or a modular LFSR to produce an m-sequence, where the integer k must be an odd number. The hybrid LFSR design will require only $(k+1) / 2$ 2-input XOR gates. Since the feedback path of the hybrid LFSR will drive fewer fanout nodes than that of the standard or modular LFSR, the hybrid design will have better operating performance.

3. Hybrid Ring Generators

One common drawback of using the standard LFSR, modular LFSR, and hybrid LFSR to generate pseudorandom bit sequences is the long delay associated with the feedback path. In the standard LFSR case, data at the output of the rightmost flip-flop would need to pass through k 2-input XOR gates to reach the leftmost flipflop. In the modular LFSR case, the rightmost flip-flop would need to be strong enough to drive $k+1$ (fanout) nodes. In the hybrid LFSR case, the rightmost flip-flop
would need to pass through one 2-input XOR gate before or after driving $(k+1) / 2$ fanout nodes. Combined with their respective irregularity in design style, these types of LFSR designs may have difficulty to meet frequency requirement for high-performance applications.

3.1 Top-Bottom Ring Generator Design

Consider the circuit given in Fig. 7. Any two adjacent flip-flops contain at most one 2-input XOR gate and each flip-flop output drives at most 2 fanout nodes. The circuit is constructed in a ring structure so there is no long feedback path connecting the rightmost flip-flop to the leftmost flip-flop. A circuit in so constructed is referred to as a ring generator [6]. Since the XOR gates are placed on the top and bottom rows simultaneously, a ring generator constructed with this additional property is referred to as a hybrid ring generator. Also, if the first XOR gate connecting to the leftmost stages is placed on the top row, then the hybrid ring generator is referred to as a (hybrid) top-bottom ring generator (see Fig. 7). Similarly, if the first XOR gate connecting to the rightmost stages is placed on the bottom row, then the hybrid ring generator is referred to as a (hybrid) bottom-top ring generator (see Fig. 9). Note that in each top-bottom or bottom-top ring generator, there will be one and only one 2 -input XOR gate connected to the top row, according to the construction methods of the hybrid LFSRs given in [12].

Figure 7. A 5-stage top-bottom ring generator constructed by $s(x)=1+\wedge x^{2}+x^{4}+x^{5}$ given in Fig. 5.
Let $\boldsymbol{X}=\left\{\begin{array}{llll}x_{0} & \ldots & x_{4}\end{array}\right\}$ and $\boldsymbol{Z}=\left\{\begin{array}{lll}z_{0} & \ldots & z_{4}\end{array}\right\}$ represent the circuit's present state and next state, respectively. Linear equations over GF(2) governing the operation of the circuit can be expressed as follows:

$$
\begin{align*}
& z_{0}=x_{4} \\
& z_{1}=x_{0} \\
& z_{2}=x_{1}+x_{2} \tag{8}\\
& z_{3}=x_{2} \\
& z_{4}=x_{0}+x_{3}
\end{align*}
$$

The set of linear equations can be further described by:

$$
\begin{equation*}
Z=M * X \tag{9}
\end{equation*}
$$

or

$$
\left[\begin{array}{l}
z_{0} \tag{10}\\
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

where matrix \boldsymbol{M} is simply a companion matrix [8] whose characteristic polynomial $f(x)$ is defined as the determinant of $\boldsymbol{M}-\boldsymbol{I} \boldsymbol{x}$, or symbolically:

$$
\begin{equation*}
f(x)=|\boldsymbol{M}-\boldsymbol{I} \boldsymbol{x}| \tag{11}
\end{equation*}
$$

Then, Eq. 11 can be rewritten as:

$$
f(x)=\left|\begin{array}{ccccc}
x & 0 & 0 & 0 & 1 \tag{12}\\
1 & x & 0 & 0 & 0 \\
0 & 1 & 1+x & 0 & 0 \\
0 & 0 & 1 & x & 0 \\
1 & 0 & 0 & 1 & x
\end{array}\right|
$$

This yields $f(x)=x^{4}(1+x)+x^{2}(1+x)+1=1+x^{2}+x^{3}+$ $x^{4}+x^{5}$, which is a primitive polynomial used to construct the three circuits shown in Figs. 4, 5, and 7. This finding implies that given $f(x)$, if a top-bottom LFSR can be constructed, then a top-bottom ring generator can also be constructed with the same $f(x)$.

Consider the circuits shown in Figs. 8a to 8c. Fig. 8a is an equivalent circuit of Fig. 5; Fig. 8c is an equivalent circuit of Fig. 8b. Figs. 8a and 8b are represented in a one-dimensional view to reflect their feedback tap relationship. Fig. 8a is transformed to Fig. 8b, according to the transformations given in [6], by shifting the x^{4} arc in Fig. 8a to the left by one bit without crossing the x^{2} arc, while keeping the x^{2} arc of Fig. 8a intact. One may now find Fig. 7 is isomorphic to Fig. 8c with only one difference in flip-flop labeling. This proof confirms our finding above.

(a) Equivalent circuit of Fig. 5

(b) Circuit by shifting the x^{4} arc in (a) to the left by 1 bit

(c) Equivalent circuit of (b)

Figure 8. Equivalent circuits of Figs. 5 and 7.

3.2 Bottom-Top Ring Generator Design

Consider the 5-stage bottom-top ring generator shown in Fig. 9. The characteristic polynomial, $1+x+x^{2}+x^{3}+$ x^{5}, chosen to construct the hybrid circuit is the same reciprocal polynomial used to realize the bottom-top LFSR shown in Fig. 6.

Figure 9. A 5-stage bottom-top ring generator constructed by $s(x)=1+x^{2}+\wedge x^{4}+x^{5}$ given in Fig. 6.
Looking into Fig. 9, the operation of the circuit relating next state \boldsymbol{Z} to present state \boldsymbol{X} can be expressed as:

$$
\left[\begin{array}{l}
z_{0} \tag{13}\\
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

Then, by Eq. 11, $f(x)$ can be rewritten as:

$$
f(x)=\left|\begin{array}{lllll}
x & 0 & 0 & 0 & 1 \tag{14}\\
1 & x & 0 & 1 & 0 \\
0 & 1 & x & 0 & 0 \\
0 & 1 & 1 & x & 0 \\
0 & 0 & 0 & 1 & x
\end{array}\right|
$$

This yields $f(x)=\left(1+x^{2}\right)+x\left(1+x^{2}\right)+x^{5}=1+x+x^{2}+$ $x^{3}+x^{5}$, which is the primitive polynomial used to construct the bottom-top LFSR given in Fig. 6. According to Eq. $5, s(x)=1+x^{2}+\wedge x^{4}+x^{5}$. The successive transformations of the circuit of Fig. 6 into that of Fig. 9 are shown in Figs. 10a to 10c. Fig. 10a is an equivalent circuit of Fig. 6. Fig. 10b was obtained by shifting the x^{2} arc in Fig. 10a to the right by one bit. Fig. 10c is an equivalent circuit of Fig. 10b, and is isomorphic to Fig. 9 with different labeling in flip-flops. This proves that given $f(x)$, if a bottom-top LFSR can be constructed, then a bottom-top ring generator can also be constructed with the same $f(x)$.

(a) Equivalent circuit of Fig. 6

(b) Circuit by shifting the x^{2} arc in (a) to the right by 1 bit

(c) Equivalent circuit of (b)

Figure 10. Equivalent circuits of Figs. 6 and 9.

3.3 Properties

Recall that the output of the rightmost flip-flop in a topbottom LFSR must be strong enough to drive $k+1$ fanout nodes; whereas the output signal of the rightmost flip-flop in a bottom-top LFSR must propagate through k 2-inout XOR gates. A hybrid ring generator constructed either in a top-bottom or bottom-top form, however, will exhibit the same properties:

1. Every output of a flip-flop in the hybrid design will drive at most 2 fanout nodes.
2. There will be at most one 2 -input XOR gate placed between any two flip-flops, and thus each output signal of any flip-flop will only have to propagate through at most one 2 -input XOR gate.
3. There will be no long feedback path, as the circuit is implemented in a ring structure.
4. Its regular and modular structure will result in simplified layout and routing, making the circuit timing and layout friendly.
5. The number of 2-input XOR gates used in the hybrid ring generator will be $(k+1) / 2$.

The hybrid ring generator is able to preserve the first 4 benefits given in [5, 6]. This has enabled the circuit to run at a higher speed than its standard, modular, and hybrid LFSR counterparts. As the goal of the paper is to design a modified (maximum-length) LFSR that has the least hardware cost, it is beyond the scope of the paper to discuss techniques that will meet a minimum interchannel separation criterion, say 4,096 or 10,000 bits, between any two scan chains [5, 7, 13]. Instead, we will prove that any modified LFSR (such as a hybrid LFSR, ring generator, or hybrid ring generator) implementing the same $f(x)$ as a standard or modular LFSR using k 2-input XOR gates cannot use fewer than $(k+1) / 2$ XOR gates, when $k=1,3$, or 5 .
Before the proof, consider the two circuits given in Figs. 11 and 12 first. Both circuits were taken from FIGS. 9 and 14 in [14], respectively. Fig. 11 is to illustrate a particular situation where it is required to add an extra 2input XOR gate in a modular LFSR when a source tap crossing a destination tap while moving to the left (SDL) transformation is used to construct a modified LFSR. Fig. 12 is to illustrate another situation where the inserted extra gate can cancel an available XOR gate, thereby reducing the number of XOR gates in the circuit by one.
In Fig. 11a, two feedback connections 58 and 59 are arranged in such a way that an XOR gate 60 at the destination tap of the first feedback connection is separated from a source tap 62 of the second feedback connection by a single flip-flop. An elementary shift left (EL) transformation described in $[6,14]$ is applied to the circuit so the source tap 62 shifts across this flip-flop (see Fig. 11b). The XOR gate 64 at the destination tap of the
second feedback connection also shifts to the left accordingly. This operation preserves the m-sequence property of the LFSR as described in [6, 14]. Next, the source tap 62 moves to cross the XOR gate 60 of the first feedback connection 58 (see Fig. 11c). Logic value on the second feedback connection 59 is now no longer equivalent to $a \bmod b$; instead, it is now equal to just b. To maintain the same functionality on the output of the destination XOR gate 64, logic value a must be provided by the source tap 66 of the first feedback connection 58 to the XOR gate 64. This is accomplished by adding a feedback connection line 68 between the source tap 66 and the XOR gate 64 at the shifted destination tap. One can see now an extra XOR gate is added to the modified LFSR to preserve the same m-sequence property.

Figure 11. A circuit to illustrate an SDL transformation can lead to insertion of an extra XOR gate.

Fig. 12a shows a modular LFSR implementing $f(x)=1$ $+x^{2}+x^{3}+x^{7}+x^{8}$. First, transformation EL is applied 4 times to the feedback connection represented by coefficient x^{7} (feedback connection 30 with source tap 32 and destination gate 34). This leads to the circuit shown in Fig. 12b. Next, transformation SDL is applied to shift the feedback connection 30 further to the left by one flip-flop and adds a feedback connection line 36 at the input to the XOR gate 34 as shown in Fig. 12c. Because another XOR gate 38 with the same connectivity already exists at the output of flip-flop 1, the XOR gate 34 and connection 36
can be discarded. This reduces the number of XOR gates in the LFSR from 3 to 2 . To reduce the load of flip-flop 2 that drives XOR gates 40 and 34 in Fig. 12c, an additional transformation EL is applied in Fig. 12d that shifts the feedback connection 30 further to the left. As a result, the modified LFSR uses only 2 XOR gates and every flipflop output drives at most two fanout nodes.

Figure 12. An 8-stage modified LFSR constructed using the transformations given in [14] for $f(x)=1+x^{2}+x^{3}+x^{7}+x^{8}$.
The above two examples (Figs. 11 and 12) illustrate that applying transformations to a modular LFSR can lead to insertion or deletion of one or more XOR gates. The number of 2-input XOR gates used in the resultant modified LFSR, however, will be at least $(k+1) / 2$, when k $=1,3$, or 5 . The same results apply to transformations of a standard LFSR too. We now provide the proof below:

Theorem 1: given a maximum-length standard or modular LFSR using k 2-input XOR gates, a modified LFSR implementing the same $f(x)$ as the standard or modular LFSR cannot use fewer than ($k+1$)/2 2-input XOR gates, when $k=1,3$, or 5 .
Proof: We will prove the theorem by contradiction. When $k=1$, the condition follows immediately;
otherwise, the modified LFSR would not contain any XOR gates and would have implemented $1+x^{n}$, which is different from the primitive trinomial (a primitive polynomial with 3 terms) used as $f(x)$ to construct the maximum-length standard or modular LFSR.

Next, we show that if $k=3$, then the condition will still hold. A maximum-length standard or modular LFSR constructed to implement $f(x)$ with $k=3$ implies that the LFSR uses 32 -input XOR gates and $f(x)$ is a primitive pentanomial (a primitive polynomial with 5 terms). For instance, a modular LFSR is constructed to implement $f_{1}(x)=p(x)=1+x^{a}+x^{b}+x^{c}+x^{n}$, where $1 \leq a<b<c<n$. According to [14], when a source tap of one arc in $\left\{x^{a}, x^{b}\right.$, $\left.x^{c}\right\}$ and a destination tap of another arc in $\left\{x^{a}, x^{b}, x^{c}\right\}$ cross each other, it will be required to add a proper feedback connection (a 2-input XOR gate) in the modified LFSR to preserve the m-sequence property in the standard or modular LFSR. If the extra gate is to be cancelled, then there must exist an available XOR gate at the position where the extra gate will be added. For instance, the x^{b} and x^{c} arcs have a distance of $n-b$ and $n-c$ to the rightmost stage of the modular LFSR, respectively; the x^{a} arc must be in the same position as the to-be-added feedback connection. That is, distance $n-a$ must be equal to ($n-b$) + ($n-c$), or $a+n=b+c$. When this condition holds, the x^{a} arc will be cancelled. This also implies that $1+f_{1}(x)$ is fully decomposable. The modified LFSR will now have only 2 XOR gates (representing the original x^{b} arc and the transformed x^{c} arc) left. If the number of XOR gates used in this modified LFSR could be reduced to 1 (instead of 2), this means there must exist transformation(s) that can cause the transformed x^{c} arc to cancel the original x^{b} arc, or vice versa. If this were possible, then the modified LFSR would have implemented $f_{2}(x)=1+x^{c}+x^{n}$ or $1+x^{b}$ $+x^{n}$, which becomes a primitive trinomial. This will contradict the condition that the modified LFSR must implement the same characteristic polynomial $f_{1}(x)$ as the maximum-length standard or modular LFSR.

We now prove a modified LFSR that implements the same $f_{3}(x)$ as a maximum-length standard or modular LFSR using 5 2-input XOR gates will use no fewer than 32 input XOR gates. As shown in Fig. 12, to reduce the number of XOR gates used in a modified LFSR by one, a feedback connection at the same flip-flop output of the source or destination tap must already exist in the original LFSR to cancel the added XOR gate; otherwise, the XOR gate count would be increased. Let the modular LFSR implement $f_{3}(x)=p(x)=1+x^{a}+x^{b}+x^{c}+x^{d}+x^{e}+x^{n}$, where $1 \leq a<b<c<d<e<n$, with $k=5$ feedback taps $\left\{x^{a}, x^{b}, x^{c}, x^{d}, x^{e}\right\}$. For instance, $f_{3}(x)=p(x)=1+x^{5}+x^{10}+$ $x^{14}+x^{19}+x^{24}+x^{29}$. Only when $c+n=d+e$ and $a+n=b$ $+e$, can the combined x^{e} and x^{d} arcs as well as the combined x^{e} and x^{b} arcs cancel the x^{c} and x^{a} taps, respectively. This also implies that $1+f_{3}(x)$ is fully
decomposable. The modified LFSR now has $3 \operatorname{arcs}\left\{x^{b}, x^{d}\right.$, $\left.x^{e}\right\}$ left. The only chance to cancel one more feedback connection (the x^{b} tap) would be when the condition $b+n$ $=d+e$ holds. This condition cannot hold because $c+n=$ $d+e$. One scenario that needs to consider is whether creating an intermediate XOR gate could lead to other reductions in later steps when $k=5$. If there were such transformations that could further reduce the circuit to one that contains only 2 arcs, then the 2 arcs in the transformed circuit would take on one of the two following structures: 1) in a disjoint form where both destination taps point to the same direction (left or right), similar to Fig. 8b or 10b; or 2) in a closed form where one arc is included in another arc and both destination taps point to the same direction (left or right). A disjoint circuit structure with both source or destination taps pointed to each other is isomorphic to Structure 2) when one arc rotates across the feedback path. Similarly, a closed circuit structure with both source or destination taps pointed to different directions is isomorphic to Structure 1) when one arc rotates across the feedback path. By retransforming the circuit back to a standard or modular LFSR, Structure 1 will yield an LFSR that uses 3 2-input XOR gates or $k=3$; whereas Structure 2 will yield an LFSR that uses only 2 2-input XOR gates or $k=2$. Structure 2 cannot exit because k must be odd for realizing a maximum-length LFSR. Structure 1 cannot exist either, because the retransformed circuit would have implemented a primitive pentanomial instead. Both circuit structures also contradict the condition that the modified LFSR must implement the same characteristic polynomial $f_{3}(x)$ as the standard or modular LFSR with $k=5$. Hence, any modified LFSR that implements the same $f(x)$ as the maximum-length standard or modular LFSR with $k 2$ input XOR gates will use at least $(k+1) / 2$ 2-input XOR gates, when $k=1$, 3 , or 5 . This concludes the proof.

Note that while Theorem 1 is mainly provided for construction of hybrid ring generators that use primitive polynomials as characteristic polynomials to yield the lowest hardware cost and guarantee the m-sequence property, the theorem can also be applied to construction of any modified LFSR from a standard or modular LFSR whose characteristic polynomial does not necessarily implement a primitive polynomial, when $1 \leq k \leq 5$.

4. Construction Method

To better understand how a hybrid ring generator can be designed via visual inspection or by a construction method, consider the 8 -stage top-bottom ring generator illustrated in Fig. 13 for implementing $f(x)=p(x)=1+x^{2}$ $+x^{3}+x^{7}+x^{8}$. This primitive polynomial, $p(x)$, is the reciprocal polynomial, $r(x)$, of the primitive polynomial $1+x+x^{5}+x^{6}+x^{8}$ listed in [1]. Also, the same $f(x)$ has been used to construct the modified LFSR in Fig. 12. Because $f(x)=1+\left(x^{2}+x^{3}\right)+x^{5}\left(x^{2}+x^{3}\right)$, this means $s(x)=1$ $+\wedge x^{5}+x^{7}+x^{8}$. A corresponding 8 -stage bottom-top ring
generator implementing $r(x)$ is shown in Fig. 14. Since $r(x)=(1+x)+x^{5}(1+x)+x^{8}$, this yields $s(x)=1+x+\wedge x^{3}+$ x^{8}.

By visual inspection of the hybrid ring generators shown in Figs. 7, 9, 13, and 14, one may find the feedback connections in each circuit are exactly arranged in the same way as that described in [5]: given tap x^{i}, create a feedback connection by encompassing i adjacent flip-flops, always beginning with the leftmost ones. The difference is only the numbers labeled in the flip-flops. We decide to label the flip-flop numbers from 0 to $n-1$ counterclockwise starting with the leftmost bottom flipflop in the hybrid ring generator design because its circuit structure will be more in line with the standard and modular LFSR designs.

Figure 13. An 8-stage top-bottom ring generator using $s(x)=1+\wedge x^{5}+x^{7}+x^{8}$ to implement $f(x)=1+x^{2}+x^{3}+x^{7}+x^{8}$.

Figure 14. An 8 -stage bottom-top ring generator using $s(x)=1+x+\wedge x^{3}+x^{8}$ to implement $r(x)=1+x+x^{5}+x^{6}+x^{8}$.

A construction method following the definitions in [6] for designing a top-bottom or bottom-top ring generator from a hybrid LFSR is now given below [15]:

Step 1: Let T_{i} represent the span (coefficient c) of the i th $\operatorname{tap}\left(x^{c}\right) ; S_{i}$ and D_{i} indicate the locations of the source and destination taps (as inputs to a 2 -input XOR gate) in the resultant hybrid ring generator, respectively; and L be the number of flip-flops in a hybrid LFSR. If L is an odd number, let $L=L+1$; next, label 0 to $L-1$ on each flipflop counterclockwise, starting with an entry 0 on the leftmost bottom flip-flop; then, calculate locations of the source and destination taps according to the following formulas:

$$
\begin{align*}
& S_{i}=\left(L-T_{i}\right) / 2+L / 2-1 \tag{15}\\
& D_{i}=\left(S_{i}+T_{i}\right) \bmod L . \tag{16}
\end{align*}
$$

Consider Fig. 13 again. $L=8$. The two x^{5} and x^{7} taps in $s(x)=1+\wedge x^{5}+x^{7}+x^{8}$ is represented by a sequence $T_{1}=$ $5, T_{2}=7$ (entries 0 and 8 do not have to be processed as they are not subject to transformations). Thus, applying Eqs. 15 and 16 will yield the following feedback connections: $S_{1}=(8-5) / 2+8 / 2-1=4, D_{1}=(4+5) \bmod 8$
$=\mathbf{1} ; S_{2}=(8-7) / 2+8 / 2-1=\mathbf{3}, D_{2}=(3+7) \bmod 8=\mathbf{2}$. The two taps can be expressed as a list of pairs: $(4,1),(3,2)$.

Step 2: Reverse the direction of the leftmost (or rightmost) tap to create the $\wedge_{X}{ }^{c}$ tap on the top row for a top-bottom (or bottom-top) ring generator.

Step 3: (Required only when the circuit has an odd number of stages) Delete the entry $L / 2$ from the label and decrement all entries on the top row by 1.

For example, Fig. 7 has 5 flip-flops. The circuit will be first labeled with $\{0,1,2, \mathbf{3}, \mathbf{4}, \mathbf{5}\}$ for $L=6$ (not 5). Then, delete the entry 3 and renumber the rest to $\{0,1,2,3,4\}$.
A set of minimum-weight primitive polynomials (each consisting of 3 or 5 terms [a.k.a. weights, exponents, or coefficients]) of degree up to 100 that can be used to construct hybrid LFSRs has been listed in [2, 12]. Stahnke was the first to report a list of minimum-weight primitive polynomials of degree up to 168 that satisfies the full decomposable requirement [16]. A new list of minimumweight primitive polynomials of degree up to 800 is now given in the Appendix generated using modified NTL [17] and Magma [18] programs with prime factors provided in [19]. For every primitive polynomial of degree up to 800, we found a primitive pentanomial that meets the fully decomposable requirement always exists when a primitive trinomial does not exist.

Quite a few tables have been reported earlier for different objectives, including minimum-weight primitive polynomials of degree up to 300 in [20]; minimum-weight primitive polynomials of degree 310 through 500 in [21]; and primitive polynomials of degree 9 through 660 with uniformly distributed coefficients in [22].

Based on the construction method, each polynomial listed in the Appendix can now be used to construct hybrid ring generators. It is interesting to note that for any n-stage hybrid ring generator, $n \leq 800$, only one or two 2 -input XOR gates are required to generate an m-sequence.

5. Comparative Analysis

Here, we first make two observations on how the design of ring generators is related to hybrid ring generator design. The benefits of the proposed hybrid ring generator design over other types of MLSGs are then discussed.

Fig. 15a shows an original ring generator design using the synthesis method given in [6] to implement $f(x)=p(x)$ $=1+x^{2}+x^{3}+x^{7}+x^{8}$. The same $f(x)$ has been used to construct the hybrid ring generator shown in Fig. 13.
Comparing the structures of both Figs. 13 and 15a, one can find that Fig. 15a has 2 levels of 2-input XOR gates placed between flip-flops 4 and 5, and uses one more XOR gate than Fig. 13. Conversely, one may construct a ring generator as shown in Fig. 15b so the output of flipflop 3 drives 3 fanout nodes, instead of 2 nodes [5].

(a) An 8-stage ring generator based on [6]

(b) Another 8-stage ring generator based on [5]

Figure 15. An 8 -stage ring generator constructed using the synthesis method given in $[5,6]$ for $f(x)=1+x^{2}+x^{3}+x^{7}+x^{8}$.

This problem was mainly caused by the chosen primitive polynomial that contains consecutive terms (i.e., x^{2} and $x^{3} ; 1$ and x as well as x^{n-1} and x^{n} do not count). If the chosen primitive polynomial does not contain consecutive terms, then the ring generator will always have only one-level of a 2 -input XOR gate placed between any pair of flip-flops and enable any flip-flop output to drive at most 2 fanout nodes.

Fortunately, we were able to find a primitive polynomial of degree 8 that does not contain consecutive terms, $1+x+x^{3}+x^{5}+x^{8}$ [17]. This leads to our first observation: when designing a ring generator, it is important to choose a primitive polynomial, $p(x)$ as characteristic polynomial, $f(x)$, which does not contain consecutive terms; however, choosing such a primitive polynomial may not be an issue for designing a hybrid ring generator, as long as these consecutive terms can be factored out.

Our second observation is associated with the ring generator design: the ring generator does not implement the chosen characteristic polynomial, $f(x)$, but the reciprocal polynomial, $r(x)$, of the chosen $f(x)$. For instance, in Figs. 15a-b, while an m-sequence is always generated, neither circuit implements $f(x)=1+x^{2}+x^{3}+$ $x^{7}+x^{8}$, but the reciprocal polynomial of $f(x)$, or $r(x)=1+$ $x+x^{5}+x^{6}+x^{8}$. One can verify the resultant polynomial by building a companion matrix using the approach we discussed in Section 3.

This problem was caused by an incorrect design for placing a wrong order of feedback taps on the modular LFSR which was referred to as a Galois LFSR in [5]. To correct this error, one can simply renumber the flip-flops and construct the feedback taps by Eqs. 15 and 16. The correct modified ring generator is shown in Fig. 16, where the direction of the feedback path is reversed from Fig. 15a and the flip-flops are labeled differently.

Figure 16. A correct 8 -stage modified ring generator implementing $f(x)=1+x^{2}+x^{3}+x^{7}+x^{8}$.
Table 1 now summarizes the design features of various MLSGs. The table provides a more accurate measure than Table 1 given in [6] on the top-bottom and bottom-top LFSR design features. The top-bottom (or bottom-top) LFSR will have one level (or two levels) of XOR logic because it is constructed to have only one 2-input XOR gate connected to the feedback path according to Eq. 5 (or Eq. 7). On the other hand, the feedback path in each topbottom or bottom-top LFSR will always drive $(k+1) / 2$ fanout nodes due to the nature of the design. As to cellular automaton (CA), in general, the total number of 2 -input XOR gates used in a CA design will be equal to $2 n-2$ for providing better randomness [23, 24].

Table 1. Features of LFSR-Based MLSG Designs

	XOR Gates	Levels of Logic	Fanout
Standard LFSR	k	$\log _{2} k$	2
Modular LFSR	k	1	$k+1$
Top-Bottom LFSR	$(k+1) / 2$	1	$(k+1) / 2$
Bottom-Top LFSR	$(k+1) / 2$	2	$(k+1) / 2$
Cellular Automaton	$2 n-2$	2	3
Ring Generator	k	1	2
Hybrid Ring Generator	$(k+1) / 2$	1	2

Note that the Level of Logic and Fanout columns given in the ring generator row assume that the chosen primitive polynomial as $f(x)$ to design the ring generator does not contain consecutive terms. If one chooses a primitive polynomial that contains consecutive terms, then the Level of Logic or Fanout would have to be increased by one. Similar assumption also applies to hybrid ring generator design: the chosen primitive polynomial must be the one such that its corresponding feedback connection notation, $s(x)$, does not contain consecutive terms. Fortunately, such primitive polynomials for the degree (not every degree) up to 660 listed in [25] and every degree up to 800 listed in the Appendix always exist.

The researchers in [14] have shown an example (as depicted in Fig. 12) using a series of transformations to reduce the number of XOR gates to 2 for Fig. 15a. Interestingly, the transformed LFSR (t-LFSR) converges to a hybrid ring generator. However, one major difference between a transformed LFSR and a hybrid ring generator is that the proposed hybrid design approach does not need to go through any transformations once a proper primitive polynomial is found. As we have proved in Theorem 1 that given a maximum-length standard or modular LFSR using k 2-input XOR gates, a modified LFSR implementing the
same $f(x)$ as the standard or modular LFSR cannot use fewer than $(k+1) / 2$ XOR gates, when $k=1$, 3 , or 5 , the proposed hybrid ring generator will be able to match or outperform all other LFSR-based designs having the lowest hardware cost.

6. Conclusion

This paper described a high-speed design of hybrid ring generators that has yielded the lowest hardware cost among all LFSR-based designs practiced today. It provides quick visual inspection rule of thumb and a simple construction method to design the circuit without going through any transformations. We found that for each n stage hybrid ring generator, $n \leq 800$, only one or two 2 input XOR gates are required to generate an m-sequence. This enables the circuit to be deployed to generate pseudorandom bit sequences for high-performance applications.

In future work, we plan to extend Theorem 1 to find the true minimum number of 2-input XOR gates required to construct a modified LFSR out of a standard or modular LFSR using k 2-input XOR gates. The characteristic polynomial does not have to be primitive. We also plan to explore the implications of the proposed hybrid ring generators on the design of dense ring generators [7], phase shifters [13], and event counters [26, 27], and seek minimum-weight primitive polynomials of degree 801 through 1200 using the prime factors provided in [19].

7. Acknowledgments

The authors sincerely express our gratitude to Professor Samuel S. Wagstaff, Jr. in the Departments of Computer Sciences and Mathematics at Purdue University for providing the needed prime factors so we can use NTL for computations to generate desired primitive polynomials and check the results with those generated by Magma, or vice versa. We also would like to thank Alice Yu of the University of California at San Diego and Teresa Chang of SynTest Technologies for drawing all figures. This research was supported in part by the National Science Foundation under Grant No. CCF-0916837.

References

[1] M.L. Bushnell and V.D. Agrawal, Essentials of Electronic Testing for Digital, Memory \& Mixed-Signal VLSI Circuits, Springer, New York, 2000.
[2] L.-T. Wang, C.-W. Wu, and X. Wen, editors, VLSI Test Principles and Architectures: Design for Testability, Morgan Kaufmann, San Francisco, 2006.
[3] W.W. Peterson and E.J. Weldon, Jr., Error-Correcting Codes, MIT Press, Cambridge, Massachusetts, 1972.
[4] W. Trappe and L.C. Washington, Introduction to Cryptography with Coding Theory, Second Edition, Prentice Hall, Upper Saddle River, New Jersey, 2005.
[5] N. Mukherjee, J. Rajski, G. Mrugalski, A. Pogiel, and J. Tyszer, "Ring Generator: An Ultimate Linear Feedback Shift Register," IEEE Computer, pp. 64-71, June 2011.
[6] G. Mrugalski, J. Rajski, and J. Tyszer, "High Speed Ring Generators and Compactors of Test Data," IEEE VLSI Test Symp., pp. 57-62, 2003.
[7] G. Mrugalski, N. Mukherjee, J. Rajski, and J. Tyszer, "HighPerformance Dense Ring Generators," IEEE Trans. on Computers, vol. 55, no. 1, pp. 83-87, Jan. 2006.
[8] S.W. Golomb, Shift Register Sequence, Aegean Park Press, Laguna Hills, California, 1982.
[9] C. Arvillias and D.G. Maritsas, "Toggle-Registers Generating in Parallel $k k$ th Decimations of m-sequences $X^{p}+X^{k}+1$ Design Tables," IEEE Trans. on Computers, vol. C-28, no. 2, pp. 89-101, Feb. 1979.
[10] W.W. Warlick and J.E. Hershey, "High-Speed m-Sequence Generators," IEEE Trans. on Computers, vol. C-29, no. 5, pp. 398400, May 1980.
[11] L.-T. Wang and E.J. McCluskey, "A Hybrid Design of MaximumLength Sequence Generators," Proc. IEEE Int. Test Conf., pp. 3847, 1986.
[12] L.-T. Wang and E.J. McCluskey, "Hybrid Designs Generating Maximum-Length Sequences," IEEE Trans. on Computer-Aided Design, vol. 7, no. 1, pp. 91-99, Jan. 1988.
[13] J. Rajski and J. Tyszer, "Automated Synthesis of Phase Shifters for Built-In Self-Test Applications," IEEE Trans. on Computer-Aided Design, vol. 19, no. 10, pp. 1175-1188, Oct. 2000.
[14] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, "Method for Synthesizing Linear Finite State Machines," United States Patent No. 6,353,842, March 5, 2002.
[15] L.-T. Wang and N.A. Touba, "Method and Apparatus for Hybrid Ring Generator Design," United States Patent Application No. 13/195,524, August 1, 2011.
[16] W. Stahnke, "Primitive Binary Polynomials," Mathematics of Computation, vol. 27, no. 124, pp. 977-980, Oct. 1973.
[17] NTL: http://www.shoup.net/ntl/.
[18] Magma: http://www.math.ufl.edu/help/magma/MAGMA.html.
[19] J. Brillhart, D.H. Lehmer, J.L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Contemporary Mathematics - Factorizations of bn ± 1, $b=2,3,5,6,7,10,11,12$ up to High Powers, Third Edition, American Mathematical Society, vol. 22, 2002; also available in http://www.ams.org/publications/online-books/conm22-index.
[20] P.H. Bardell, W.H. McAnney, and J. Savir, Built-In Test for VLSI: Pseudorandom Techniques, Somerset, New Jersey: John Wiley \& Sons, 1987.
[21] P.H. Bardell, "Primitive Polynomials of Degree 301 through 500," J. Electronic Testing: Theory and Applications, vol. 3, no. 2, pp. 175-176, May 1992.
[22] J. Rajski and J. Tyszer, "Primitive Polynomials over GF(2) of Degree up to 660 with Uniformly Distributed Coefficients," J. Electronic Testing: Theory and Applications, vol. 19, no. 6, pp. 645-657, Dec. 2003.
[23] P.D. Hortensius, R.D. McLeod, W. Pries, D.M. Miller, and H.C. Card, "Cellular Automata-Based Pseudorandom Number Generators for Built-In Self-Test," IEEE Trans. on ComputerAided Design, vol. 8, no. 8, pp. 842-859, Aug. 1989.
[24] G. Mrugalski, J. Rajski, and J. Tyszer, "Cellular Automata-Based Test Pattern Generators with Phase Shifters," IEEE Trans. on Computer-Aided Design, vol. 19, no. 8, pp. 878-893, Aug. 2000.
[25] G. Mrugalski, N. Mukherjee, J. Rajski, and J. Tyszer, "Planar High Performance Ring Generators," IEEE VLSI Test Symp., pp. 193198, 2004.
[26] N. Mukherjee, A. Pogiel, J. Rajski, and J. Tyszer, "High-Speed OnChip Event Counters for Embedded Systems," Proc. IEEE Int. Conf. on VLSI Design, pp. 275-280, 2009.
[27] D.W. Clark and L.-J. Weng, "Maximal and Near-Maximal Shift Register Sequences: Efficient Event Counters and Easy Discrete Logarithms," IEEE Trans. on Computers, vol. 43, no. 5, pp. 560568, May 1994.

Appendix: Minimum-Weight Primitive Polynomials of Degree up to 800 over GF(2)

	210	310	410	520
610	710	86510	940	1030
1120	127430	134310	14121110	1510
165320	1730	1870	196510	2030
2120	2210	2350	244310	2530
268710	278710	2830	2920	30161510
3130	32282710	33130	34151410	3520
36110	37121020	386510	3940	40211920
4130	42232210	436510	44272610	454310
46212010	4750	48282710	4990	50272610
51161510	5230	53161510	54373610	55240
56222110	5770	58190	59222110	6010
61161510	62575610	6310	644310	65180
6610910	6710910	6890	69292720	70161510
7160	72534760	73250	74161510	75111010
76363510	77313010	78201910	7990	80383710
8140	82383530	83464510	84130	85282710
86131210	87130	88727110	89380	90191810
91848310	92131210	9320	94210	95110
96494720	9760	98110	99474520	100370
1017610	102777610	10390	104111010	10516
106150	107656320	108310	1097610	110131210
111100	112454320	11390	114828110	115151410
116717010	117201820	118330	11980	12011811170
121180	122605910	12320	124370	12510810710
126373610	12710	128292720	12950	13030
131484710	132290	133525110	134570	135110
13612612510	137210	1388710	1398530	140290
141323110	142210	143212010	144706910	145520
146605910	147383710	148270	14911010910	150530
15130	152666510	15310	15412912720	155323110
15611611510	157272610		159310	1601918180
161180	162888710	163605910	164141310	165313010
166393810	16760	168171520	169340	170230
171191810	17270	1731009910	174130	17560
17611911810	17780	178870	179343310	180373610
1817610	18212812710	183560	18410210110	185240
186232210	187585710	188747310	18912712610	190181710
19190	192282710	193150	194870	19510910
196666510	197626110	198650	199340	200424110
201140	202550	2038710	204747310	205302910
206292810	207430	208625930	20960	210353230
211464510	2121050	2138710	214494810	215230
21619619510	217450	218110	2191918180	220151410
221353410	222929110	223330	224313010	225320
226585710	227464510	22814814710	229646310	230464510
231260	2321009910	233740	234310	23510910
23650	237262510	23816816710	239360	24012111920
241700	24213213110	243767510	244403910	24516816710
246353410	247820	248656320	249860	2501030
25122822710	252670	2537610	254191810	255520
2561009910	257120	258830	259151410	260212010
261646310	262979610	263930	26410910	265420
266470	267868510	268250	2697610	270530
271580	27210810710	273230	274670	275232210
276898810	277706910	27850	27950	280424110
281930	282350	283605910	2841190	28510610510
286690	287710	288111010	289210	29013413310
29110710520	292970	293969510	294610	295480
296343310	29750	298302910	299474610	30070
301666510	302410	303292810	30419619510	3051020
30622622510	30711711520	30829729610	30915515410	310161510
311313010	31230830530	313790	314150	31510910
3161350	317969510	31811511410	319360	3204310
321310	322670	32320420310	32425625510	325767510
326908910	327340	328939120	329500	330161510
33132432310	3321230	33320	334272610	335424110
33621221110	337550	33810410310	33919419310	340939210
341242310	3421250	343750	34426025910	345220
34618017910	34733833710	34812812710	349121110	350530
351340	352767510	353690	35411911810	3556510
356494810	357706910	35833333210	359680	360262510
361454410	362630	3638710	364670	365727110
366290	367210	36811411310	369910	3701390
371161510	37219619510	3731009910	374646310	375160
37614214110	377410	378430	37911411310	380470
38118518320	382810	383900	38416416310	38560
386830	387686710	388696810	38915415310	390890
391280	39234634510	39370	3941350	39527026910
396250	397676610	39810110010	399860	40011811710

Note: "244310" means $p(x)=x^{24}+x^{4}+x^{3}+x^{1}+x^{0}=x^{24}+x^{4}+x^{3}+x+1$, where $4=3+1$.

Appendix: Minimum-Weight Primitive Polynomials of Degree up to 800 over GF(2) - Cont'd

4011520	40234133920	40315014910	4041890	40534033730
4061570	407710	40838238110	409870	41015615510
41113613150	4121470	41328228110	414464510	4151020
41614414310	4171070	418181710	41916616330	42013113010
42130229750	4221490	423250	424666510	425120
426595720	42710610510	4281050	42941241110	430393810
4311200	43235034550	433330	43416416310	4353023011
4361650	437383710	438650	439490	4404310
441310	4427520	443161510	444555410	445585710
4461050	447730	44812412310	4491340	450790
45119619510	452353410	45322722520	454363510	455380
45632832710	457160	4582030	45919018910	460610
4617610	462730	463930	46418718610	465590
466161510	46736035910	46819318940	46928228110	4701490
47110	472252320	47312612510	4741910	47538238110
476150	47719319120	4781210	4791040	4801211156
4811380	482504910	48342842710	4841050	485646310
486595810	487940	4884310	489830	4902190
491151410	4928710	49320420310	4941370	495760
49618618510	497780	49847647510	49937237110	5002492481
50135935720	50215315210	50330	50436436310	5051560
506950	50715214660	5081090	50925525410	510494810
511100	51210810530	513850	514222110	5152402391
$\begin{array}{llll}516 & 262510\end{array}$	51734634510	518330	519790	5202242213
521320	52247046910	52320220110	5241670	5251991972
52613513410	527470	52830230110	529420	5301321311
5311918180	53210	5331009910	534898810	535525110
536525110	537940	53827127010	53936236110	5401790
54118017730	542181710	543160	54422021730	5451220
54611911630	54724724520	548999810	54924724520	5501930
5511350	552888710	553390	55436436310	555263261
5561530	55724023910	558616010	559340	5602102091
561710	562767510	563807910	5641630	565828110
5661530	5671430	56821821530	569770	570670
57127727520	57228528410	57356856710	574130	5751460
57611611510	577250	578727110	57946646510	580616010
58114013910	582850	5831300	584747310	5851210
58611811710	587464510	5881510	58952051910	590930
591504910	59235235110	593860	594190	59510910
59624524410	597585710	5987610	599300	600111010
6012010	602353320	603201910	604646310	605191810
60613313210	6071050	60810810710	609310	6101270
611393810	612828110	61321921720	614757410	6152110
616211920	6172000	61837036910	61920220110	620292810
62118418310	6222970	623680	624161510	6251330
62629829710	62725125010	6282230	62936236110	63042742610
6313070	63240039910	6331010	6343150	6351881871
636888710	63760359940	6386510	639160	640171520
641110	6421190	64323323120	64422922810	6455965951
6462490	64750	648232210	649370	65030
65115215110	652930	65317617510	65436736610	655880
65624824710	657380	658550	65911211110	6604124111
66120420310	6622970	6632570	664403910	665330
666343130	66763162920	66817117010	66940640510	6701530
671150	67210610510	673280	674817920	67528027910
6762410	677313010	67836736610	679660	68023423130
68119319210	682787710	683636210	68415515410	6854310
6861970	687130	68824924720	689140	6905415392
691908550	6922990	693232210	694706910	6952120
69655054910	6972670	6982150	69934033910	7002382371
70111811710	702370	703636210	70415615330	705190
70613313120	70713613510	7082870	7094310	
711920	71220220110	713410	714230	7157610
7161830	71727126920	$\begin{array}{ll}718 & 302910\end{array}$	7191500	72021520960
72190	7222310	723 32 311 0	724191818	7251601591
72650	7271800	72833633510	729580	7301470
731353410	732777610	733969510	73422722610	735440
73635435130	73750	7383470	739242310	7401530
74129028910	74224124010	743900	74411010910	7452580
7463510	74716716610	74830430310	7497610	75028428310
751180	75265665330	7531580	754190	75527427310
7563490	7577610	75823523410	759980	760615920
76130	762830	76312612510	76418118010	76418118010
766676610	7671680	76812212110	7691200	77019118920
77120220110	77270	77335034910	7741850	7753670
77620820710	777290	7783750	77927026910	7802392372
781525110	7823290	783680	78427427310	785920
786323110	78723223110	78811211110	78922622510	790636210
791300	79266266110	7932530	7941430	79534634510
79622822710	797706910	79831131010	799250	80024824530

Note: "800 24824530 " means $p(x)=x^{800}+x^{248}+x^{245}+x^{3}+x^{0}=x^{800}+x^{248}+x^{245}+x^{3}+1$, where $248=245+3$.

