Technical Report

On Designing Transformed Linear
Feedback Shift Registers with
Minimum Hardware Cost

Laung-Terng Wang, Nur A. Touba, Richard P. Brent,
Hui Xu, and Hui Wang

UT-CERC-12-03

November 8, 2011

Computer Engineering Research Center
Department of Electrical & Computer Engineering
The University of Texas at Austin

1 University Station, C8800
Austin, Texas 78712-0323
Telephone: 512-471-8000
Fax: 512-471-8967
http://www.cerc.utexas.edu

THE UNIVERSITY OF TEXAS AT AUSTIN

[SEEV=FCE

ELECTRICAL & COMPUTER ENGINEERING

On Designing Transformed Linear Feedback Shift Registers with
Minimum Hardware Cost

Laung-Terng Wang®, Nur A. Touba?, Richard P. Brent®, Hui Xu*, and Hui Wang*

! SynTest Technologies, 505 S. Pastoria Ave., Suite 101, Sunnyvale, CA 94086, USA
2 Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78712, USA
® Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200, Australia
*School of Microelectronics, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

This paper provides a proof that given a standard or
modular linear feedback shift register (LFSR) that uses k
2-input XOR gates to generate pseudorandom sequences,
any transformed LFSR (t-LFSR) implementing the same
characteristic polynomial, f(x), as the standard or modular
LFSR cannot use fewer than log,(k+1) 2-input XOR gates
when k is an odd number, or 1+log.k 2-input XOR gates
when k is an even number. This property applies to any n-
stage t-LFSR design regardless of whether f(x) is a
primitive polynomial or not. A new class of minimum-cost
LFSRs (min-LFSRs) is subsequently developed to reduce
the hardware cost to a minimum.

1. Introduction

For decades, due to its simple circuit structure that
consists of only flip-flops and a few 2-input XOR gates,
linear feedback shift registers (LFSRs) have been widely
used in the communication and computer industries to
generate pseudorandom sequences. Applications of LFSRs
include error correcting codes [1], pseudorandom pattern
generation and signature analysis in logic built-in self-test
(BIST) [2, 3], test data decompression and test data
compaction in scan compression [3, 4], and cryptography

[5].

Such LFSRs are typically constructed in a standard or
modular form, where one or more XOR gates are
interspersed between a flip-flop and the feedback path to
generate a desired pseudorandom sequence [6]. When a
maximum-length sequence (often called an m-sequence)
is generated, the LFSR is referred to as a maximum-
length LFSR. If k 2-input XOR gates are required to
generate a pseudorandom sequence, then the signal on the
feedback path would have to propagate through k XOR
gates (as in the standard LFSR) or must be strong
enough to drive k+1 fanout nodes (as in the modular
LFSR). In either case, the circuit is slowed and may not
be applicable for high-performance applications.

To improve the performance of these conventional
LFSRs, many approaches have been proposed. Most
noticeable are the solutions that include decimations that
allow summing up several m-sequences produced by
independent devices with a multiphase clock generator
[7]; windmill machines that elevate a state transition rate

but need additional registers [8]; hybrid LFSRs that
reduce the number of XOR gates to (k+1)/2 when the
characteristic polynomial, f(x), generating an m-sequence
meets certain requirement [9]; ring generators that enable
each flip-flop output to drive at most 2 fanout nodes and
introduce at most one level of one 2-input XOR gate
between any two flip-flops, if its characteristic polynomial
does not contain consecutive terms [10]; and hybrid ring
generators that use the same number of XOR gates as
their corresponding hybrid LFSRs [11] and preserve the
high speed and simplified layout benefits of the ring
generators, when the same requirement as the hybrid
LFSRs is met.

While the high-performance and hardware cost issues
have been respectively addressed in the literature, it is
unclear in the design of hybrid LFSRs and hybrid ring
generators whether a minimum hardware cost (in terms of
the number of 2-input XOR gates required to construct the
design) has been achieved. This paper is intended to
answer this question. Based on the transformation
properties given in [12], we will first illustrate by
examples that a transformed LFSR (t-LFSR)
implementing the same characteristic polynomial, f(x), as
a standard or modular LFSR that uses k 2-input XOR
gates can use as low as log,(k+1) XOR gates when k is an
odd number, or 1+logok XOR gates when k is an even
number, regardless of whether f(x) is a primitive
polynomial or not. We will then prove that given a
standard or modular LFSR that uses k 2-input XOR gates
to generate pseudorandom sequences, any t-LFSR
implementing the same f(x) as the standard or modular
LFSR cannot use fewer than log,(k+1) or 1+log.k 2-input
XOR gates, depending on odd or even k. The t-LFSR
design that uses a minimum number of 2-input XOR gates
is referred to a minimum-cost LFSR (min-LFSR).

This paper shows that it is possible to construct a t-
LFSR that uses a fewer number of XOR gates than its
hybrid LFSR or hybrid ring generator counterpart.
However, the t-LFSR design that leads to a min-LFSR
may lose the highly regular or modular structure which is
a major benefit of using the (hybrid) ring generator design.
A quick visual inspection rule of thumb and a simple
construction method are given so one needs not to go
through the complex transformations to avoid errors.

2. Background

There are two conventional forms of LFSR designs:
standard LFSR and modular LFSR. Despite different state
trajectories, both structures are capable of generating an
m-sequence for each stage output.

2.1 Standard LFSRs

Fig. 1 shows an n-stage standard LFSR. It consists of n
flip-flops and a number of XOR gates. Since XOR gates
are placed on the external feedback path, the standard
LFSR is also referred to as an external-XOR LFSR [6].

Figure 1. An n-stage (external-XOR) standard LFSR.

2.2 Modular LFSRs

Similarly, an n-stage modular LFSR with each XOR
gate placed between two adjacent flip-flops, as shown in
Fig. 2, is referred to as an internal-XOR LFSR [6]. This
circuit runs faster than its corresponding standard LFSR,
because each stage introduces at most one XOR-gate
delay.

%hl e oz P
So 1 Su e Sin2 D Sina

» »
» »

Figure 2. An n-stage (internal-XOR) modular LFSR.
2.3 LFSR Properties

The internal structure of the n-stage LFSR in each figure
can be described by specifying a characteristic
polynomial of degree n, f(x), in which the symbol h; is
either 1 or 0, depending on the existence or absence of the
feedback path, where

f(x) = 1+ hix + hX® + ..+ hyX ™ + X" @)

Let S; represent the contents of the n-stage LFSR after
ith shifts of the initial contents, Sy, of the LFSR, and S;(x)
be the polynomial representation of S;, where i > 0. Then,
Si(x) is a polynomial of degree n—1, where

Si(X) = X'Se(x) mod f(x)
= Sip + SuX + S + ... + Sip X"+ S X (2)
If T is the smallest positive integer such that f(x) divides
1+ X', then the integer T is called the period of the LFSR.
If T = 2" - 1, then the n-stage LFSR generating the

maximum-length sequence or m-sequence is called a
maximum-length LFSR and thus can serve as an MLSG.

Define a primitive polynomial of degree n over Galois
field GF(2), p(x), as a polynomial that divides 1 + x', but

not 1 + x', for any integer i < T, where T = 2"-1 [6]. A
primitive polynomial is irreducible. For illustration
purpose, Figs. 3 and 4 show a 5-stage standard LFSR and
a 5-stage modular LFSR with f(x) = 1 + * + x* + x* + x°,
respectively. As can be seen, each circuit uses a total of 3
2-input XOR gates. The output signal at flip-flop 4 needs
to propagate through 3 XOR gates to reach flip-flop 0 in
Fig. 3 or must be strong enough to drive 4 fanout nodes in
Fig. 4. The characteristic polynomial, f(x), used to
construct the circuits is a primitive polynomial, and thus
each LFSR can generate an m-sequence. Let

r(x) = f(x)* = x"f(1/x). (3)

Then, r(x) is defined as a reciprocal polynomial of f{x)
[6]. A reciprocal polynomial of a primitive polynomial is
also a primitive polynomial. Hence, if the reciprocal
polynomial of f{x) is used to construct a standard or
modular LFSR with r(x) = 1 + x> + x> + x* + x°, then the
LFSR can also generate an m-sequence.

ra Ya

e

Figure 3. A 5-stage standard LFSR implementing
f(x) = 1+X°0C+H .

MOHIRMZQMF@»IL*FJ

Figure 4. A 5-stage modular LFSR implementing
f(x) = 1+X2HC+HX M+,

2.4 Hybrid LFSRs

Let a polynomial over GF(2), 1 + a(x) = b(x) + c(x), be
said to be fully decomposable iff both b(x) and c(x) have
no common terms and there exists an integer j such that
c(x) = x'b(x), where j > 1. For example, if 1 + f(x) is fully
decomposable such that

f(x) = 1 + b(x) + xb(x) (4)

then a (hybrid) top-bottom LFSR [9] can be constructed
using the feedback connection notation

s(x) =1 + X + xIb(x) (5)

where "X indicates that the XOR gate with one input taken
from the jth stage output of the LFSR is connected to the
feedback path, not between stages. Similarly, if f(x) + x" is
fully decomposable such that

f(x) = b(x) + xlb(x) + x" (6)

then a (hybrid) bottom-top LFSR [9] can be constructed
using the feedback connection notation

s(x) = b(x) + X" + x". (7)

Assume a maximum-length LFSR uses k 2-input XOR
gates to generate an m-sequence. It was shown in [9] that if
1 + f(x) or f(x) + x" for constructing a standard or
modular LFSR is fully decomposable, then a hybrid LFSR

can be realized with only (k+1)/2 XOR gates. Also, if a
top-bottom LFSR exists for f(x), then a bottom-top LFSR
will exist for its reciprocal polynomial r(x), and vice versa.

N

Lo-wlim mls]

Figure 5. A 5-stage top-bottom LFSR using s(x) =
1+M%+x"+x° to implement f(x) = 1+x°+xC+x"+x°.

e tealey i

Figure 6. A 5-stage bottom-top LFSR using s(x) =
1+x2+%+x to implement f(x) = 1+x+x+x+x°.

Fig. 5 shows an example 5-stage top-bottom LFSR. The
circuit implements the same f(x), 1 + x> + x> + x* + x°, as
that for Figs. 3 and 4. Since f(x) = 1 + (Z+x%) + x*(xX°+x%),
by Eq. 5, 5(x) = 1 + M+ X204+ = 1+ %+ X'+ x°. As
f(x) is a primitive polynomial, the top-bottom LFSR will
generate an m-sequence.

Fig. 6 shows a bottom-top LFSR that implements the
reciprocal polynomial, 1+x+x*+x>+x°, of the primitive
polynomial for Fig. 5. Since f(x) = (1+x%) + x(1+x) + x°,
by Eq. 7, 5(X) = (1+x) + %1+ X =1+ X+ X+ x°. As
a reciprocal polynomial of a primitive polynomial is a
primitive polynomial, the bottom-top LFSR will also
generate an m-sequence.

As can be seen, each circuit illustrated in Figs. 5 and 6
uses only two 2-input XOR gates, rather than three XOR
gates for Figs. 3 and 4. Assume k XOR gates are required
to implement a standard LFSR or a modular LFSR to
produce an m-sequence, where the integer k must be an
odd number. The hybrid LFSR design will require only
(k+1)/2 2-input XOR gates. Since the feedback path of the
hybrid LFSR will drive fewer fanout nodes than that of
the standard or modular LFSR, the hybrid design will
have better operating performance.

3. Ring Generator Designs

One common drawback of using the standard LFSR,
modular LFSR, and hybrid LFSR to generate
pseudorandom bit sequences is the long delay associated
with the feedback path. In the standard LFSR case, data at
the output of the rightmost flip-flop would need to pass
through k 2-input XOR gates to reach the leftmost flip-
flop. In the modular LFSR case, the rightmost flip-flop
would need to be strong enough to drive k+1 (fanout)
nodes. In the hybrid LFSR case, the rightmost flip-flop
would need to pass through one 2-input XOR gate before
or after driving (k+1)/2 fanout nodes. Combined with
their respective irregularity in design style, these types of
LFSR designs may have difficulty to meet frequency
requirement for high-performance applications.

3.1 Ring Generators and Hybrid Ring Generators

Consider the circuit given in Figs. 7-9. Each two
adjacent flip-flops contain at most one 2-input XOR gate
and each flip-flop output drives at most 2 fanout nodes.
The circuit is constructed in a ring structure so there is no
long feedback path connecting the rightmost flip-flop to
the leftmost flip-flop. A circuit in so constructed is
referred to as a ring generator [10] (see Fig. 7). Since the
XOR gates are placed on the top and bottom rows
simultaneously, a ring generator constructed with this
additional property is referred to as a hybrid ring
generator. Also, if the first XOR gate connecting to the
leftmost stages is placed on the top row, then the hybrid
ring generator is referred to as a (hybrid) top-bottom
ring generator (see Fig. 8). Similarly, if the first XOR
gate connecting to the leftmost stages is placed on the
bottom row, then the hybrid ring generator is referred to
as a (hybrid) bottom-top ring generator (see Fig. 9).

Figure 7. A 5-stage ring generator implementing
f(x) = 1+x°+x*+x° (not a primitive polynomial).

X2
Lo 1 }-3

Figure 8. A 5-stage top-bottom ring generator constructed
by s(x) = 1+*+x*+x° given in Fig. 5.

i U R

Figure 9. A 5-stage bottom-top ring generator constructed
by s(x) = 1+x%+x*+X° given in Fig. 6.

In more specific, a ring generator or a hybrid ring
generator constructed either in a top-bottom or bottom-top
form, exhibits the following properties:

1. Every output of a flip-flop in the design will drive at
most 2 fanout nodes.

2. There will be at most one 2-input XOR gate placed
between any two flip-flops, and thus each output signal of
any flip-flop will only have to propagate through at most
one 2-input XOR gate.

3. There will be no long feedback path, as the circuit is
implemented in a ring structure.

4. Its regular and modular structure will result in
simplified layout and routing, making the circuit timing
and layout friendly.

5. The numbers of 2-input XOR gates used in the ring
generator and the hybrid ring generator will be k and
(k+1)/2, respectively.

3.2 Transformed LFSRs

Consider the circuit given in Fig. 10 first. This circuit
was taken from FIG. 14 of [12] to illustrate a particular
situation where it is required to add an extra 2-input XOR
gate in a modular LFSR when a source tap crossing a
destination tap while moving to the left (SDL)
transformation is used to construct a transformed LFSR
(t-LFSR) and where the inserted extra gate can cancel an
available XOR gate, thereby reducing the number of XOR
gates in the circuit by one.

32\
Lo mhmleds .
@)
L’{OHl}i—‘Z”)|3 47}—J
347
(b)
36 40
Lq Hlsif;pl\qu‘m
@
30
(©
40
L>{0 1 Fel 2 r3}—{4:7
34
0’
(d)

Figure 10. An 8-stage transformed LFSR constructed using

the transformations given in [12] for f(x) = 1-+x*+x+x"+x°.

Fig. 10a shows a modular LFSR implementing f(x) = 1
+ X%+ x>+ x" + x5, First, an elementary shift left (EL)
transformation is applied 4 times to the feedback
connection represented by coefficient x’ (feedback
connection 30 with source tap 32 and destination gate 34).
This leads to the circuit shown in Fig. 10b. Next,
transformation SDL is applied to shift the feedback
connection 30 further to the left by one flip-flop and adds
a feedback connection line 36 at the input to the XOR
gate 34 as shown in Fig. 10c. Because another XOR gate
38 with the same connectivity already exists at the output
of flip-flop 1, the XOR gate 34 and connection 36 can be
discarded. This reduces the number of XOR gates in the

LFSR from 3 to 2. To reduce the load of flip-flop 2 that
drives XOR gates 40 and 34 in Fig. 10c, an additional
transformation EL is applied in Fig. 10d that shifts the
feedback connection 30 further to the left. As a result, the
transformed LFSR uses only 2 XOR gates and every flip-
flop output drives at most two fanout nodes.

4. Minimum-Cost LFSRs

Up to this point, we mainly survey LFSR-based designs
that implement primitive polynomials to illustrate the
importance of generating m-sequences for specific
applications. In reality, all these designs are applicable to
implement non-primitive polynomials.

One issue that remains to be answered is what the true
minimum hardware cost in each LFSR-based design is,
when it comes to the design of a hybrid LFSR, a hybrid
ring generator, or a transformed LFSR which uses fewer
than k 2-input XOR gates than its corresponding standard
LFSR, modular LFSR, or ring generator, regardless of
whether f(x) is a primitive polynomial or not. We will
answer the question in this section by giving a new class
of minimum-cost LFSRs (min-LFSRs) that uses only m
2-input XOR gates when k < 2™ — 1, or m+1 2-input XOR
gates when k < 2", and then give proofs that log,(k+1)
when k is an odd number or 1+log,k when k is an even
number is the minimum number of 2-input XOR gates in
constructing an LFSR-based design for k > 1.

4.1 The Designs when k = 2™ -1 or 2"

Consider the 12-stage modular LFSR given in Fig. 11a.
The circuit implements a non-primitive characteristic
polynomial f(x) = 1 + x>+ x® + x" +x® + x* + x0 + x! +
x? where k=7 =2"-1=2"-1.m= 3. A primitive
polynomial having a similar property is f(x) = 1 + x* + x*’
+ 5%+ 3+ X2+ + x¥ + x¥ which is the reciprocal
polynomial of a primitive polynomial of degree 68 listed
in [13].

Fig. 11b shows a first transformed LFSR after applying
transformations EL and SDL on the x** arc to Fig. 11a.
The combined {x**, x°} arcs cancelled the x° arc; the {x",
x®} arcs cancelled the x” arc; and the {x, x°} arcs
cancelled the x° arc. Fig. 11c shows a second transformed
LFSR after further applying transformations EL and SDL
on the x* arc to Fig. 11b. The combined {x'°, x*} arcs
cancelled the x® arc. As a result, the final transformed
LFSR shown in Fig. 11c contains only 3 arcs {x"*, x°, x®}
in the given order or uses only m = 3 2-input XOR gates.
This is in sharp contract to the modular LFSR given in
Fig. 11a which uses k = 7 2-input XOR gates. Also, all
arcs in {x**, x°, x®} have a distance of {12-11, 12-10, 12-
8} = {1, 2, 4} relative to the rightmost stage output (x*2),
respectively, and form a disjoint structure where no arc is
included in another arc and the destination taps of all arcs
point to the left.

Lo o -m bbb

XS X9 X10 Xll
y
o> 8 9 1 11

(@) A 12-stage modular LFSR with k =7.

»I4H5klj6|—>l7ﬁ'::lsl—>|9@

XlO
o 10 [11

MOHlHZW

(b) A 12-stage transformed LFSR from (a) with k = 7.

T [Lo (el
e

(c) A 12-stage min-LFSR transformed from (b) with k =7.

LﬁOHlemﬁwﬁsHexfg

H?Fﬁngl—%mHnl—;ﬁP

(d) A 12-stage dual min-LFSR of (c) withk=7.

oo 5 o o |10 |11 |

R Oy

(e) A 12-stage min-LFSR with k = 8.

Figure 11. 12-stage transformed LFSRs toward min-LFSRs.

Looking into this non-primitive polynomial f(x) further, 24 = X3
one may find 1 + f(x) is fully decomposable such that f(x) Z6 = X5
=1+ X°A)ABAAHX) =1+ +x + X+ + X+ 25 = X7 + Xy
x0 + x + x¥ The coefficients i’s of the 3 factored Z10 = Xo

polynomials of (1+x')’s satisfy the following conditions: 1
<2and (1 + 2) < 4. If the coefficient of the x° term (which

Z5 = X4 + Xg

Z7 = X (8)
Zg = Xg

211 = X10

The set of linear equations can be further described by:

. . LA Z=M*X 9
is 5) is greater than m, then the resultant circuit will be or ©)
more modular because no flip-flop outputs will drive
more than one XOR gate. The min-LFSR which is an 27 TO0000O0O0UOGOGO0GO 0 1]1x]
equivalent circuit of Fig. 11c is shown in Fig. 12. zO 100000000000 xO
1 1
z, 01 0000O0O0O0O0GO 0O]|]|x,
3|«H2|1)|;§?-E« Z, 00110000000 0]]x
x*0 z, 0001000MO0O0O0GO 0O O|]x,
i . z;| |[000010100000 x5(10)
4 O 5 |l 6 [7 K z,| 00000100000 O0||x
z, 0000O0O01O000O0O0O|]|x
Figure 12. A 12-stage min-LFSR when k = 7. 7 00000001000 1[]x
z 0000O0O0OO0OO1O00O0O0]||x
Let X = {Xo ... X1} and Z = {z; ... z11} represent the Zg 000000000100 Xg
circuit’s present state and next state, respectively. Linear 10 0000000000T1oD0 10
equations over GF(2) governing the operation of Fig. 12 L2u] L SRReH
b d as follows:
can eexpresse_as oTIows _ where matrix M is simply a companion matrix [6] whose
Zo=Xu 21=% characteristic polynomial f(x) is defined as the
Zy = X1 Z3=X2 + X3

determinant of M — Ix, or symbolically:

fx)=| M= Ix| (11)
Then, Eq. 11 can be rewritten as:

x 00 0O0OO O0OOO0OOTGO01
1 x 00000 O0O0OTOTP O
01 x 0 0O0OOOUO OO OO
0 0 11+x0 0 O 0 O 0 O O
0 001 x 00 0O0OTO0OTPWO
F(x) = 0 0001 x 1 0©O0O0O0TUO
0 00001 x 00 O0O0TO
0 000 0O0OO0O1 x 0O0O0TUO
0 000OO0OOT1 Xx 001
0 000 OO0OOOT1Xx o000
0 000OO0OOOTOTI1Xx O
0 000OOOOOTUOU O 1 x

Thisyields f(x) = 1 + x* +x® + x” + x® +x*+ x0 + x* +
x** which is the same f(x) as one used to construct the
modular LFSR shown in Fig. 11a. As can be seen, the
min-LFSR uses only 3 2-input XOR gates, however, its
design is not as modular as the hybrid designs shown in
Figs. 7-9.

A similar disjoint circuit structure exists in the primitive
polynomial, f(x) = 1 + X7+ x*" + x* + x* + x® + x> + x*
+ x%® with k = 23 — 1 = 7. Applying transformations EL
and SDL to the 68-stage modular LFSR that implements
f(x), the resultant transformed LFSR will contain 3 arcs
%, x*, x**} each having a distance of {68-60, 68-51, 68-
34} = {8, 17, 34} relative to the rightmost stage output
(x*®), respectively. This means 1 + f(x) is fully
decomposable such that f(x) = 1 + x’(1x%)(L+x")(1+x*).
The coefficients i’s of the 3 factored polynomials (1+x')’s
also satisfy the following conditions: 8 < 17 and (8 + 17)
< 34. Also, the coefficient of the x° term is greater than m
(which is 3) to make the circuit more modular.

The above examples mainly illustrate how a min-LFSR
is transformed from a corresponding modular LFSR. In
fact, the same results can be achieved when a standard
LFSR is used to implement the reciprocal polynomial r(x)
of f(x) when the chosen f(x) has resulted in a min-LFSR
through transformations starting with a modular LFSR. In
this case, the 12-stage standard LFSR with k = 7 shall
implement r(x) = 1+ x + x> + X3+ x* + x* + x® + x" + x*
= (1) (1) (1+x*) + x*. A corresponding min-LFSR is
shown in Fig. 11d with all transformed arcs now reversed
and pointed to the right (not left). The circuit shown in
Fig. 11d is referred to as a dual LFSR of that for Fig.
11c, and vice versa. The 68-stage standard LFSR shall
now implement r(x) = 1 + x®+ x* + x*® + x* + x*? + x*' +
X59 + X68 - (1+X8)(1+X17)(1+X34) + X68.

To further explore the transformation property of all
hybrid designs discussed above, consider the circuits
shown in Figs. 13a to 13d which are equivalent circuits of
the hybrid designs shown in Figs. 5, 6, 8, and 9,
respectively. One can see when k = 3 = 2 — 1, both {x*,
X’} arcs in each hybrid design also form a disjoint

(12)

structure. These hybrid designs have been shown to have
used a minimum of 2 2-input XOR gates according to
Theorem 1 given in [11] when k = 3. Figs. 13a and 13c
were obtained from their corresponding modular LFSRs,
while Figs. 13b and 13d were obtained from their
corresponding standard LFSRs. This leads to the
following lemma:

Lemma 1: Let k = 2™ — 1. Given f(x) that constructs an n-
stage standard or modular LFSR with k 2-input XOR
gates, if 1 + f(x) or f(x) + x" is fully decomposable such
that

f(x) = 1 + XL (1+x7)... (1+x"™) (13)
or

f(x) = (LY (1+x72).. (1™ + X" (14)

and there are exactly m polynomials of (1+x™), then a
minimum-cost LFSR (min-LFSR) that implements the
same f(x) as the standard or modular LFSR can be
constructed using m 2-input XOR gates, where a > 1,
by < by, (by + by) < bs, ..., (by + by + ...+ bpy) < by,
(by+ b+ ...+ by + by) <.

Proof: See previous discussion in this section. In
addition, ifa>min Eqg. 13 or (by+ by + ...+ by) < (n—m)
in Eq. 14 holds, then the structure of the min-LFSR will
be more modular. Because k = 2™ — 1, the min-LFSR will
use log,(k+1) 2-input XOR gates. 0

AREE CEE

(a) Equivalent top-bottom LFSR of Fig. 5

S g S g P g B P g

X x*

A >

(b) Equivalent bottom-top LFSR of Fig. 6

—Clpla-ah gL

(c) Equivalent top-bottom ring generator of Fig. 8

L N %4

Lﬁhﬂ%»lﬁ#lﬂ»ll—*

(d) Equivalent bottom-top ring generator of Fig. 9

Figure 13. Equivalent circuits of hybrid designs.

Now consider the case when k = 2™, Let f(x) = 1 + x +
A+ X+ + X+ XM+ xPwithk=2"=2%=8.
Because f(x) can be factored such that f(x) = (1+x) +
X°(1+x)(1+x°)(1+x%), the resultant transformed LFSR will

contain (m+1) = 4 arcs {*x, x**, x'%, x*}. The 3 arcs in
{x*, x'° x%} have a distance of {12-11, 12-10, 12-8} = {1,
2, 4} relative to the rightmost stage output (x*),
respectively. The ~x arc have a distance of 1 relative to
the leftmost stage input (xX°). The 4 arcs also form a
disjoint structure with the destination tap of the "x arc
pointing to the right, and the destination taps of the other
three arcs {x*, x'° x®} pointing to the left. The
transformed LFSR is shown in Fig. 1le. Its equivalent
circuit is shown in Fig. 14.

X
4 HH 5 |+ 6 7 §~>| 8 | o
Figure 14. A 12-stage min-LFSR when k = 8.

Similarly, a min-LFSR LFSR with k = 2™ can be also
used to implement the reciprocal polynomial r(x) of the
f(x) which has resulted in a min-LFSR through
transformations starting with a modular LFSR. In this
case, the 12-stage standard LFSR with k = 8 shall
implement r(x) = 1+ x + x> + X3+ x* + x* + x® + x" + x*
+ x2 = (1) 1+ (1+xY) + (M+x™). Its corresponding
min-LFSR (not shown) will be similar to Fig. 11e but
with all transformed arcs now reversed and pointed to the
right (not left). This leads to the following lemma:

Lemma 2: Let k = 2". Given f(x) that constructs an n-
stage standard or modular LFSR with k 2-input XOR
gates, if f(x) can be factored such that

f(X) = (1+xX°) + X3(LHXH (1 +x72)... (1+x°™) (15)
or
f(x) = (LY (1+x72). .. (1+XP™) + (X™C+x") (16)

and there are exactly m polynomials of (1+x™), then a
minimum-cost LFSR (min-LFSR) that implements the
same f(x) as the standard or modular LFSR can be
constructed using m+1 2-input XOR gates, where ¢ < a,
by < by, (by + by) < bs, ..., (by + by + ...+ byy) < by,
(by+by+ ...+ by) <n-c.

Proof: See previous discussion in this section. In
addition, if (a-c) > min Eg. 15 or ¢ < m in Eqg. 16 holds,
then the structure of the min-LFSR will become more

modular. Because k = 2", the min-LFSR will 1+log.k
2-input XOR gates. 0

Note that a min-LFSR in so constructed cannot generate
an m-sequence, because f(x) is a not primitive polynomial.
A primitive polynomial has an inherent property that k
must be always an odd number. That is, while both
lemmas are provided for construction of a min-LFSR that
will yield the lowest hardware cost, the characteristic
polynomial chosen to construct the min-LFSR does not
necessarily implement a primitive polynomial.

4.2 The Designs when k2" -1 or 2"

In case k # 2™~ 1 or 2™, a transformed LFSR can still
be in a disjoint structure. For example, let f(x) = 1 +
AR AHA)ADAC) =1+ +x+x +x3+ X7 +
X2+ M + x4+ x* + x'" with k = 9. The resultant 17-
stage min-LFSR is shown in Fig. 15a. The circuit contains
4 arcs {x*®, x'*, x'3, x'?} each having a distance of {1, 2, 4,
5} relative to the output of flip-flop 16, thereby causing
the min-LFSR to use 4 XOR gates. Transformations on
the t-LFSR are complex that involve creation of three
news arcs {x*?, x**, x*} by the x'® feedback tap, and
subsequent cancellation of the {x**, x'°} arcs by the x**
feedback tap. One major restriction on f(x) with k < 2™ -1
is that the highest coefficient of the x° term in (1+x°)
cannot be greater than the sum of the coefficients of all
other x' terms in (1+x')’s, i.e., 5 < (1+2+4). This will allow
creation and cancellation of new arcs. Fig. 15b further
illustrates how the 5 arcs in {*x, x'°, x*°, x**, x'*} form a
disjoint structure for a min-LFSR that implements fx) =1
+ X+ x5(1+x)(1+x)(1+x YA+®) =1+ x+ X0+ X8+ x +

X8+ %+ xB + xM + x4+ x4+ x!7 with k = 10.

Similarly, a min-LFSR LFSR can be also used to
implement the reciprocal polynomial r(x) of the f(x)
which has resulted in a min-LFSR through
transformations starting with a modular LFSR. In this
case, the 17-stage standard LFSR with k = 9 shall
implement r(x) = (1+)(1-6xA)(A+x)(1+°) + X = 1 + x +
X3+ X+ 8 + 5%+ X0 + XM+ x2 + xY, whereas the
17-stage standard LFSR with k = 10 shall implement r(x)
= (1) (A +A) A+ (LX) + (x16+x”) S1+x+x+ 3+
X'+ X8+ %7+ X0+ XM+ x2 + x! + X, This leads to the

following two lemmas:

uo leaﬁwlﬁt@*l Tﬁ ?47|"|10wn?412|"|16

(@) A 17-stage min-LFSR with k=9.

B~>|4l@9*| W }?47|“|10 nkTBX:IleI"IleH

(b) A 17-stage min-LFSR with k = 10.
Figure 15. 17-stage transformed LFSRs toward min-LFSRs.

Lemma 3: Let p = 2™ — 1. Let p be the smallest integer
greater than or equal to k, where k is an odd number.
Given f(x) that constructs an n-stage standard or modular
LFSR with k 2-input XOR gates, if 1 + f(x) or f(x) + x" is
fully decomposable such that

f(x) = 1 + XL (L+xP2)... (1+x°™) (17)
or
f(x) = (LY (X+x"2) .. (1™ + X" (18)

and there are exactly m polynomials of (1+x™), then a
minimum-cost LFSR (min-LFSR) that implements the
same f(x) as the standard or modular LFSR can be
constructed using m 2-input XOR gates, where a > 1, b; <
by, (by + by) < bz ..., (by + by + .4+ by2) < by,
(by+ b+ .4 bpg) > b, (01 + 0o+ ..+ by + by) <.
Proof: See previous discussion in this section. In
addition, ifa>min Eq. 17 or (by+ b, + ...+ by) < (n—m)
in Eqg. 18 holds, then the structure of the min-LFSR will
be more modular. 0

Lemma 4: Let p = 2™ Let p be the smallest integer
greater than or equal to k, where k is an even number.
Given f(x) that constructs an n-stage standard or modular
LFSR with k 2-input XOR gates, if f(x) can be factored
such that

f(X) = (14x°) + 331D (1 +x7)...(1+x"™) (19)
or
f() = (L)L) (10T + (X747 (20)

and there are exactly m polynomials of (1+x™), then a
minimum-cost LFSR (min-LFSR) that implements the
same f(x) as the standard or modular LFSR can be
constructed using m+1 2-input XOR gates, where ¢ < a,
by < by, (by + by) < bs, ..., (by + by + ...+ bpo) < by,
(by+bo+ ...+ byy) > by, (by+ b+ ...+ by) <n-c.

Proof: See previous discussion in this section. In
addition, if (a-c) > min Eqg. 19 or ¢ < m in Eqg. 20 holds,
then the structure of the min-LFSR will become more
modular. 0

Lemmas 3 and 4 imply that there exists a min-LFSR
that uses only log,(k+1) 2-input XOR gates when k is an
odd number, or 1+log,k when k is an even number. As an
example, Table 1 lists the number of 2-input XOR gates
used for k 1 through 16 in each LFSR-based design. The
table shows that if an odd number k results in an m value
in a min-LFSR, then an even number k+1 will produce an
m+1 value.

We now give proofs that any LFSR-based design
cannot use fewer than log,(k+1) 2-input XOR gates when
k is an odd number or 1+log,k 2-input XOR gates when k
is an even number.

Theorem 1: Let k be an odd number. Given f(x) that
constructs an n-stage standard or modular LFSR with k
2-input XOR gates, a transformed LFSR (t-LFSR) that

implements the same f(x) as the standard or modular
LFSR cannot use fewer than log,(k+1) 2-input XOR
gates.

Proof: We prove the theorem by satisfying the
necessary and sufficient conditions. By Lemmas 1 and 3,
we have shown that a t-LFSR using only log,(k+1) 2-
input XOR gates can be constructed to implement the
same f(x) as a standard or modular LFSR that uses k 2-
input XOR gates when k is an odd number. Hence, the
necessary condition is satisfied.

Table 1. Number of 2-Input XOR Gates for each (k, m)

Standard LFSR Ring Hybrid LFSR
Modular LFSR | Generator | Hybrid Ring Generator | min-LFSR
(k) (k) (k+1)/2 (m or m+1)
1 1 1 1
2 - - 2
3 3 2 2
4 - - 3
5 5 3 3
6 - - 4
7 7 4 3
8 - - 4
9 9 5 4
10 - 5
11 11 6 4
12 - 5
13 13 7 4
14 - 5
15 15 8 4
16 - 5

We now prove the sufficient condition by contradiction.
Assume the t-LFSR forms a disjoint structure that
contains m distinct transformed arcs. If any of the
transformed arc were cancelled by any combination of
two other arcs, the resultant t-LFSR would contain only
m-1 disjoint transformed arcs. By retransforming these m-
1 disjoint arcs in the t-LFSR back to a standard or
modular LFSR, the standard or modular LFSR would use
less than k (no more than 2™*-1) 2-input XOR gates. This
means the circuit would have implemented a different
f2(x). This contradicts the condition that the t-LFSR must
implement the same f(x) as the given standard or modular
LFSR. This concludes the proof. O

Theorem 2: Let k be an even number. Given f(x) that
constructs an n-stage standard or modular LFSR with k
2-input XOR gates, a transformed LFSR (t-LFSR) that
implements the same f(x) as the standard or modular
LFSR cannot use fewer than 1+log,k 2-input XOR gates.
Proof: Similar to Theorem 1, Lemmas 2 and 4 can be
used instead to conclude the proof. 0

5. Construction Method

To better understand how a min-LFSR can be designed
via visual inspection or by a construction method,
consider the 12-stage min-LFSR illustrated in Fig. 14 for
implementing f(x) = 1+ x +X* +x° + X" + X3 + X’ + x0 +
XM+ XM = (1) (10E) (1+xY) + (xM+x™) with k = 8 again.

The min-LFSR contains 4 arcs {"x, x*, x°, x{}. The 3 ¥
arcs in {x, x**, x*°, x%} are first renumbered to {*x, x*, X3,
x'} based on their relative distance to flip-flop 11. Fig. 16
is an isomorphic circuit of Fig. 14 by further renumbering
the flip-flops from 0 to 11 counterclockwise beginning
with the leftmost bottom flip-flop.

11 [+ 10 e o |¢9 3 |

0 |4

Figure 16. A 12-stage isomorphic min-LFSR with k = 8.

Assume the min-LFSR can be made more modular
when its f(x) satisfies one of the conditions given in Egs.
13-20. A visual inspection method to design such a min-
LFSR is now given below:

Step 1: Select a (primitive) polynomial of degree n as
the characteristic polynomial f(x) such that it can be result
in Eq. 13 or 17 when k is an odd number or Eq. 15 or 19
when k is an even number; Let the transformed taps in
each (1+x)) be {™, x™, x*2, ..., x""}.

Step 2: Place half (or one less) of the flip-flops on the
top row and the rest of the flip-flops on the bottom row
and then stitch them together to form a ring structure;

Step 3: Label the flip-flop numbers from 0 to n-1
counterclockwise, always beginning with the leftmost
bottom flip-flop;

Step 4: Create a feedback connection for tap x*™ on the
bottom row by encompassing b, adjacent flip-flops,
beginning with the rightmost ones;

Step 5: For tap ~x° when k = 2", create a feedback
connection that has a distance of ¢ and place one 2-input
XOR gate with the ~x°arc pointed against the x"" tap.

Step 6: for each of the remaining X' taps, create in
succession a feedback connection that has a distance of j
and place one additional 2-input XOR gate, where j < by,
starting with tap x"* first.

Step 7: Reverse the directions of all taps to create a
dual min-LFSR if the circuit implements a reciprocal
polynomial of f(x) or Eq. 14, 16, 18, or 20.

The positions of the source and destination taps of each
arc in the min-LFSR can also be calculated using the
following construction method:

Step 1: Let T; represent the distance of the ith tap to the
rightmost stage in a modular LFSR by {x°", ~x¢, x*, x*2,
x"’“‘l}, i >1; S; and D; indicate the locations of the
source and destination taps (as inputs to a 2-input XOR
gate) in the resultant min-LFSR, respectively; and L be
the number of flip-flops in a min-LFSR; calculate
locations of the source and destination taps according to

the following formulas:

Si=(Si1+ Ti+ 1) mod L (21)
D= (Si1+ 1) mod L. 22)

with an initial condition: So= (L-T,)/2-2.

Consider Fig. 16 again. L = 12. The circuit contains 4
arcs {"x, x, X%, x*}. These 4 arcs are first reordered to {x*,
X, X, X*} according to Step 1. The reason is because in so
doing, we will draw a vertical line (with a much shorter
wire length) for the x* arc that has the longest distance.
Also, we may be able to draw another vertical line for the
x* arc that has the second longest distance to further
reduce the overall wire length (as shown in Fig. 12).
These 4 arcs are now represented by a sequence T; =4, T,
=1, T3 =1, T, = 2. Thus, using the above formulas will
yield the following feedback connections: Sy = (12-4)/2 -
2=2;S;=(2+4+1) mod 12 = 7, D; = (2+1) mod 12 = 3;
S, = (7+1+1) mod 12 =9, D, = (7+1) mod 12 = 8; S3 =
(9+1+1) mod 12 = 11, D3 = (9+1) mod 12 = 10; S; =
(11+2+1) mod 12 = 2, D, = (11+1) mod 12 = 0. The 4
taps can be expressed as a list of pairs: (7,3), (9,8),
(11,10), (2,0).

Step 2: Reverse the direction of the tap to create the *x°
tap.

For example, since (S,, D,) represents the original ~x
taps, the above pair list now becomes (7,3), (8,9), (11,10),
(2,0). You may now verify the feedback connections in
Fig. 16.

Three sets of primitive polynomials each consisting of 5,
9, or 17 terms [a.k.a. weights, exponents, or coefficients]
of degree up to 800 that meet the fully decomposable
requirement given in Eq. 14 are listed in Appendices 1 to
3, respectively. These primitive polynomials were found
using modified NTL and Magma programs [14, 15].
Minimum-weight primitive polynomials with k = 1 or 3
can also be found in the Appendix [11].

We formulated the search according to the following
formulas:

Fork=3:
PO) = (L +X)(L+X) +x° (23)
wherel<a<b<n,(a+bh) <n.
Fork=7:
PO) = (L + XL +X)(L +x) + X" (24)

wherel<a<b<c<n,(a+b)<c,(a+b+c)<n.
For k = 15:
PO) = (L +x)(L+X)L+x)YL+x)+x" (25)

wherel<a<b<c<d<n;(@a+hbh)<c (a+b+c)<d,
(@+b+c+d)y<n.

We sped up the search by putting a constraint, a < n/2,
on variable a, because if a p(x) with a < n/2 does not exist,
then its reciprocal polynomial with a > n/2 will not exist.

It is interesting to note that such primitive polynomials
exist for every degree 5 through 800 when k = 3, every
degree 12 through 800 when k = 7, and every degree 19
through 800 when k = 15. Based on the construction
method, each polynomial listed in the Appendices can now
be used to construct a min-LFSR.

6. Comparative Analysis

Table 2 summarizes the design features of various
LFSR-based designs. The top-bottom (or bottom-top)
LFSR will have one level (or two levels) of XOR logic
because it is constructed to have only one 2-input XOR
gate connected to the feedback path according to Eq. 5 (or
Eg. 7). On the other hand, the feedback path in each top-
bottom or bottom-top LFSR will always drive (k+1)/2
fanout nodes due to the nature of the design. As to cellular
automaton (CA), in general, the total number of 2-input
XOR gates used in a CA design will be equal to 2n-2 for
providing better randomness [16].

Table 2. Features of LFSR-Based Designs

XOR Gates Levels of Logic| Fanout

Standard LFSR k logzk 2
Modular LFSR k 1 k+1
Top-Bottom LFSR (k+1)/2 1 (k+1)/2
Bottom-Top LFSR (k+1)/2 2 (k+1)/2
Cellular Automaton 2n-2 2 3
Ring Generator k 1 2
Hybrid Ring Generator (k+1)/2 1 2
Minimum-Cost LFSR log,(k + 1), odd k 1 2
Minimum-Cost LFSR 1 + log,k, even k 1 2

The authors showed in Theorem 1 [11] that given a
maximum-length standard or modular LFSR using k 2-
input XOR gates, a modified LFSR implementing the same
f(x) as the standard or modular LFSR can never use fewer
than (k+1)/2 XOR gates, when k = 1, 3, or 5. We found
the results are the same as Theorem 1 given here.
However, the combined Theorems 1 and 2 have provided
much broad proofs for k > 1.

7. Conclusion

This paper showed by examples and gave proofs that
given a standard or modular LFSR using k 2-input XOR
gates, a minimum-cost LFSR (min-LFSR) can be designed
to use a minimum number of log,(k+1) 2-input XOR gates
when k is an odd number or 1+log,k 2-input XOR gates
when k is an even number. These min-LFSRs exist only
when f(x) meets the fully decomposable requirement. The
min-LFSR that implements the chosen characteristic
polynomial, f(x), however, can be a non-primitive
polynomial. If a primitive polynomial of degree n with a
particular k does not exist to construct an n-stage min-

10

LFSR, one may consider using a min-LFSR with k = 2"-1
that use the same number of XOR gates as the unavailable
n-stage min-LFSR, because most likely primitive
polynomials with k = 2™-1 will exist for every degree up to
800, such as k =3, 7, and 15.

8. Acknowledgments

The authors sincerely express our gratitude to Professor
Samuel S. Wagstaff, Jr. in the Departments of Computer
Sciences and Mathematics at Purdue University for
providing the needed prime factors so we can use NTL for
computations to generate desired primitive polynomials
and check the results with those generated by Magma, or
vice versa. We also would like to thank Alice Yu of the
University of California at San Diego and Teresa Chang of
SynTest Technologies for drawing all figures. This
research was supported in part by the National Science
Foundation under Grant No. CCF-0916837.

References
[1]
[2]

W.W. Peterson and E.J. Weldon, Jr., Error-Correcting Codes, MIT
Press, Cambridge, Massachusetts, 1972.

M.L. Bushnell and V.D. Agrawal, Essentials of Electronic Testing
for Digital, Memory & Mixed-Signal VLSI Circuits, Springer, New
York, 2000.

L.-T. Wang, C.-W. Wu, and X. Wen, editors, VLSI Test Principles
and Architectures: Design for Testability, Morgan Kaufmann, San
Francisco, 2006.

N.A. Touba, “Survey of Test Vector Compression Techniques,”
IEEE Design & Test of Computers, pp. 294-303, July-Aug. 2006.
W. Trappe and L.C. Washington, Introduction to Cryptography
with Coding Theory, Second Edition, Prentice Hall, Upper Saddle
River, New Jersey, 2005.

S.W. Golomb, Shift Register Sequence, Aegean Park Press, Laguna
Hills, California, 1982.

C. Arvillias and D.G. Maritsas, “Toggle-Registers Generating in
Parallel k kth Decimations of m-sequences XP + X* + 1 Design
Tables,” IEEE Trans. on Computers, vol. C-28, no. 2, pp. 89-101,
Feb. 1979.

W.W. Warlick and J.E. Hershey, “High-Speed m-Sequence
Generators,” IEEE Trans. on Computers, vol. C-29, no. 5, pp. 398-
400, May 1980.

L.-T. Wang and E.J. McCluskey, “Hybrid Designs Generating
Maximum-Length Sequences,” IEEE Trans. on Computer-Aided
Design, vol. 7, no. 1, pp. 91-99, Jan. 1988.

N. Mukherjee, J. Rajski, G. Mrugalski, A. Pogiel, and J. Tyszer,
“Ring Generator: An Ultimate Linear Feedback Shift Register,”
IEEE Computer, pp. 64-71, June 2011.

L.-T. Wang, N.A. Touba, R.P. Brent, H. Wang, and H. Xu, “High-
Speed Hybrid Ring Generator Design Providing Maximum-Length
Sequences with Low Hardware Cost,” CERC Technical Report No.
UT-CERC-12-01, Computer Engineering Research Center,
University of Texas at Austin, Oct. 2011.

J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Method for
Synthesizing Linear Finite State Machines,” United States Patent
No. 6,353,842, March 5, 2002.

N. Mukherjee, A. Pogiel, J. Rajski, and J. Tyszer, “High-Speed On-
Chip Event Counters for Embedded Systems,” Proc. |IEEE Int.
Conf. on VLSI Design, pp. 275-280, 2009.

NTL: http://www.shoup.net/ntl/.

Magma: http://www.math.ufl.edu/help/magma/MAGMA .html.

G. Mrugalski, J. Rajski, and J. Tyszer, “Cellular Automata-Based
Test Pattern Generators with Phase Shifters,” IEEE Trans. on
Computer-Aided Design, vol. 19, no. 8, pp. 878-893, Aug. 2000.

3]

[4]
[5]

6]

[71

(8]

[°]

[20]

[11]

[12]

[13]

[14]
[15]
[16]

Appendix 1: 5-Weight Primitive Polynomials of Degree up to 800 over GF(2)

6310 7210
11510 12430

16 320 17210
211510 22610
26710 27710
31210 322710
36710 371020
41210 42 2210
46 201 0 47 410
511510 522410
56 2110 5736 10
611510 62 56 1 0
66 910 67910
71810 72 47 6 0
76 3510 77 3010
812710 823530
86 12 10 875210
918310 92 1210
96 47 2 0 97 3210
1016 10 102 76 1 0
106 510 107 63 2 O
1113910 112 43 2 0
116 70 1 0 117 18 2 0
121 47 1 0 122 59 1 0
126 36 1 0 127 47 1 0
131 47 10 132 2710
136 125 1 0 137 14 1 0
141 3110 142 84 1 0
146 59 1 0 147 37 1 0
151210 152 651 0
156 1151 0 157 26 1 0
161 1510 162 87 1 0
166 38 1 0 167 34 1 0
171 18 1 0 172 132 1 0
176 118 1 0 177 84 1 0
181 6 10 182 127 1 0
186 22 1 0 187 57 1 0
191810 192 27 1 0
196 65 1 0 197 6110
201 16 1 0 202 167 1 0
206 28 1 0 207 721 0
211 4510 212 2210
216 1951 0 217 111 0
2213410 2229110
226 57 1 0 227 4510
2311810 232 9910
236 68 1 0 237 2510
241 84 10 242 131 1 0
246 34 1 0 247 2110
251 227 1 0 252 160 1 0
256 99 1 0 257 44 1 0
261 63 10 262 96 1 0
266 6 1 0 267 85 1 0
271 5310 272 107 1 0
276 88 1 0 277 69 1 0
281 9410 282 157 1 0
286 129 1 0 287 76 1 0
291 105 2 0 292 114 1 0
296 3310 297 410
301 6510 302 50 1 0
306 225 1 0 307 115 2 0
3113010 312 305 3 0
316 99 1 0 317 951 0
3211310 3222120
326 89 10 327 9410
33132310 3321210
336 211 10 337 1321 0
341 2310 342 8410
346 179 1 0 347 337 1 0
351 13210 3527510
356 4810 3576910
361 4410 362 26 1 0
366 24 1 0 367 1110
3711510 372 1951 0
376 141 1 0 377 171 0
381 183 2 0 382 174 1 0
386 85 1 0 387 67 10
3912110 392 34510
396 23110 397 66 1 0

85
13
18
23
28
33
38

10

[
P weR
fiN
coo
o

S
coo

[y
oo

BORPNOONNAN®
o~

PR
oo

[eNeoNoNoNoNa]

11310
99 10
30110
2210
68 10
96 10
1001 0

93
14
19
24
29
34
39

5210
10 3
15 6
20 1
25210
301510
35710

340 92

345 15

350 1201 0
355510
360 2510
3657110
370 3151 0
375710
380 17 1 0
385 6510
390 151 1 0
395 269 1 0
400 117 1 0

Note: “124 30" means p(x) = (1 + X)L +xH +x2 =1+ + x* + X" + x*2

11

Appendix 1: 5-Weight Primitive Polynomials of Degree up to 800 over GF(2) — Cont’d

351 3
289 1
321 1
134 1
566 3
210
66 1 0
20010
207 10
5110
3110
2210
227 10

402
407
412
417
422
427
432
437
442

767
772
77
782
787
792
797

339 2 0
1171 0
21910
3010
8210
10510
34550
3710
520
2510
3410
7510

[eNeoNoNoNoloNa]

403
408
413
418
423
428
433
438
443
448

763
768
773
778
783
788
793
798

149 1 0
38110
28110
17 1
54 1
50 1
1
1
1

404
409
414
419
424
429
434
439

764
769
774
779
784
789
794
799

1211 0
249 1 0
4510
163 3 0
6510
4111 0
163 1 0
99 10
5410
7810
3510
189 1 0

405
410
415
420
425
430
435
440

765
770
775
780
785
790
795
800

337 30
1551 0
8010
1301 0
198 1 0
3810
30110
310

Note: “800 245 3 0” means p(x) = (1 + X3)(1 + x**) + x¥%0 = 1 + X3 + x*® + x*& + X80

12

Appendix 2: 9-Weight Primitive Polynomials of Degree up to 800 over GF(2)

NN WN W
PRRPRPR
cococoo

[@JENIN
NN N
PR PR
e
coo

oo

o
)
JOOENNTOEONNOENGO

N W
w
=
o

[eNeNoNoNeole)

206 102 2 1 0
211 141 21 0
216 49
221 75
226 81
231 20
236 72
241 21
246 15521 0

NN NN W
PRRRRR
ococococoo

N
a
=
al
J
w
[
o

NN N NN
PRRRRR
cocococoo

371257 210
376 75210
381179210
386 20210
39121210
396 54 210

12
17
22
27
32
37

367
372
377
382
387
392
397

NN A
RPRPRPR
cocoo

ISESES
NN W
[
ocoo

210

gk oo
WNNN
[RN
coooo

210

0~
NN
S
oo

210

EPENONRPRORRPEPPORPRRPRPOOOOO®

NN
[
oo

5

N
[E
o

N~
ww
NN
e
PR
oo
oo

210

NN RN ©
NNNN
PRPRPPR
cocoo

Koo
o w
NN
N R
PR
EXe)
oo
o

210

NS PO
WNN
PR
coo

NRPOUORPRPOODANDRERPONNWRERARRENNNO®OO®O
N O

13
18
23
28
33
38

343
348
353
358
363
368
373
378
383
388
393
398

RPRRRPR
[ejoloNeooNe)

141 210
35210
135210
57
15
18
24

NMNNNNNNNN
RPRRPRRRRRR
[ejeololeoolojoNe]

14
19
24
29
34
39

RPOOOR
NNNNN
RRPRRE
ococooo

RPRRPRRRPRRRRRRRERO
[ejeojojoojojoloojooe)

w

[&)]
NWNWWWN
RPRRRRRR
[ejeoloNoNoNoNa]

127 210
95210
7310

25

B
ooo

102 210

10
15
20
25
30
35
40
45
50

N
w
NNWNWNNNNN
RRRPRRRERRRER
0O0O0OO0O0OO0OO0O0OO

o

P
NMNONNNNN R
RPRRPRRRRRO
[eNeololojoNoNa]

A
2

NMRONNNNWNNN

0O000000O0O0O0O

[oe]

N
NWNWNWNN
RPRRRRRRR
[eNeoNoRooNoNoNe]

98
208210
36
35
70
10
106
247
38 2
50 2
10 2
39 2

2

2

2

WNNN
N W

RPRPRR
e

[eNeoloNe]
oo

33

70

Note: “126410” means p(x) = (1 +X)(1 + XA +xO) +x2 =1+ x + x* +x* + X0+ x” + x¥0 + x™ + x*2.

13

Appendix 2: 9-Weight Primitive Polynomials of Degree up to 800 over GF(2) — Cont’d

761
766
771
776
781
786
791
796

Note: “800 201 3 1 0” means p(x) = (1 +X)(1 + X)L + X +x*P = L+ x + x* + X" + X*% + X% + 2 + x*°

30210

[cNeoNe)

ooooo

402
407
412
417
422
427
432
437
442

767
772
77
782
787
792
797

182210

39

403
408
413
418
423
428
433
438
443
448

763
768
773
778
783
788
793
798

297 210

186 210
31210
119210

14

404
409
414
419
424
429
434
439

764
769
774
779
784
789
794
799

405
410
415
420
425
430
435
440

765
770
775
780
785
790
795
800

198

RPRRRRERR
oOoocoooo

24210

205 2
428 2
445 2
533 2
201 3

10
10
10
10
10
5

+ XBOO.

Appendix 3: 17-Weight Primitive Polynomials of Degree up to 800 over GF(2)

21
26
31
36
41
46
51
56
61

94210
15
11
15
26
23
32
18
32

aboabrpdrbdbbdbooapbrpdbdba
NRNNNNNNNONNNNDNNNN
RRRPRRRPRRRERRRRERRER
0O0O0000DO0O0O0OO0O0OO0O0O

&
I

AR BPMDMDMDdMDIDA

NRNNNNNNN

PRRRRRPRPR

ococoocococooo

1094210
27
84210
84
20
94210
65
63
63
58
23
80
21
41
1894210
47
95
68
43
17
21

IN
N
N
o

FEEN
NN
PR
oo

ARG
NRNNRNNNNN
PRRPRRRRRR
ococooococooo

ADMDAMIMDMDO
NN NNNN
RPRRRRRR
cococococoo

1784210

22
27
32
37
42
47
52
57
62

367
372
377
382
387
392
397

94210
18

15
94210
21
14
21
28
30
45
41
94210

NN |
NN
S
oo

aproapbhabbd
NNNNNNN
RRRRRRER
Oooooo0oo

NNEN

DR RPRPONNUOOREPAIDENORPNWREROOOUOR
DOFRPNOUIOORRFRAOOGOOOOV

b
NN

A DDS
NNNN
RRR R
coooo

ONNoO®
roouu
NNNNN
RPRRRR
cococoo

4210

NNNNN
PRRPRPR
cococoo

14210

ArhOAD ArhOAD

~N ©
~N b
NNNNN
NN
PRRRPPR
e
cococoo
oo

PR
oo

21

NN NN
PR
cocoo

N
(o))
=
o M

354210

23
28
33
38
43
48
53
58
63

144210
94210
12 4
10 4
19 5
27 4
22 4
4
4

RPRRPRRRERR
oOoooooo

[cNeoloNoNoNa)

NN
e
oo

[eNeNoNoNoloNoNoNoNoNe]

1145210

19
24
29
34
39
44
49
54
59
64

354
359
364
369
374
379
384
389
394
399

94210

NNN R
NP BRWO
A D
NNNNN
RRRRRE
ooocoo

©
IN
N
=
o

W
w o

[
(4]
A AMDAO_LMO

39

NRNNNNDNNNNN
RRRPRRRERRRER
0O0O0O0OO0OO0OO0O0O0OO

~
J
AAPAAMDMDMDIMIAMMNOMOR_OD
NMNOMNRNNNNNNNNNNNN
RPRRPRRRPRRRRRRRR
[ejeolojoolojoloojoooloNe]

15
145 42 10
15
87
54
52
48
36
21
1194210
695210
2034210
83 4
52 4
69 4
159 4 210
18 4 1
67 4 1
9 4
123
49 5
60 4
33 4
14 4
4
4
5

ARG
NNNNNNN
RPRRRRRR
[ejeoloNojoloNa]

NNN

1
1
1

oo

NN
oo

210
5210

68

NNMNNMNNNNN
[elelejojoNoNo)

144210
314210

20
25
30
35
40
45
50
55
60
65

355
360
365
370
375
380
385
390
395
400

Note: “20 10 6 2 1 0” means p(x) = (1 + x)(1 + x3)(L + x%)(1 + x1°) + x*.

15

106210
144210
94210

10
18
31
15
45

~O

ar~AMDMDMNODMAODN
NRNNNNNNNN
RRRPRRRRRER
O0O0OO0OO0OO0OO0O0O

=
o
[o20N42 e RR - g

[eNeloNoNoNelooNoNoNeooNoNoNeoNe o)

Appendix 3: 17-Weight Primitive Polynomials of Degree up to 800 over GF(2) — Cont’d

914210
315
229
381
237
138
268
138
48 4210
409 4210

AMADMDPDODD
NNMNNNNN
RPRRPRRRRR
oOoooooo0o

oooo

oo

165

[
oo

[eNeoNoNoNoNoNa)

Note: “800 512 6

402
407
412
417
422
427
432
437
442

767
772
77
782
787
792
797

N

o)

51
AMAPMDdDOOOSMD
NMNONNNNNNNN
RPRRPRRERRRER
Ooo0oO0OO0OO0OO0OOO

96 4210

N
i

5]

NG|
NN
R
oo

196210

RPRRRE
cooocoo

206
141
600
423
126
160
385
177
737
415

(6206 ¢ I SNEN S S S AN N)]
N O NNNNNNNNNN
RPRRPRRRERRRRERR
O0OO0O0OO0OO0O0O0O0O

403
408
413
418
423
428
433
438
443
448
453

463

763
768
773
778
783
788
793
798

7654210

16

404
409
414
419
424
429
434
439
444
449
454
459
464
469
474
479
484
489
494
499
504
509
514
519
524
529
534
539
544
549
554
559
564
569

764
769
774
779
784
789
794
799

384210
15
14

04210
14210
3015210
5210

634210
441
190
143
293
161
215
570
355

ArDhDMOASMPMDD
NRNNNNNNN
RRRPRRRRERR

724210

405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580

765
770
775
780
785
790
795
800

10” means p(x) = (1 + x)(1 + x2)(1 + x°)(1 + x**) + X,

438
736
84 4210

N
-
~
NG RO NG NG INNEN
NMNNNNNN
RPRRRRERR
oOooocoooo0o

