= DRESDEN UNIVERSITY OF TECHNOLOGY

INSTITUTE FOR FLUID MECHANICS

LASPack Reference Manuall?

(version 1.12.2)

Tomas Skalicky

August 13, 1995

!The development of LASPack was supported in part by the German Bundesministerium fiir Forschung
und Technologie under contract number 0329016D.

2A HTML version of the manual is available at http://www.tu-dresden.de/mwism/skalicky-
/laspack/laspack.html.

Author’s address:

Tomas Skalicky

Dresden University of Technology

Institute for Fluid Mechanics

Mommsenstrafie 13

D-01062 Dresden

Germany

e-mail: skalicky@msmfsl.mw.tu-dresden.de
http://www.tu-dresden.de/mwism /skalicky /home.html

i

Contents

1 Introduction 1
2 What’s New 2
2.1 Changes in Version 1.12 o 2
2.2 Changes in Version 1.11 o o 2
2.3 Changes in Version 1.10 L L oo 3
3 Downloading 3
4 Installation 4
5 Optimizing and Example Programs 5
5.1 Program lastest 6
5.2 Program vectopt 6
5.3 Program matropt 7
5.4 Program mlstest 8
6 Copyright 8
7 Acknowledgement 9
8 Manual Pages, Index 11

1 Introduction

LASPack is a package for solving large sparse systems of linear equations like those which
arise from discretization of partial differential equations.

Main features:

e The primary aim of LASPack is the implementation of efficient iterative methods
for the solution of systems of linear equations. All routines and data structures are
optimized for effective usage of resources especially with regard to large sparse ma-
trices. The package can be accessed from an application through a straightforward
interface defined in the form of procedure calls.

e Beside the obligatory Jacobi, succesive over-relaxation, Chebyshev, and conjugate
gradient solvers, LASPack contains selected state-of-the-art algorithms which are
commonly used for large sparse systems:

1

2.1

2.2

— CG-like methods for non-symmetric systems: CGN, GMRES, BiCG, QMR,
CGS, and BiCGStab,

— multilevel methods such as multigrid and conjugate gradient method precon-
ditioned by multigrid and BPX preconditioners.

All above solvers are applicable not only to the positive definite or non-symmetric
matrices, but are also adopted for singular systems (e.g. arising from discretization
of Neumann boundary value problems).

The implementation is based on an object-oriented approach (although it has been
programmed in C). Vectors and matrices are defined as new data types in connection
with the corresponding supporting routines. The basic operations are implemented
so that they allow the programming of linear algebra algorithms in a natural way.

LASPack is extensible in a simple manner. An access to the internal representation
of vectors and matrices is not necessary and is, as required of the object-oriented
programming, avoided. This allows an improvement of algorithms or a modification
of data structures with no adjustment of application programs using the package.

LASPack is written in ANSI C and is thus largely portable.

What’s New

Changes in Version 1.12

Fixed some bugs.

Thoroughly tested all solvers in module ITERSOLV for symmetric systems (by
Marc Niemann).

Generated the HT'ML version of the manual.

Changes in Version 1.11

Fixed some bugs.

Changed the parameter lists of solvers in modules ITERSOLV and MLSOLV as
well as of preconditions in modules PRECOND.

Extended the structure of the type QMatrix for storage of null space information
for singular matrices.

Adopted the iterative solvers to systems of equations with a singular matrix.
Corrected the implementation of the Chebyshev method.
Extended the estimation of eigenvalues to preconditioned matrices.

Revised the LASPack error handling.

e Introduced the symbolic names for variables of the types Vector, Matrix, and
QMatrix.

e Thoroughly revised the manual.

2.3 Changes in Version 1.10

e Fixed some bugs.

e Implemented the BPX Preconditioned Conjugate Gradient method. Renamed the
module MGSOLV and the program mgtest in MLSOLV and mlstest, respecti-
vely, because of their true multilevel character.

e Improved the estimation of extremal eigenvalues by the Lanczos method.

o Accelerated the iterative solvers for zero initial solution (which arises often within
the multigrid algorithm).

e Changed the defaults for accuracy in modules RTC and EIGENVAL to 107® and
107, respectively.

e Extended the structure of type QMatrix, e.g. by reciprocal values of diagonal ele-
ments which are needed in classical solvers (Jacobi, SOR method) are stored as
auxiliary variables.

e Implemented the procedure V_SetRndCmp in module VECTOR which initializes
vector components by random values.

e Modified the stopping criterion for GMRES.

e Changed the names of some procedures and variables.

3 Downloading

The source code and the documentation of LASPack is available in World Wide Web at
the following URLs:

e the distribution file

http://www.tu-dresden.de/mwism/skalicky/laspack-1.12.2.tar.Z
ftp://netlib.att.com/netlib/linalg/laspack-1.12.2.tar.Z

or at other netlib sites:

— netlib.att.com (Murray Hill, NJ, USA)
— ftp.netlib.org (Oak Ridge, TN, USA)
— netlib.no (Oslo, Norway)

— unix.hensa.ac.uk (Lancaster, UK)

— elib.zib-berlin.de (Berlin, Germany)

3

— nche.edu. tw (Taiwan)

— ftp.cs.uow.edu.au (Wollongong, Australia)
e this manual as HTML document
http://www.tu-dresden.de/mwism/skalicky/laspack/laspack.html
e the postscript version of the manual

http://www.tu-dresden.de/mwism/skalicky/laspackl.ps.Z
http://www.tu-dresden.de/mwism/skalicky/laspack2.ps.Z

You may also contact the author at

Dresden University of Technology
Institute for Fluid Mechanics
Mommsenstrafie 13

D-01062 Dresden

Germany

or by e-mail under skalickyOmsmfsi.mw.tu-dresden.de.

4 Installation

In order to simplify the description of the installation procedure, we assume that you
are working on a UNIX system and have already copied the LASPack distribution file
laspack-1.12.2.tar.Z.

The complete installation consists of following five steps:

1. Move the file laspack-1.12.2.tar.Z to the directory that will become the top-level
directory for the source files.

2. Uncompress and untar the file:

uncompress laspack-1.12.2.tar.Z
tar xvf laspack-1.12.2.tar

This should create the entire distribution tree.

3. Make sure that you have appropriate set the following variables of your UNIX en-
vironment (for compilation of the source files an ANSI C compiler is needed):

HOME home directory
cc name of the C compiler
CFLAGS compiler options

LDFLAGS linker options

4. There are two possibilities for installing the package:

4

User’s installation: This should be carried out if you want to install LASPack in
your home directory so that it is available only to you.

At this stage, you could use the environment variable ARCH_EXT in order to in-
stall the library and the test programs in different subdirectories depending on
computer architecture. It may be advantageous, if you share your home direc-
tory across a heterogeneous computer network, for the management of several
versions of binaries. In this case, set the variable ARCH_EXT to an appropriate
value (e.g. /sunos on Sun workstations, /hp-ux on HP workstations, etc.) and
make sure that the directory $HOME/bin$ARCH EXT is contained in your PATH
variable.

Run the installation script:
./install

This will generate the library 1iblaspack.a (and the library 1ibxc.a which is
no a part of LASPack but required by some test programs) and install it in the
directory $HOME/1ib$ARCH EXT. Furthermore, it will build the test programs
and install them in the directory $HOME/1ib$ARCH EXT.

Local installation: This will install LASPack library and corresponding header
files in the directory /usr/local/1ib and the test programs in the directory
/usr/local/bin which are usually used for such kind of software. To do this
you need permission to write in these directories.

The installation script should be started with an additional parameter:

./install local

5. Finally, running the installation script, the LASPack library created is automatically
checked. By means of the program mlstest described in section 5.4, all combina-
tions of multilevel solvers, plain iterative procedures, and preconditioners available
in LASPack are tested on a two-dimensional Poisson problem. If all goes well, you
get the message:

LASPack tested successfully.

Therewith LASPack installation is completed.

In order to run test programs in a C shell, do not forget to renew the hash tables
by the command:

rehash

LASPack as well as the installation script was successtully tested on several machines:
Sun Sparch, HP 9000/735, IBM RS/6000 550, DEC 3000/800 M, SGI IRIS Indigo and
PC 486 (running Linux). Nevertheless, if the installation fails, please contact the author.
5 Optimizing and Example Programs

In this section, the programs lastest, vectopt, matropt, and msltest are described.

5

The first three programs have been developed in order to test and optimize selected
operations in the LASPack library. Their syntax

lastest [-d<dim>] [-c<cycles>] [-h]
vectopt [-d<dim>] [-c<cycles>] [-h]
matropt [-d<dim>] [-c<cycles>] [-h]

and options

-d set vector and matrix dimensions to <dim>, default is 10000
-c set number of cycles to <cycles>, default is 10
-h print the help

are the same. The dimensions as well as the number of cycles should be chosen high
enough in order to avoid undesired caching effects and inaccuracy of time determination.

5.1 Program lastest

The program lastest shown efficiency of basic operations implemented in LASPack. The
output contains the following data:

Results: (for dimension 100000, cycles 100)
with LASPack in-line code efficiency description
1 --- --- --- vector constr. & destr.
2 0.00900 s -—= -—= vector generation
3 0.06316 s --- --- matrix constr. & destr.
4 1.32628 s -—- -—- matrix generation
5 0.02283 s 0.02283 s 100.00 % a=">b
6 0.04033 s 0.03850 s 95.45 7, a=Db+c
7 0.02283 s 0.02283 s 100.00 % a=s*b
8 0.04316 s 0.04333 s 100.39 % s =b *c
9 0.26699 s 0.27116 s 101.56 % a=L=x*b
10 0.03000 s 0.02983 s 99.44 7, a=a+hb
11 0.01933 s 0.01967 s 101.72 % a=s*a
12 0.04250 s 0.04183 s 98.43 a=b+s *c
13 0.03267 s 0.03300 s 101.02 % a=a+s *b

Here s is a scalar, a, b, ¢ are vectors, and L is a matrix. The in-line routines are in
comparison with LASPack simplified and can be therefore a little faster.

5.2 Program vectopt

The program vectopt could be applied to check efficiency of several implementations of
the vector operation:

<Vector 1> += <Vector 2>.

It produces results like these:

Results: (for dimension 1000000, cycles 100)
implementation CPU time
LASPack 2.518e-01 s = 100.0 %
1 3.548e-01 s = 140.9 Y%,
2 3.196e-01 s = 126.9 %
3 2.481e-01 s = 98.5 Y%
4 2.392e-01 s = 95.0 %
5 2.395e-01 s = 95.1 Y%

For details to the implementations look at the file laspack/examples/vectopt/test-
proc.c. The current LASPack version corresponds to the implementation 2 and 3 depen-
ding on the computer architecture, respectively. They are, in comparison with LASPack,
simplified and can be therefore a little faster.

5.3 Program matropt

This program matropt could be used to check efficiency of several implementations of the
matrix by vector product:

<Vector 2> = <Matrix> <Vector 1>.

The results may shown as follows:

Results: (for dimension 100000, cycles 100)
implementation CPU time
LASPack 1.967e-01 s = 100.0 %
1 2.836e-01 s 144 .2 %
2 2.326e-01 s = 118.3 Y%
3 1.928e-01 s = 98.0 %
4 2.005e-01 s = 101.9 %

For details to the implementations look at the file laspack/examples/matropt/test-
proc.c. The current LASPack version corresponds to the implementation 3. This is, in
comparison with LASPack, simplified and can be therefore a little faster.

7

5.4 Program mlstest

The program mlstest is an extensive example code demonstrating possibilities of usage
of LASPack routines. It solves a Poisson problem

—ANu=1

in a 1D or 2D unit domain by a specified multilevel solver.

All input parameters have to be set interactively. The output contains the convergence
history as well as the determined middle convergence rates.

For example, a three-grid solution by means of the V-cycle multigrid method with the
Gauss-Seidel smoothing (two pre-smoothing and one post-smoothing iteration) and the
ILU preconditioned CG method on the coarsest grid (20 iterations) yields for a 65 x 65
grid on the finest level:

0. iteration ... accuracy 1.0000e+00
1. iteration ... accuracy 4.3033e-02
2. iteration ... accuracy 3.3534e-03
3. iteration ... accuracy 2.8452e-04
4. iteration ... accuracy 2.4934e-05
5. iteration ... accuracy 2.2565e-06
6. iteration ... accuracy 2.0996e-07
7. lteration ... accuracy 1.9860e-08
8. 1teration ... accuracy 7.6893e-09
CPU time: 0.67 s
Middle contraction rate

referred to one iteration: 9.677e-02
referred to 1 s CPU time: 7.751e-13

The input data corresponds in this case to: 2, 3, 64, 1, n, 1, 2,2,2,1,0, 1.0, 6, 20, 3,
1.0, 100, 1e-8.

6 Copyright

Copyright (C) 1992-1995 Tomas Skalicky. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

8

3. All modifications to the source code must be clearly marked as such. Binary redistri-
butions based on modified source code must be clearly marked as modified versions
in the documentation and/or other materials provided with the distribution.

4. No fees may be charged for distribution of the codes, other than a fee to cover the
cost of the media and a reasonable handling fee.

5. This code, and any derivative of this code, may not be used in a commercial package
without the prior explicit written permission of the author.

This code is provided "as is”, without any warranty of any kind, either expressed or
implied, including but not limited to, any implied warranty of merchantibility or fitness
for any purpose. In no event will the author or any party who distributed the code be
liable for damages or for any claim(s) by any other party, including but not limited to,
any lost profits, lost data or data rendered inaccurate, losses sustained by third parties, or
any other special, incidental or consequential damages arising out of the use or inability
to use the program, even if the possibility of such damages has been advised against.
The entire risk as to the quality, the performance, and the fitness of the program for any
particular purpose lies with the party using the code.

ANY USE OF THIS CODE CONSTITUTES ACCEPTANCE
OF THE TERMS OF THE COPYRIGHT NOTICE

7 Acknowledgement

The author would like to thank Markus Rosler, who encouraged the development of this
package and was the first one to use it. He also wishes to acknowledge Andreas Auge, Tho-
mas Biesinger and Daniel Spirn for many helpful discussions concerning implementation
details and suggestions for improvement to this manual.

10

8 Manual Pages, Index

11

