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Abstract— In this paper, we present BoxRouter 2.0, a hybrid
and robust global router with discussion on its architecture and
implementation. As high performance VLSI design becomes more
interconnect-dominant, efficient congestion elimination in global
routing is in greater demand. Hence, we propose BoxRouter 2.0
which has strong ability to improve routability and minimize
the number of vias with blockages, while minimizing wirelength.
BoxRouter 2.0 is improved over [1], but can perform multi-layer
routing with 2D global routing and layer assignment. Our 2D
global routing is equipped with two ideas: robust negotiation-
based A* search for routing stability, and topology-aware wire
ripup for flexibility. After 2D global routing, 2D-to-3D mapping
is done by the layer assignment which is powered by progressive
via/blockage-aware integer linear programming. Experimental
results show that BoxRouter 2.0 has better routability with
comparable wirelength than other routers on ISPD07 benchmark,
and it can complete (no overflow) ISPD98 benchmark for the first
time in the literature with the shortest wirelength.

I. I NTRODUCTION

While ever-decreasing feature size enables the integration
of millions of gates on a chip, interconnect delay becomes
the dominant factor in VLSI performance [2]–[5]. Thus, every
stage of design process targets for minimal wirelength to
enhance circuit delay. Especially placement, a major step
in physical design, generally minimizes wirelength by plac-
ing gates more compactly. In addition, more functionalities
in complex design (i.e., system-on-chip) also demand more
gates in a limited die, consequently increasing design density.
Such design trends degrade routability by leaving the design
with limiting routing area and thus make wiring gates more
challenging. Therefore, routability should be one of the most
critical design objectives in VLSI physical design [6]–[8].

Routability can be enhanced in multiple stages in physical
design [9]–[11], but routing is the most effective stage, as
it plans wire distribution and embeds wires under design
rules with the accurate pin and blockage information in hand.
Routing consists of two steps, global routing and detailed
routing. Global routing plans an approximate path for each net,
while detailed routing finalizes the exact DRC-compatible pin-
to-pin connections. As detailed routing cannot capture overall
congestion due to fine routing grid size and many design
rules, global routing should eliminate congestion by migrating
wires from more to less congested regions with the minimized
overhead in wirelength and via.

This work is supported in part by SRC, IBM Faculty Award, Fujitsu, Sun, and
equipment donations from Intel.

The significance of routability in VLSI global routing has
led to many global routing algorithms. Burstein et al. [12]
proposed a hierarchical approach to speed up integer pro-
gramming formulation for global routing, and Kastner [13]
proposed a pattern-based global routing. Hadsell et al. [14]
presented theChi dispersion router based on linear cost
function as well as predicted congestion map, and showed bet-
ter results than [13]. The multicommodity flow-based global
router by Albrecht [15] showed good results and was used
in industry, but at the expense of computational effort. After
BoxRouter [1] sparked the renewed interest in routing research
with significantly improved performance, FastRoute [16], [17]
and DpRouter [18] achieved high quality solution in small
runtime. However, most of the academic global routers work
in 2D (with two layers) to handle a larger circuit with
less computing power and smaller memory, and lack of the
important layer assignment.

Layer assignment plays critical role for routability, timing,
crosstalk, and manufacturability/yield. If excessive number of
wires are assigned to a particular layer, it will aggravate con-
gestion and crosstalk [19], [20]. If global timing criticalnets
are assigned to lower layers, it will make timing worse due to
narrower wire width/spacing. Biased wire density distribution
between layers can cause large topography variation as well
as pooling effect after CMP [21]. Length of antenna can be
also reduced by layer assignment [22]. Large number of vias
due to poor layer assignment can cause routability/pin access
problem, as via (even extended via) needs larger area as wellas
wider spacing than wire. Especially, via minimization becomes
more important for nanometer design, as via failure is one of
critical manufacturability issues [23], [24].

Recent global routing contest in ISPD-2007 [25] attracted
17 teams from both academia and industry, reflecting the
renaissance of routing. It provided 16 industrial benchmarks
(8 for 2D and another 8 for 3D) to emphasize the importance
of routability in global routing and the necessity of via
minimization in layer assignment.

In this work, we present BoxRouter 2.0 which consists
two steps, 2D global routing and layer assignment. 2D global
routing boasts strong routability based on two techniques,
namely robust negotiation-based A* search and topology-
aware wire ripup. Meanwhile, layer assignment is enabled
by novel and efficient progressive via/blockage-aware integer
linear programming (ILP). The major contributions of this
paper include the following:



• We propose simple, yet essential dynamic scaling for
robust negotiation-based A* search. This prevents a
router from spinning out of control by balancing historic
cost and present congestion cost, and ensures consistent
routability improvement over iterations.

• Instead of ripping up the entire net crossing the congested
regions, we perform topology-aware wire ripup which
rips up some wires in the congested regions without
changing the net topology.

• We propose an integer linear programming (ILP) for
via/blockage-aware layer assignment to handle blockages
and guarantee the feasibility. Also, we apply progressive
ILP technique for via/blockage-aware layer assignment to
enhance runtime.

• We achieve a complete routable solution of ISPD98
benchmark in the shortest wirelength for the first time,
compared with all published academic global routers.
Also, ours finishes the most of number of circuits with
comparable wirelength on ISPD07 global routing bench-
mark, compared with all winning global routers.

The rest of the paper is organized as follows. Section II
presents preliminaries. Section III provides an overview of
BoxRouter 2.0. Details on our 2D global routing is described
in Section IV, then layer assignment is proposed in Section V.
Experimental results are discussed in Section VI, followedby
conclusion in Section VII.

II. PRELIMINARIES

A. Global Routing Background

The global routing problem can be modeled as a grid graph,
where each rectangular region of the circuit can be represented
by the same number of vertices as the number of metal layers
in the given manufacturing process. Fig. 1 shows a grid graph
for routing from a circuit in multi-metal layer manufacturing
process. Each metal layer is dedicated to either horizontalor
vertical wires. A vertex is called a global routing cell (G-cell),
and each edge represents the boundary between G-cells. Each
edge has maximum routing capacity, and each wire passing the
edge takes some routing capacity based on its width/spacing.
When the demand from wires exceeds the maximum routing
capacity of the edge, overflow occurs. The number of overflow
can be computed as the excessive demand [8], [13]. Thus, a
global routing is to find paths that connect the pins inside the
G-cells through the graph for every net with minimum number
of overflows [8]. Since a net may have complex topology,
it can be decomposed into two pinwires with Rectilinear
Minimum Steiner Tree [1], [16].

G-cell

(a) real circuit with G-cells
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(b) grid graph for routing
Fig. 1. A circuit with netlists can be dissected into multiplegrids which can
be mapped into graph for global routing [1].
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Fig. 2. BoxRouter 1.0 overall flow [1]

B. BoxRouter 1.0

BoxRouter 1.0 [1] is based on congestion-initiated box ex-
pansion; it progressively expands a box which initially covers
the most congested region only, but finally covers the whole
circuit. Within each box, BoxRouter 1.0 performs progressive
integer linear programming (ILP) and adaptive maze routing
to effectively diffuse the congestion as in Fig. 2. To decidethe
first box based on the global congestion view, BoxRouter 1.0
performs PreRouting. After all nets are routed, PostRouting
further improves the solution by rerouting detoured nets.
BoxRouter 1.0 [1] shows significantly superior results on
ISPD98 benchmark, compared with [13]–[15].

However, BoxRouter 1.0 has one limitation for highly
congested designs where one general assumption of global
routing (i.e., 70%-80% of nets are destined to be routed in
simple L-shape pattern [26], [27]) does not hold. In detail,
its progressive ILP formulation for routing only considersL-
shape pattern based on such assumption, but it does not work
well for hard cases where most nets need to be detoured in
complicated patterns. However, considering various routing
patterns in ILP is prohibitively expensive due to the increase
in the number of variables in ILP.

C. Negotiation-based Routing

It is shown that negotiation-based routing is effective in
congestion elimination for FPGA [28]. The key idea of
negotiation-based approach is that the congestion historyof
every edge in the routing graph will be considered for the
future routing. In detail, for each edgee, there are two cost
factors: hi(e) for historic cost ati-th iteration andp(e) for
the present congestion cost. The combination of these two
factors will provide the final cost for a wire to pass through
e. As hi(e) is increased for any congested edgee right after
each iteration, an edge which has been congested previously
tends to have highhi(e). Meanwhile,p(e) is solely related to
the present congestion ofe. Thus, considering bothhi(e) and
p(e) as routing cost will guide a router to avoid the presently
congested edges as well as previously congested edges. Thisis
very efficient technique to spread out wires to less congested
regions.

III. OVERVIEW OF BOXROUTER 2.0

In this section, we give the overview of BoxRouter 2.0
shown in Fig. 3. The early steps of BoxRouter 2.0 are inspired
by BoxRouter [1], but ours is radically different in a sense
that we have more powerful and systematic way of removing
congestion and assigning layers to wires. BoxRouter 2.0 has
two major steps, 2D global routing (Section IV) and layer
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Fig. 3. The overview of BoxRouter 2.0

assignment (Section V). When a circuit to route is given,
we superpose all the layers into two layers, the horizontal
and vertical, then perform 2D global routing to maximize
routability. Layer assignment follows 2D global routing to
distribute wires across multiple layers, while minimizingthe
number of vias.

In fact, our 2D global routing can be applied for multiple
layers (3D) directly, but the advantage of 2D global routing
over 3D global routing is that it needs less computing power
and memory, as the global routing graph shrinks significantly.
Also, the mapping from 2D solution to 3D solution can be
done without making congestion worse, as long as a wire
can be splitted to avoid blockages at a cost of via and wire
width/spacing for every wire is fixed as a constant.

IV. 2D GLOBAL ROUTING

In this section, we present 2D global routing algorithm. As
BoxRouter 2.0 is inspired by PreRouting and BoxRouting of
BoxRouter [1], we take them to generate the initial routing
solution as in Fig. 2. However, we improve routability con-
siderably by our negotiation-based ReRouting. Our technical
contributions in 2D global routing include the following:

1) Robust negotiation-based A* search:This is an im-
portant idea to enable continuous andstableroutability
improvement during whole rerouting procedure as dis-
cussed in Section IV-A.

2) Topology-aware wire ripup: The goal is to enhance
solution quality further by providing more flexibility in
rerouting, while honoring the current routing topology.
This is presented in Section IV-B.

A. Robust Negotiation-based A* search

Instead of maze routing/shortest path algorithm, we adopt
A∗ search algorithm and use the following cost function.

costi(e) = hi(e) + αp(e) + βd(e) (1)

where regarding an edgee, hi(e) is a historic cost ati-th
iteration,p(e) is the present congestion cost (utilization), and
d(e) is the distance frome to the target.

We find that there can be a potential stability problem
with negotiation-based A* search for highly congested designs
which need a large number of iterations. For every iteration,
hi(e) is increased, ife is congested. Thus, after many iterations
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Fig. 4. Dynamically scaled A* search reduces congestions robustly and
stably over iterations.

which frequently happens for highly congested designs,hi(e)
starts to dominate overp(e). This implies that a presently
congested edge becomes cheaper to pass through than a
previously congested edge. This may lead to routing instability
in a sense that the solution quality may get worse with more
iterations due to the unbalance betweenhi(e) andp(e). Thus,
to ensure continuous improvement in routability, the balance
between two costs has to be kept.

To address this instability problem and make router robust,
we scalep(e) by picking the followingα for Eq. (1).

α =
maxe[h

i(e)]

p(e)|1.0
(2)

wherep(e)|1.0 indicates the congestion cost when there is no
available routing capacity in an edgee. Insight behind suchα
is to make a presently congested edge (no more routing capac-
ity available) passing as expensive as a previously congested
edge passing. This will discourage creating new overflows,
while avoiding previously congested edges.

Fig. 4 shows the effect of robust negotiation-based A*
search by comparing the scaled case (Eq. (2)) and unscaled
case (α=1) on two benchmark circuits. For the unscaled case,
it reduces the overflows faster than the scaled case for a while,
but after a certain point, it spins a router out of control and
increases the number of overflows. With largerα, we may
delay spinning out of control, but it will eventually occur after
larger number of iterations. This implies that if circuit istoo
hard to be routed in a few iterations, a router becomes so
unstable that it cannot improve the routing quality. Meanwhile,
the scaled case stably reduces the number of overflows even
after large number of iterations.

B. Topology-aware Wire Ripup

When a wire is selected for rerouting, we explore larger
flexibility by ripping up some adjacent wires in the same net,
while honoring the current routing topology. The reason we
need to honor the current topology is because an abrupt change
in congestion map can misguide a router with inaccurate
congestion estimation.

Consider the example in Fig. 5 where pins are in cir-
cle (a, b, c, d, e) and Steiner points or bends are in square
(1, 2, 3, 4, 5, 6). As wire 3-4 in Fig. 5 (a) is passing through
a congested region in dark area, it will be ripped up for
rerouting. Moreover, two connected wires, wireb-3 and 4-5
are ripped up together as shown in Fig. 5 (b). The motivation
behind our ripping up is that a Steiner point or bend (which
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Fig. 5. Topology-aware wire ripup improves routing flexibility by ripping
up some connected wires, but honors the current routing topology.

is not a pin) with degree two such as3 and4 are not critical
in terms of routing topology, as they simply bridge two wires.
Thus, ripping up wireb-3-4-5 provides more flexibility in
terms of rerouting, while honoring the current topology.

V. L AYER ASSIGNMENT

In this section, we propose a layer assignment for via-
minimization based on progressive integer linear programming
(ILP). When 2D global routing is finished, layer assignment
follows to distribute the wires across the layers. Layer as-
signment impacts several design objectives, such as timing,
noise, and manufacturability, but our layer assignment mainly
focuses on via minimization without altering routing topol-
ogy. This problem similar to constrained via minimization
(CVM) [29]–[31] which is NP-complete [32].

A. Via/Blockage-aware Layer Assignment

Depending on layer assignment, the number of vias can
be significantly different. Fig. 6 shows an example of layer
assignment for via minimization, where neta, b, and c are
routed through 2D global routing cells, and pins are shown
in circle, while a Steiner point (c2) in square. The example
assumes four metal layers (M1-M4), whereM1 andM3 are
for horizontal wires,M2 andM4 are for vertical wires, and all
the pins onM1. Further, a single routing capacity is assumed
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Fig. 6. Layer assignment can determine the number of vias as shown in (b)
and (c). Also, the location of blockages in 3D can affect routability in (d).

TABLE I

THE NOTATIONS IN FIG 7.
W (i, s) a set of wires of a neti passing a points (including pins)
P (i) a set of points in a neti
N(i) a set of pins in a neti (N(i) ⊆ P (i))
C(e) a set of wires crossing an edgee

re the available routing capacity of an edgee

zijk a binary variable set to 1
if a wire j of a neti is assignedk layer

lij the layer assigned to a wirej of a neti
Tis the top layer assigned to any wire on a points ∈ P (i)
Bis the bottom layer assigned to any wire on a points ∈ P (i)

min :
∑

i

∑
s∈P (i)(Tis − Bis) − α

∑
i,j,k zijk (α ≫ 1)

s.t : zijk ∈ {0, 1} ∀i, j, k
∑

k zijk ≤ 1 ∀i, j, k
∑

k k · zijk = lij ∀i, j, k

Bis ≤ lij ≤ Tis ∀(i, j) ∈ W (i, s)

Bis = M1 ∀s ∈ N(i)
∑

(i,j,k)∈C(e) zijk ≤ re ∀e

Fig. 7. ILP formulation for via/blockage-aware layer assignment

for each edge. If a greedy approach (a shorter net is assigned
to lower layer) is adopted, it will result in Fig. 6 (b) with 13
vias. But, Fig. 6 (b) has 2 more vias (18%) than the optimal
assignment in Fig. 6 (c). This is simply because the greedy
approach cannot capture the global view.

Also, as the exact layer information on blockages is diluted
in 2D global routing, the layer assignment based on the 2D
routing result may not be feasible. Compare Fig. 6 (c) and
Fig. 6 (d) where the blockagex is located inM4 and M2,
respectively. In Fig. 6 (c), bothx andy are onM4, enabling
to route wireb1 − b4 on M2. However, in Fig. 6 (d), wire
b1− b4 cannot be routedas it is, asx is onM2 while y is on
M4. Wire b1−b4 should be chopped into two pieces such that
it can shuttle fromM2 to M4 as in Fig. 6 (d). This issue can
be easily addressed by chopping wires, wherever a blockage
exits, but this may result in not only unnecessary vias, but also
computational inefficiency due to more object to handle.

Motivated by the idea in [1], we propose a ILP formulation
for via/blockage-aware layer assignment as shown in Fig. 7,
where the objective is to complete as many wires as possible,
while minimizing the number of vias. This formulation is
feasible for any blockage distribution. The unassigned wires
after solving ILP will be picked up by a maze routing like [1] ,
but ours is simpler and faster (it only needs to shuttle between
layers). Therefore, less number of wires will be chopped than
the approach of chopping wires for each blockage, resulting
in less number of vias in shorter runtime.

B. Progressive ILP for Via/Blockage-aware Layer Assignment

ILP is computationally expensive, as most solvers use
branch-and-bound algorithm. Thus, to apply ILP to industrial
designs, the problem size should be tractable, while maintain-
ing the global view. We adapt the idea of box expansion and
progressive ILP [1] for our layer assignment.



TABLE II

ISPD07 IBM BENCHMARKS [25].
namea nets grids v.capb h.capb placer

adaptec1 219794 324x324 70 70 Capo
adaptec2 260159 424x424 80 80 mPL6
adaptec3 466295 774x779 62 62 Dragon
adaptec4 515304 774x779 62 62 APlace3
adaptec5 867441 465x468 110 110 mFAR
newblue1 331663 399x399 62 62 NTUplace 3.0
newblue2 463213 557x463 110 110 FastPlace 3.0
newblue3 551667 973x1256 80 80 Kraftwerk
a 2D cases have 2 layers, but 3D cases have 6 layers.
b vertical/horizontal capacity

VI. EXPERIMENTAL RESULTS

We implement BoxRouter 2.0 in C++, and perform all the
experiments on 2.8 GHz Pentium 32bit Linux machine with
2GB RAM. Congestion-aware Steiner tree construction [16]
based on Flute [33] is adopted. We use ISPD07 benchmark to
demonstrate BoxRouter 2.0 Also, we apply BoxRouter 2.0 to
ISPD98 benchmark as well. Details on ISPD07 and ISPD98
benchmark are presented in Table II and III respectively.

A. ISPD07 Benchmark

We report the results of other global routers entered ISPD-
2007 routing contest [25] as well as that of BoxRouter 2.0 on
ISPD07 benchmark in Table IV. Regarding wirelength, ours is
comparable with FGR, but significantly better than BoxRouter
1.9, MaizeRouter (especially for 3D benchmark). However,
BoxRouter 2.0 completes the most number of circuits (12
out of 16), which ties with BoxRouter 1.9, but with less
number of total/maximum overflows. For the uncompleted
circuits (newblue1 and newblue3), we have smaller number
of maximum overflows, which may be easily fixed during
detailed routing. All the results prove that BoxRouter 2.0 has
strong routability, which is the utmost goal of global routing,
and provides high quality solution in terms of wirelength/via.
BoxRouter 2.0 requires 1.5GB memory and takes more than
2 days for the biggest newblue3.3d.

B. ISPD98 Benchmark

We use ISPD98 benchmark to compare BoxRouter 2.0 with
recently published global routers, Labyrinth,Chi Dispersion,
DpRouter, BoxRouter 1.0, and FastRoute 2.0. Note that as the
binaries of ISPD07 contestants are not available, we cannot
compare with them on ISPD98 Benchmark. Table V shows
the performance of each router on ISPD98 benchmark. We
normalize the numbers by those from FastRoute 2.0, as it has
been the best in the literature. First, it shows that BoxRouter
2.0 is the only one which completes ISPD98 benchmark
without any overflow. We tune BoxRouter 2.0 for runtime
and quality respectively, and compare both results with other
global routers as shown in Table V. When tuned for runtime,
although slower than FastRoute 2.0 or DpRouter, ours is 4-
12x faster than the others. But, better congestion distribu-
tion (no overflow) than FastRoute 2.0 and DpRouter will
be significantly rewarded in detailed routing by huge speed-
up. Therefore, higher quality solution should be preferredto

TABLE III

ISPD98 IBM BENCHMARKS [34].
name nets grids v.cap h.cap t.capa lb.wlen b

ibm01 11507 64x64 12 14 26 60142
ibm02 18429 80x64 22 34 56 165863
ibm03 21621 80x64 20 30 50 145678
ibm04 26163 96x64 20 23 43 162734
ibm05 27777 128x64 42 63 105 409709
ibm06 33354 128x64 20 33 53 275868
ibm07 44394 192x64 21 36 57 363537
ibm08 47944 192x64 21 32 53 402412
ibm09 50393 256x64 14 28 42 411260
ibm10 64227 256x64 27 40 67 574407
a total capacity: v.cap + h.cap
b lower bound wlen computed by GeoSteiner 3.1 [35]

runtime in global routing, unless the main purpose of global
router is the integration with placement [16]. When tuned for
quality, ours achieves the best wirelength.

VII. C ONCLUSION

Modern VLSI design becomes more complex and denser
due to the demand for high performance and various function-
alities, making routability even more challenging. In order to
cope with routability issue, we propose BoxRouter 2.0 which
can robustly eliminate congestion. Experiments demonstrate
the performance of BoxRouter 2.0 in terms of routability and
wirelength/via on ISPD07 and ISPD98 benchmarks. We plan
to improve BoxRouter 2.0 in terms of quality and runtime.
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adaptec1.3d104.05 0 0 90.92 2 60 99.61 0 0 248.95 4 122 92.04 0 0
adaptec2.3d102.97 0 0 92.19 50 2 98.12 0 0 244.41 12 500 94.28 0 0
adaptec3.3d235.87 0 0 203.44 0 0 214.08 0 0 523.21 0 0 207.41 0 0
adaptec4.3d211.95 0 0 186.31 0 0 194.38 0 0 469.34 0 0 186.42 0 0
adaptec5.3d298.08 0 0 264.58 2 2480 305.32 2 2 707.86 76 9894 270.41 0 0
newblue1.3d101.83 2 400 92.89 4 2668 101.74 16 1348 248.26 34 2602 92.94 2 394
newblue2.3d155.07 0 0 136.08 0 0 139.66 0 0 379.6 0 0 134.64 0 0
newblue3.3dd195.51 1088 38976168.42 636 53648 184.4 1058 32840442.72 1306 34236 172.44 364 38958

a wirelength: each via is counted as three units of wirelength,bmaximum number of overflows on any edge
c total number of overflows, d newblue3.2d and newblue3.3d are proven to be unroutable.

TABLE V

COMPARISON BETWEEN PUBLISHED GLOBAL ROUTERS AND OURS ONISPD98 BENCHMARK

Labyrinth [13] Chi Dispersion [14] DpRoutera[18] BoxRouter 1.0 [1]FastRoute 2.0a[17] BoxRouter 2.0(rb) BoxRouter 2.0(qc)
name wlen ovfl cpu(s) wlen ovfl cpu(s) wlen ovfl cpu(s) wlen ovfl cpu(s) wlen ovfl cpu(s) wlen ovfl cpu(s) wlen ovfl cpu(s)
ibm01 77K 398 21.2 66006 189 15.1 63857 125 0.51 65588 102 8.3 68489 31 0.94 66529 0 3.5 62659 0 32.8
ibm02 205K 492 34.5 178892 64 47.9 178261 3 1.26 17875933 34.1 178868 0 1.16 180053 0 4.6 171110 0 35.9
ibm03 185K 209 36.3 152392 10 35.2 150663 0 0.78 151299 0 16.9 150393 0 0.75 151185 0 3.5 146634 0 17.6
ibm04 197K 882 83.5 173241465 54.1 172608165 1.93 173289309 23.9 17503764 1.88 176765 0 27.4 167275 0 115.9
ibm06 346K 834 104.3 289276 35 80.1 28602514 2.41 282325 0 33.0 284935 0 2.35 288420 0 8.4 277913 0 47.4
ibm07 449K 697 228.1 378994309 122.2 37913399 2.94 37887653 50.9 375185 0 2.00 377072 0 14.4 365790 0 85.9
ibm08 470K 665 238.7 415285 74 113.8 41230856 3.34 415025 0 93.2 411703 0 2.95 418285 0 17.1 405634 0 90.1
ibm09 481K 505 359.3 427556 52 125.1 41919947 2.56 418615 0 63.9 424949 3 2.40 431298 0 17.1 413862 0 273.1
ibm10 680K 588 435.7 599937 51 212.9 59846046 4.14 593186 0 95.1 595622 0 3.49 610680 0 17.2 590141 0 352.4
total 3089K5.2K1541.62682K 1249 806.4 2661K 555 19.9 2657K 497 419.3 2665K 98 17.9 2700K 0 113.4 2601K 0 1151.1
ratio 1.16 53.8 86.0 1.01 12.7 45.0 1.00 5.7 1.1 1.00 5.1 23.4 1.00 1.0 1.0 1.01 0.0 6.3 0.98 0.0 58.7
a the numbers are quoted from [18] and [17] respectively, and runtimes are scaled based on Labyrinth speed.
b tuned for runtime, c tuned for quality
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