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ABSTRACT

In 90nm technology and beyond, process variations should be considered such that the design will be robust with
respect to process variations. Focus error and exposure dose variations are the two most important lithography
process variations. In a simple approximation, the critical dimension (CD) is about linearly related to the
exposure dose variation, while it is quadratically related to the focus variation. Other kinds of variations can be
reduced to these variations effectively as long as they are small. As a metric to measure the effects of exposure
dose variations, normalized image log-slope (NILS) is pretty fast to compute once we have the aerial images.
OPC software has used it as an optimization objective. But focus variation has not been commonly considered
in current OPC software. One way is to compute several aerial images at different defocus conditions, but this
approach is very time consuming.

In this paper, we derive an analytical formula to compute the aerial image under any defocus condition. This
method works for any illumination scheme and is applicable to both binary and phase shift masks (PSM). A
model calibration method is also provided. It is demonstrated that there is only about 2-3x runtime increase using
our fast focus-variational lithography simulation compared to the current single-focus lithography simulation.
To confirm the accuracy, our model is compared with PROLITHTM. This ultra-fast simulator can enable better
and faster process-variation aware OPC to make layouts more robust under process variations, and directly guide
litho-aware layout optimizations.
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1. INTRODUCTION

Traditional model-based OPC uses phenomenological lithography models calibrated under nominal process con-
ditions. The variable threshold resist model family was introduced and better fitting parameters have been
proposed to increase the accuracy of the model predictions.1–5 However, as lithography systems print higher
densities and finer dimensions, process windows are reduced, while the CD sensitivities to process variations are
increased. Thus, it is not enough to use only the nominal lithography process conditions. Fast and accurate
variational lithography modeling is demanding.

Some attempts have been made to incorporate the lithography process variation awareness into OPC software.
For example, defocus aerial images, instead of in-focus aerial image, have been used in OPC software to improve
process window robustness.6, 7 But they rely on extensive lithography simulations to choose the appropriate
defocus value, which is very expensive. Image-log slope, as an indicator of process sensitivity to dose variations,
has also been proposed.6, 8 But this approach is incapable of handling focus variations. None of these attempts
are capable of giving the full information of the process window. Due to prohibitive runtimes of lithography
simulations, it is simply impossible to simulate across the entire process window without extensive compute
power. In fact, even without consideration of the process window, it has been reported that model-based OPC
software could run for days on multiple computers for a single design.9
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Focus Exposure Matrix (FEM) shows the variation of linewidth as a function of focus error and exposure
energy.10 Traditionally, it requires a lot of simulations (in the order of hundred) to get the FEM at a given
location, which is time-consuming. It is observed that the FEM can be fitted by a polynomial,11

CD = CD0 +
(

a0 + a1z
2 + a2z

4
)(

b0(I − I0) + b1(I − I0)
3
)

, (1)

where I is the intensity threshold, I0 is the iso-focal intensity threshold, CD0 is the CD measured at iso-focal
threshold and zero focus error, z is the focus error and ai and bi are fitting parameters. (1) also suggest that
there must be some physical meaning of these parameters — the aerial image can be expanded with respect to
focus error z. Based on this idea, we proposes a variational lithography modeling (VLIM) for the first time, to
our best knowledge. The main contributions are as follows.

• We derive a new analytical defocus aerial image expansion, which can generically handle any focus variation
and illumination scheme.

• The accuracy of VLIM is confirmed.

• The runtime of our VLIM is only about 2 ∼ 3× that of the non-variational LIM due to the analytical
nature of our models. It is fast enough to use it to use it in OPC softwares.

The rest of the paper is organized as follows. Section 2 presents our analytical variational lithography
modeling. Section 3 shows the experimental results, followed by conclusions in section 4.

2. VARIATIONAL LITHOGRAPHY MODEL (VLIM)

Traditional phenomenological lithography simulators (used in various OPC softwares) can be decomposed into
aerial image simulators and photoresist simulators, which compute the print contours based on the aerial images.

In this section, a new variational lithography model is proposed. In particular, an analytical formula for the
aerial image at any defocus condition is derived. The impact of dose variation on the printed contour can be
handled easily once the defocus aerial image is computed.

2.1. Optics Preliminary — Hopkins Equation

The aerial image can be described by the Hopkins Equation12

I(f, g) =

∫∫

T(f ′ + f, g′ + g; f ′, g′)F(f ′ + f, g′ + g)F∗(f ′, g′)df ′dg′. (2)

I(f, g) is the inverse Fourier transforms of the aerial image intensity I(x, y), where (f, g) denotes a point in the
frequency domain and (x, y) denotes a point in the object plane. F(f, g) is the inverse Fourier transforms of the
mask transmission function F (x, y). T(f ′, g′; f ′′, g′′) is called the transmission cross coefficient (TCC), given by

T(f ′, g′; f ′′, g′′) =

∫∫

J
−
O(f, g)K(f + f ′, g + g′)K∗(f + f ′′, g + g′′)dfdg, (3)

where J
−
O(f, g) and K(f, g) are the illumination function and the projection system transfer function, respectively.

Denoting the focal error as z and supposing the shape of the pupil is a circle (without loss of generality), K(f, g)
can be written as

K(f, g) = K0(f, g)eiπz(f2+g2), (4)

where

K0(f, g) =

{

1 f2 + g2 < 1
0 f2 + g2 > 1

. (5)

For conventional illumination with partially coherent factor s, J
−
O(f, g) is written as

J
−
O(f, g) =

{

1
πs2 f2 + g2 < s2

0 f2 + g2 > s2 . (6)

Other illuminations can be described similarly. By Fourier transforming I(f, g) in (3), we get the aerial image
intensity I(x, y).



2.2. Variational Aerial Image Modeling

In this section, we derived our new analytical variational aerial image model. We adapt and extend the mo-
ment expansion method13 (which only handles fully coherent illumination) to compute defocus aerial image for
arbitrary illumination schemes.

Expanding eiπz(f2+g2) as
∞
∑

n=0

(

iπz(f2+g2)
)

n

n! , plugging it in (3) and using Binomial Expansion, we have (7)

T(f ′, g′; f ′′, g′′) =

∞
∑

n=0

(iπz)n

n!

n
∑

k=0

(

n

k

)
∫∫

(

(f + f ′)2 + (g + g′)2
)k(

−
(

(f + f ′′)2 + (g + g′′)2
)

)n−k

×J
−
O(f, g)K0(f + f ′, g + g′)K∗

0(f + f ′′, g + g′′)dfdg. (7)

That is, T(f ′, g′; f ′′, g′′) can be expanded as

T(f ′, g′; f ′′, g′′) =

∞
∑

n=0

znTn(f ′, g′; f ′′, g′′). (8)

Plug (8) into (2), we end up with the following form

I(f, g) =

∞
∑

n=0

znIn(f, g), (9)

where

In(f, g) =

∫∫

Tn(f ′ + f, g′ + g; f ′, g′)F(f ′ + f, g′ + g)F∗(f ′, g′)df ′dg′, (10)

Tn(f ′, g′; f ′′, g′′) =
(−iπ)n

n!

n
∑

k=0

(

n

k

)

(−1)kTn,k(f ′, g′; f ′′, g′′), (11)

and

Tn,k(f ′, g′; f ′′, g′′) =

∫∫

(

(f + f ′)2 + (g + g′)2
)k(

(f + f ′′)2 + (g + g′′)2
)n−k

×J
−
O(f, g)K0(f + f ′, g + g′)K∗

0(f + f ′′, g + g′′)dfdg. (12)

By Fourier transforming (9), we have the aerial intensity

I(x, y) =

∞
∑

n=0

znIn(x, y). (13)

Note that Tn,k satisfies

Tn,k(f ′, g′; f ′′, g′′) =

∫∫

J
−
O(f, g)Kk(f + f ′, g + g′)K∗

n−k(f + f ′′, g + g′′)dfdg

=

∫∫

J
−∗
O (f, g)K∗

n−k(f + f ′′, g + g′′)Kk(f + f ′, g + g′)dfdg

= T∗
n,n−k(f ′′, g′′; f ′, g′). (14)

For binary mask or phase-shift mask (PSM) with phase 0◦ and 180◦, since the mask transmission function
F (x, y) is always real, we have

F(f, g) = F∗(−f,−g), (15)



where F(f, g) is the mask transmission function F (x, y) in Fourier space.

The aerial image I(x, y) is always real, so are its expansions — In(f, g)’s. Similar to (15), we have

In(f, g) = I∗n(−f,−g). (16)

By using (14) and (15) and, we have

∫∫

Tn,n−k(f ′ + f, g′ + g; f ′, g′)F(f ′ + f, g′ + g)F∗(f ′, g′)df ′dg′

=

(
∫∫

Tn,k(f ′ − f, g′ − f ; f ′, g′)F(f ′ − f, g′ − g)F∗(f ′, g′)df ′dg′
)∗

(17)

If n is odd, it is easily seen that

In(f, g) = −I∗n(−f,−g). (18)

From (16) and (18), we have In(f, g) = 0 for odd n’s. Finally, we have the defocus aerial image expansion (less
terms are presented comparing with (13)),

I(x, y) =

∞
∑

n=0

z2nI2n(x, y). (19)

I2n(x, y)’s are called the variational aerial images, and the corresponding T2n(f ′, g′; f ′′, g′′)’s are called the
variational TCCs.

It is easy to see that I0 is the in-focus (z = 0) aerial image. (19) tells us that the defocus aerial image can
be expressed as the in-focus image plus some correction terms. Supposing that the focus error range is so small
such that the third term and higher order terms in (19) can be ignored, we have a simple formula for the defocus
aerial image intensity

I(x, y; z) ∼= I0(x, y) + z2I2(x, y). (20)

Higher order terms in (19) can be retained when the aerial images at a bigger focus error range are interested.
Because the aerial image intensity is a function of focus error, we add the focus error z back to the left hand
side of (20), which was previously omitted for the notation simplicity.

2.3. The Look-up Table Method and the Error Bound

The aerial image I(x, y) (associated with (2)) and the variational aerial images I2n(x, y) in (19) are computed
by the look-up table method.14 By decomposing the TCC and the variational TCCs, the kernels are computed
and stored in these tables. As an example, say TCC is decomposed into

T(f ′, g′; f ′′, g′′) =

∞
∑

k=0

αkφk(f ′, g′)φ∗
k(f ′′, g′′) (21)

it was stated that the worst case error in the image (I(x, y)) can be uniformly bounded by EB(m) =
∞
∑

k=m

|αk|
2,

if the first m kernels are used.15 The error bound for I2n(x, y) can be determined similarly.

3. EXPERIMENTAL RESULTS

3.1. The Accuracies of the Aerial Image Simulator and the Variational Aerial Image
Simulator

In order to verify (20), we implement the aerial image simulator (AIS) (computing I(x, y; z) based on TCC)
and the variational aerial image simulator (VAIS) (computing I2n(x, y) based on the variational TCCs) in C++.



Since their implementations are almost the same except that different functions are used (like eiπz(f2+g2) in (4)

versus
(

(f + f ′)2 + (g + g′)2
)k

in (12)), the accuracy confirmation of AIS indicates the accuracy of VAIS.

Because the periodic patterns have the exact analytical aerial image intensity solutions (no aberrations,
circular source shape and exit pupil), we test the accuracy of AIS on a special case — the lines and spaces
pattern. For a 1D periodic pattern with the period p, the mask transmission coefficient in the frequency domain
is described by

F(f, g) = an

∞
∑

n=−∞

δ(f −
n

p
, g). (22)

The aerial image intensity is

I(x, y) =

∞
∑

m,n=−∞

aman

∫∫

dfdge−2πi(fx+gy)

∫∫

df ′dg′T(f ′ + f, g′ + g; f ′, g′)δ(f ′ + f −
m

p
, g′ + g)δ(f ′ −

n

p
, g′)

=
∞
∑

m,n=−∞

aman

∫∫

df ′dg′δ(f ′ −
n

p
, g′)

∫∫

dfdge−2πi(fx+gy)T(f ′ + f, g′ + g; f ′, g′)δ(f ′ + f −
m

p
, g′ + g)

=
∞
∑

m,n=−∞

aman

∫∫

df ′dg′δ(f ′ −
n

p
, g′)e−2πi(( m

p
−f ′)x+(−g′)y)

T(
m

p
, 0; f ′, g′)

=

∞
∑

m,n=−∞

amanT(
m

p
, 0;

n

p
, 0)e−2πi(m−n) x

p (23)

T(m
p

, 0; n
p
, 0) is zero for |m−n|

p
> 2 or |n|

p
> 1 + s or |m|

p
> 1 + s. E.C. Kintner16 showed the exact analytical

solution of the special TCC case (T(f ′, 0; f ′′, 0)) for a partially coherent source without aberrations. So the exact
analytical solution of the aerial image intensity is

I(x, y) =
∑

|m−n|<2p

|n|<(1+s)p
|m|<(1+s)p

amanT(
m

p
, 0;

n

p
, 0)e−2πi(m−n) x

p (24)

By (24), we compute the aerial image intensity at the space edge I|edge = 0.302363 for a periodic 100nm
space pattern on a 200nm pitch, with the conventional partially coherent illumination (s = 0.7), the wave length
λ = 193nm and the numerical aperture NA = 0.8. Figure 1 shows the image CD error (I|edge is the intensity
threshold) as a function of the simulation grid step size. The source grid size is the step size used to numerically
compute the integral in (3). All kernels and the maximum support region are used in AIS to drive the accuracy
to the full extent. The trend shows that the error of AIS converge to zero as the source grid size goes to zero.
And its accuracy is comparable to that of PROLITHTM.

Although the comparison is made only for AIS at z = 0, we believe AIS and VAIS are accurate (with all
kernels and the maximum support region) when the grid size is small enough.

3.2. Defocus Aerial Image Expansion Verification

To verify the defocus aerial image expansion method, we ran PROLITHTM simulations with the same optical
parameters as those in the previous subsection. Figure 2 shows the relative aerial image intensity as a function
of the focus error z at several randomly chosen locations on a Five Bar pattern (width 100nm, pitch 200nm)
simulated by PROLITHTM. Each location corresponds to one kind of symbol in Figure 2. All the curves are
symmetric about z = 0nm, which confirms that no odd terms are presented in (19). Figure 3 shows the aerial
image intensity as a function of focus error z is approximately parabolas within the range of −200nm ∼ 200nm.
Dotted data are from PROLITHTM simulations. The curves are the parabolas fitted to the data within this
range.
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Figure 1. Aerial image CD errors simulated by PROLITHTM and AIS. The aerial image CD error converges to zero
when the grid step size goes to zero for both PROLITHTM and AIS. The result of AIS and PROLITHTM is comparable.
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Figure 2. Aerial image intensity simulation results (PROLITHTM) at 5 randomly chosen locations.



Figure 4 shows I|z=z0
− I|z=0, I2z

2
0 , I4z

4
0 , I2z

2
1 and I4z

4
1 of the same Five Bar pattern (z0 = 100nm, z1 =

200nm). I4z
4
0 can be ignored because it is much smaller than I2z

2
0 (z0 = 100nm). For z1 = 200nm, I2z

2
1 is still

about 5 times I4z
4
1 . Let us say the criterion is I4z

4 can be ignore if it is smaller than one fifth of I2z
2. Then the

approximation in (20) is appropriate within ±200nm.
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Figure 3. Parabola behavior of the aerial image intensity curves at 5 randomly chosen locations. The focus error range is
between −200 nm and 200 nm. Dotted data are from PROLITHTM simulations. The curves are the data fitted parabolas
within this range.

3.3. Runtime Comparison

Table 1 shows the runtime of computing the defocus aerial images (at a single focus error z1) by computing I

directly and by computing I0 and I2. The look-up table method is used to compute I, I0 and I2. The same
number of kernels were used. To be conservative, we may want to use one time more kernels in I2 than in I0.
So the runtime of the second method is about 2 ∼ 3× that of the first method.

Table 1. Runtime comparison between I and I0 + I2z
2 (same number of kernels were used for I, I0 and I2).

Layout I I0 + I2z
2

fivebar .19 sec .38 sec

gate1 .16 sec .34 sec

gate2 .18 sec .35 sec

When aerial images at N (N > 2) different z values should be computed, it is obvious the second method is
advantageous. The time complexity is O(N) for the first method. However, the time complexity is O(1) for the
second method. So VLIM is fast enough to be used in OPC software to generate variational process data.

3.4. Comparison Between Two I2 Calculation Methods

Since I(x, y; z) ∼= I0(x, y)+ I2(x, y)z2 for small z, in addition to the direct I2 calculation method in section 2, we

can also compute I2(x, y) using I2(x, y) = I(x,y;z0)−I(x,y;0)
z2

0

with some specific small z0 (the indirect I2 calculation

method). Denoting the error bounds of I(x, y; z0) and I(x, y; 0) as EBz0
(m) and EB0(m) respectively, the error

bound of I2(x, y) by the indirect method is EBindir(m) =
EBz0

(m)+EB0(m)

z2 , where m is the number of kernels
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used. Figure 5 shows I2 error bounds of the two methods. The direct method is clearly better than the indirect
method, because the former one has a smaller error bound than the latter one if the same number of kernels are
used.
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Figure 5. Error bounds of the two methods as a function of the number of kernels m (z0 = 50nm). The other optics
parameters are the same as those in section 3.1.

4. CONCLUSIONS

In this paper, an analytical defocus aerial image expansion method is derived. A variational lithography model
is proposed, and its accuracy is verified with the industry standard PROLITHTM. The runtime of VLIM is
comparable with traditional non-variational lithography model, but VLIM can compute FEM.

Current OPC software is unable to do full process window optimization since simulation over the process
window is too slow. VLIM enables OPC software to overcome this barrier. Thus, a more robust layout may be
generated.
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