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Abstract - By putting different chips on the same mask, shuttle 
mask (or multiple project wafer) provides an economical 
solution for low volume designs and design prototypes to share 
the rising mask cost. A challenging floorplanning problem is to 
optimally pack these chips according to objectives and 
constraints related to cost and manufacturability. In this paper, 
we study the problem of CMP aware shuttle mask 
floorplanning, which is formulated as a rectangle packing 
problem with objectives of area and post-CMP topography 
variation minimization. We propose a 3-step procedure to solve 
the problem. First, we use the low-pass filter oxide CMP model 
to guide the simulated annealing search to minimize the 
topography variation. The result is then further improved by 
sliding each chip in its enclosing rectangle. Finally, we calculate 
the optimal amount of dummy feature needed with a linear 
programming method. Our experiment shows excellent results 
on real industry data. 
 

I. Introduction 
 

Aggressive scaling-down of VLSI feature size has led to 
new challenges to VLSI manufacturing among which 
sub-wavelength lithography is the most difficult. Advanced 
resolution enhancement technologies (RET) such as optical 
proximity correction (OPC) and phase shift mask (PSM) are 
widely used to solve the sub-wavelength lithography 
problem [1]. Unfortunately, RET dramatically increases the 
mask cost: nowadays the mask cost has soared and reached 1 
million US dollars at 130-nm node, and 2 million per set at 
90-nm node because of fine mask features required by these 
RET technologies. Particularly, for a low product volume 
design, for example, an ASIC prototype, such high cost is 
unfavorable and sometimes even unaffordable because the 
cost is impossible to amortize over the volume. 

Shuttle mask, also known as multi-project wafer (MPW), 
provides an economical solution for low volume designs by 
putting different chips on the same mask. For example, in a 
simple mask cost model where each design is charged based 
on the area it occupies on the mask, the mask cost will be 
halved for each design if the mask is shared by two designs 
equally.  

Of course in reality we have to consider the overhead 
such as the growth of data files, the increased complexity of 
the mask, and extra time or expense introduced by cutting       
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different chips from wafers. Nevertheless, the overhead is 
still much lower than the total costs of multiple mask sets, 
and thus can be easily compensated. Because of its cost 
advantage, shuttle mask service begins to proliferate.  

It naturally follows a floorplanning problem of how to 
optimally pack different chips on the shuttle mask, which  
has drawn EDA community's attention recently. New 
objectives and constraints related to cost and 
manufacturability distinguish this shuttle mask floorplanning 
problem from the classical floorplanning problem in VLSI 
design, and make it more interesting and challenging. In the 
literature there have been a few papers studying the problem 
of shuttle mask floorplanning with different objectives and 
constraints such as die-to-die inspection constraint and wafer 
utilization objectives [2, 3, 4, 5]. 

However, none of the existing works on shuttle mask 
floorplanning considers manufacturability which forms our 
motivation. Among those factors impacting the VLSI circuit 
manufacturability, chemical-mechanical polishing (CMP) 
for oxide planarization is one of the most important, because 
the shallow-trench isolation (STI) process is now dominant 
in the deep sub-micron (DSM) regime. The STI process is 
important because the most challenging step of gate 
patterning in photolithography is immediately after STI. 
Typically, the most aggressive RETs are done on the gate 
layer to improve patterning. Hence, a minimum topography 
variation in the STI step will provide larger process margin 
by not consuming too much of the already minuscule depth 
of focus in gate patterning. Therefore, one of our primary 
objectives in shuttle mask floorplanning is to minimize 
post-CMP topography variation at STI. 

Specifically, in this paper we study the problem of CMP 
aware shuttle mask floorplanning by predicting the 
post-CMP effect during floorplanning evaluation. To our 
best knowledge, we present the first study on this topic. We 
also consider area minimization, but not wafer utilization, 
because mask cost is dominant compared to wafer cost. In 
addition, our algorithm can handle the die-to-die inspection 
constraint, because the merge method in [3] is easily 
incorporated by treating two instances of the same block as 
one super block in our algorithm.  

Our problem is formulated as a rectangle packing problem 
with area and topography variation minimization while 
meeting the constraint of die-to-die inspection. The objective 
function is a weighted combination of the area and the 
post-CMP topography variation of the floorplan. We also 
propose and implement a 3-step procedure to solve the 
problem. Our experiment shows excellent results on real 
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industry data.  
The paper is organized as follows. Section 2 reviews the 

previous work on oxide topography minimization. Section 3 
presents the technical details of the 3-step procedure. 
Section 4 demonstrates the experimental results. The 
conclusion and future work are in the last section. 

 
II. Topography Variation Minimization 

 
Post-CMP oxide topography variation is closely related to 

feature density of the circuit layout [6, 7].  Several models 
were proposed to capture the correlation between 
topography variation and feature density, among which 
Ouma et al's 2-D low-pass filter model is inexpensive to 
compute, easy to calibrate, and reasonably accurate [8].  
Therefore, this model is well accepted and widely used to 
estimate the oxide topography variation after CMP. In the 
2-D low-pass filter model, oxide thickness z at location (x,y) 
satisfies the following equation: 
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where 
Ki: blanket oxide polishing rate; 
z0:  thickness of oxide deposition; 
z1:  initial step height; 
t: total polish time; 
ρ0(x,y): initial oxide pattern density before CMP. 

By discretizing the layout into grids of small squares 
called cells, the effective density can be calculated from the 
feature density of the layout using the following equation: 

0 ( , ) [ [ ( , ) [ ( , )]]i j IDFT DFT d i j DFT f i jρ = ⋅         (2) 
Tian et al [9] gave the following approximation of f(x,y):  
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where constants c0, c1 and c2 are calibrated for each specific 
process. 

Topography variation can be reduced by inserting dummy 
features into the layout to change the feature density. Tian et 
al [9] rewrote Eq. (2) as a convolution: 
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where i',j'x is the variable representing the amount of dummy 

feature to be inserted, and 
' 'i

0

j
x is the feature density of cell (i, 

j). They also presented a simple LP formulation to describe 
the problem of topography variation minimization, as: 
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where ρH and ρL are auxiliary variables and a
ijx  is the 

maximum capacity for dummy features at cell (i,j). 
In practice, the total amount of dummy feature inserted is 

also an important concern, because the smaller amount 
usually leads to higher polish rate and less impact on users' 
design. [9] also gave the following ranged-variation 
formulation which can be applied to the case in which less 
amount of dummy feature is preferred and near optimal 
variation is acceptable. The formulation is: 

Minimize          i  
,

x j
i j
∑                     (6) 

subject to     
0

i  i 

0 ( , ) 1

0 x x

L H

H L

a
j j

i jρ ρ ρ

ρ ρ ε

≤ ≤ ≤ ≤

− ≤

≤ ≤

 

where ε is the variation budget parameter which describes 
how much variation can be afforded in order to get the 
minimum dummy fill. Obviously the budget must be larger 
than the solution to (5). 

The oxide CMP model was later extended to model the 
shallow trench isolation (STI) process [10]. The STI model 
is more complex than the oxide CMP model, as it requires 
modeling of dual-material polish and local pad compression 
to be accurate.  Thus, nonlinear programming formulations 
and iterative methods were proposed to minimize 
topography variation with dummy features [10].  Several 
improved versions of the LP method, as well as greedy and 
Monte-Carlo methods were introduced in [11] to improve 
solutions for the oxide and STI models. 

Recently, Beckage et al. [12] provided an excellent 
engineering solution to the dummy fill problem for STI.  
Their solution treats the two stages in STI CMP separately 
with background and regional dummy fills by taking 
advantage of the oxide fill characteristics before CMP. With 
background dummy fill providing mostly nitride density 
only, the dummy fill problem for STI becomes an oxide 
CMP problem again, which can be solved optimally with LP 
as described above. 

 
III. The Algorithm of CMP Aware Shuttle Mask 

Floorplanning  
 

Based on the work in Section II, the accurate correlation 
model between feature density of VLSI layout and the 
topography variation after CMP for STI has been established 
as a low-pass filter model. In addition, the problem of 
optimal dummy feature insertion has been formulated and 
solved by the linear programming method. However, the 
linear programming method only works in the case of fixed 
layout. Chips may be packed on the shuttle mask in different 
ways to form different floorplans. Therefore the feature 
density and capacity distributions of the shuttle mask may 
vary that will affect post-CMP topography variation. The 
impact is not straightforward because of the complexity of 
the low-pass model. It is interesting and challenging to 
determine where each chip should be placed. The 
floorplanning algorithm must be CMP aware so as to 
guarantee the best manufacturability of the final floorplan. 

 
A. Algorithm Overview 

 
We take the following strategies in our CMP aware 

floorplanning algorithm.  
• We discretize the input chip design and extract its 

density and capacity distribution information to 
follow the low-pass model for CMP. A chip design 
is represented as an m x n density matrix and an m 
x n capacity matrix. A shuttle mask floorplan is 
now represented as a p x q density matrix and a p x 
q capacity matrix which contains sub-matrices 
corresponding to chips on the mask. White space is 
zero in the density matrix and one in the capacity 



matrix. Fig 1 shows such an example. 
• We choose the slicing floorplan to represent a 

shuttle mask. Slicing floorplans have a simple and 
nice binary rooted tree representation and a smaller 
solution space. Although a slicing floorplan is 
usually not as compact as a non-slicing one for the 
same input set, the result is still good enough.  

• We use simulated annealing search to iteratively 
improve the result, as it worked well for previous 
floorplanning problems in most cases, if not 
always.  

 
      0.68 0.52 0.35 0.00 0.00  0.27 0.28 0.77 1.00 1.00

      0.13 0.03 0.24 0.00 0.00  0.11 0.56 0.81 1.00 1.00

 A     0.26 0.62 0.55 0.13 0.20  0.60 0.28 0.39 0.09 0.63

   B  0.64 0.33 0.35 0.78 0.33  0.03 0.76 0.31 0.24 0.17

      0.11 0.06 0.15 0.36 0.47  0.44 0.57 0.22 0.59 0.41

           
    Figure 1 A floorplan and its density and capacity matrices 
 

The CMP aware floorplanning algorithm is a 3-step 
procedure. First, we use the low pass filter model to guide 
the floorplanner to minimize the topography variation. 
Specifically, at each SA search move, the slicing tree is 
realized to its minimum area floorplan. For this floorplan, a 
cost function predicting the optimality of topography 
variation is evaluated. Notice that we cannot call LP in the 
SA search because of the high computation expense of the 
LP method. A fast predictive function is necessary instead. 
Second, when the SA search stops, the best result found by 
SA search will be further improved by sliding and rotating 
the chips, shown in Fig 2. Finally, we call the LP method to 
get the optimal amount of dummy features to be inserted. 
Since LP method is called only once, its computation 
expense is acceptable in this step. A pseudo code describing 
the algorithm is in Fig 3. 

 

 
Figure 2:  Slide B up, then rotate it by 180 degree 
 

Begin 
    x = InitialSolution; 
    SA search with cost function f(x); 
    SlidingAndRotation(x); 
    DummyInsertion(x); 
    output the best solution x; 
end. 

 
Fig 3 The 3-step procedure to find the optimal solution 

 
B. Predictive Functions 

 
The cost function in our simulated annealing is a 

weighted sum of area and a predictive function. We develop 

three functions to predict the topography variation in the SA  
search: MaxDiff, SDH, and NSDH. For these three functions, 
the less the value, the better the variation. In the following 
we use these notations: 

0 0
,( )i jD d= : the feature density matrix without dummy 

insertion. 
0 0

,( )i jρΡ = : the effective density matrix without dummy 
insertion, which is derived from the above feature density 
matrix according to Eq (2). 

,( )i jC c=  :  the capacity matrix. 
The function MaxDiff is defined as: 

0 0
, ,max{ } min{ }i j i jMaxDiff ρ ρ= −                    (7) 

This function represents the maximal difference between 
the effective densities of cells in the floorplan. By using 
MaxDiff function, we actually use the topography variation 
before the dummy feature insertion to predict the topography 
variation after the dummy feature insertion. This function is 
necessary when C is a sparse matrix, which corresponds to 
the case that chips on the mask have strong restriction on 
dummy insertion. For example, sensitive circuits hand 
crafted by designers, like analog circuits, forbid automatic 
dummy insertion in the mask floorplanning stage after 
circuit tape-out. 

The prediction of MaxDiff is not very reliable because it 
ignores the dummy feature insertion. The second function 
SDH, representing "sigma delta height", is proposed to 
improve the prediction. It is defined as: 

0 0
, , ,(1 )( min{ })i j i j i jSDH c ρ ρ= − −∑                 (8) 

The definition of SDH is based on the following 
considerations: 

• We expect a cell with large variation to have large 
capacity, which means more flexibility to adjust its 
feature density. 

• We expect the total weighted variation to be small, 
which suggests the current floorplan is more flat. 

We also consider the case in which we have variation 
budget and want minimum dummy to be inserted. According 
to (4), the effective density at cell (i,j) is most impacted by 
the feature density at cell (i,j). Therefore, to achieve the 
minimum dummy fill objective, a natural idea is to add 
dummy features directly to the cells which have low 
effective density as much as possible. High capacity is thus 
preferred at the cells with low effective density. In addition, 
large white space is not preferred, because the white space 
cell also needs to be filled. More white space cells may 
indicate more dummy features to be inserted.  

Therefore, we modify SDH to get the third function 
NSDH, which stands for "new sigma delta height". It is 
defined as: 

0 0 0 0
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c ρ ρ ρ ρ

=
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 (9)         

The motivation is that SDH is not ideal to predict the 
direction of less white space. This is because the capacity of 
white space cell is 1, and thus does not contribute to the 
function value. Also, SDH is not ideal for cells with 
minimum effective density for the same reason. In addition, 
we normalize the variation of each cell related to the 
minimum effective density in order to make a fair 
comparison between different floorplans. Without 

0.68 0.52 0.35 0.00 0.00  0.68 0.52 0.35 0.00 0.00  0.68 0.52 0.35 0.00 0.00

0.13 0.03 0.24 0.00 0.00  0.13 0.03 0.24 0.13 0.20  0.13 0.03 0.24 0.47 0.36

0.26 0.62 0.55 0.13 0.20 => 0.26 0.62 0.55 0.78 0.33 => 0.26 0.62 0.55 0.33 0.78

0.64 0.33 0.35 0.78 0.33  0.64 0.33 0.35 0.36 0.47  0.64 0.33 0.35 0.20 0.13

0.11 0.06 0.15 0.36 0.47  0.11 0.06 0.15 0.00 0.00  0.11 0.06 0.15 0.00 0.00



normalization the function may lead the search to minimum 
variation objective, instead of the minimum dummy fill 
objective that we desire. 

 
IV. Experimental results 

 
We implement a CMP aware floorplanner based on 

Wong-Liu floorplanner [13]. The code is written in C for 
efficiency and flexibility consideration. We use FFTW3.0.1 
to compute Fourier transformation. In the final step, we use 
CPLEX as the LP solver. The code runs on a Pentium-4 
Linux workstation with a P4 2.4G Hz CPU and 1G DRAM. 
We test a data set from a real industry mask for the 90nm 
technology node which consists of 10 chips. We use the 
typical industrial process parameter as reported in [10]. 

Table 1 shows the comparison among different cost 
functions. WS represents the white space rate, VwoD 
represents minimum variation without dummy insertion. The 
unit of the variation is angstrom. VwithD represents the 
minimum variation with dummy insertion, which is the 
topography variation from solving LP with minimum 
variation objective (Eq. (5)). DAmount represents the 
minimum dummy fill amount obtained by solving the LP 
with minimum fill objective, i.e., Eq. (6). The value unit 
does not matter. The variation budget in the LP is obtained 
by rounding the minimum topography variation in the 
previous column to the next 10's, e.g., in the case of area+ 
SDH, 64 is rounded to 70 to form the minimum dummy fill 
problem. 

As we can see, the predictive functions serve well in 
variation optimization and minimum dummy fill. The 
variation is improved by around 30% in all the three 
functions. With the same amount of dummy feature insertion, 
area+NSDH obtains a little larger variation than the results 
of the area+SDH. However, this function obtains the 
minimum white space as we expect. If we consider all three 
metrics of area, topography variation, and amount of dummy 
feature insertion, area+NSDH performs the best. Fig 4 
shows the floorplan obtained by area + NSDH. 

 
Table 1 Comparison among different cost functions. 

 
Function WS VwoD  VwithD DAmount 
Area only 2.82% 818 92 340 
Area+MaxDiff 6.87% 612 67 338 
Area+SDH 8.27% 588 64 298 
Area+NSDH 6.04% 751 67 298 

 
Fig 4 A shuttle mask floorplan by area+NSDH 

 

V. Conclusions and Future Work 
 

In this paper, we propose a novel problem formulation of 
CMP aware shuttle mask floorplanning and present an 
effective 3-step procedure to solve this problem. The 
experimental results on real industry shuttle mask data set 
show a 30% reduction in the optimal topography variation. 

Currently our approach focuses on the topography 
variation minimization of the active layer, the most critical 
layer, because its planarity requirement is much more 
stringent than the metal layers. Without a flat active layer the 
yield will be very low. Therefore it is necessary to consider 
the active layer first before considering metal layers. 

Extensions of this work may include: addition of metal 
layers, faster or more accurate predictive functions, etc.  
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