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ABSTRACT

In this paper, we study a fundamental and crucial problem of
building timing-driven over-the-block rectilinear Steiner tree
(TOB-RST) with pre-buffering and slew constraints. We
pre-characterize the tree topology and buffer distribution to
provide accurate timing information for our final RST con-
struction. In most previous work, the routing resources over
the IP blocks were simply treated as routing blockages. Our
TOB-RST could reclaim the “wasted” over-the-block rout-
ing resources while meeting user-specified timing (slack and
slew) constraints. Before fixing topology, a topology-tuning
is performed based on location of buffers to improve timing
without increasing buffering cost. Experiments demonstrate
that TOB-RST can significantly improve the worst negative
slack (WNS) with even less buffering and wirelength com-
pared with other slack-driven obstacle-avoiding rectilinear
Steiner tree (SD-OARST) algorithms.

Categories and Subject Descriptors
B.7.2 [Hardware,Integrated Circuit]: Design Aids

General Terms
Algorithms, Design

Keywords
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1. INTRODUCTION

As the semiconductor technology scales into deeper sub-
micron domain, interconnection delay has become the dom-
inant factor in determining circuit speed, contributing up
to 50% ~ 70% of the clock cycle in high performance cir-
cuit [8]. Rectilinear Steiner tree (RST) is a fundamental tree
structure to model the interconnection. Rectilinear Steiner
minimum tree (RSMT) aims to minimize the wirelength.
BOI [5], BI1S [10], RV-based RST [20] and FLUTE [7] are
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near-optimal RSMT heuristics while GeoSteiner [24] is opti-
mal with reasonable runtime for small trees. Obstacle avoid-
ing RSMT (OA-RSMT e.g. [2,12,17,18]) is one extension to
RSMT, which avoids the pre-designed IP blocks and macros.
More recently, [25] and [13] propose over-the-block RSMT
(OB-RSMT) to properly use the routing resources over the
pre-designed blocks in order to achieve better performance.

RSMT and related extensions produce good results re-
garding wirelength minimization, but they are not timing-
optimal in deep sub-micron high-speed ICs. To help meet
timing on critical paths, timing-driven RST is needed to op-
timize pin-to-pin delays on those paths. Approaches, such as
[9,14,23], focus on the minimum delay routing tree (MDRT)
problem which minimizes a linear combination of delays at
sinks. Other approaches(e.g. [3,6,15]) are able to optimize
the required arrival time at the driver as a more practical
target. Besides, timing optimization and obstacle avoidance
are simultaneously considered in [19], etc. However, most
of the abovementioned timing-driven approaches have the
following three problems:

1) In order to build an RST optimizing required arrival
time at the driver, it is necessary to know the criticality
at all sinks. The first problem is that most previous works
(such as [3,19,21]) use simple estimation on arrival time and
criticality for each sink, which is not accurate enough. For
example in [3], an optimally buffered 2-pin direct connection
from root to one node is used to estimate the potential de-
lay; similarly in [21], the require arrival time is calculated
based on distance from root to merging point, neglecting
the coupling from other part of the tree. Estimation can-
not fully capture interconnection delay, including delay on
wires and buffers, decoupling effect by buffers and load ca-
pacitance from un-buffered branch, which would result in
a sub-optimal timing-driven RST. One the other hand, a
buffered tree with topology close enough to the final con-
structed tree could provide criticality at all sinks accurately.
We propose a pre-buffering approach in place of estimation
so as to provide more accurate timing information. During
pre-buffering, a timing-driven RST is iteratively built and
buffered to offer criticality information for the next genera-
tion of timing-driven RST until the tree topology converges.

As is shown in Fig.1, if only estimation is used, it would
conclude that sink F is critical, resulting in the topology in
Fig.1(a). However, if we insert buffers on the topology in
Fig.1(a) and re-calculate criticality, we will find that sink D
is as critical as E. Based on that finding, the new topology
would re-clusters D with E with a direct connection to root
S. Upon this new topology, a new buffer insertion is applied



to re-calculate criticality at each sink. In this example, we
find the set of critical sinks is not changed anymore and thus
the topology converges to Fig.1(b) which has a better WNS
since the slack on D is improved.
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Figure 1: (a) estimates only sink F is critical. (b)
groups sink F and D as critical cluster.

2) From [25] and [13], it has been demonstrated that
over-the-block RSMT (OB-RSMT) outperforms OA-RSMT
in terms of wirelength. Over-the-block routing resources
should be used in timing-driven RST construction as well
to replace obstacle-avoiding detours with shorter over-the-
block connection. In the meantime, certain slew constraints
have to be satisfied for over-the-block routing to ensure the
solution will not fail buffering. Fig. 2 compares obstacle-
avoiding tree construction with over-the-block algorithm,
in which the latter shifts part of the inside tree outside
and keeps the remaining inside the block. As is shown in
Fig.2(b), the algorithm reduces two buffers, some detouring
wirelength and delay of paths in the tree.
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Figure 2: (a) is an OA-RSMT with root S and two
sinks A, B. (b) uses part of the over-the-block rout-
ing resources.

3) Following topology generation and buffering, it has
never been discovered or discussed that a buffer-location-
based tuning can achieve considerable timing improvement
without consuming additional buffering cost and noticeable
wirelength. During the buffering, in order to obtain a legal
buffering solution, some buffers are placed at positions with-
out fully using up their power. The proposed post-buffering
tuning algorithm could tune the locations of Steiner points
based on the buffering information to further improve slack.
In Fig. 3(a), we observe that buffer b2 is clamped under the
Steiner point D to shield part of the downstream capaci-
tance of D. We can change the position of the Steiner point
(Fig. 3(b)) which makes the sequential buffers b1 and b2
parallel. The delay of the path from root S to A is notably
reduced since the path becomes a decoupled direct connec-
tion and delay on buffer b, is taken away. However in a
traditional flow, it is hard to accurately predict these better
buffer locations via only topology generation and buffering.
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Figure 3: (a) is a buffered RST with root S and two
sinks A, B. (b) exhibits the tuned topology and new
buffering.

Our work makes the following major contributions:

1. We first propose a timing-driven, over-the-block RST
construction algorithm which utilizes over-the-block
routing tracks to reduce delay to critical sinks and
shorten wirelength to non-critical sinks.

2. Our constructed RST satisfies the slew constraints ev-
erywhere with buffers placed at empty space.

3. During the tree construction, we use pre-buffering scheme
to provide more accurate timing information, which
helps explore better topologies for timing-driven RST.

4. We analyze the final buffered tree and relocate certain
Steiner points to further improve the delay on paths
to critical sinks.

5. We conduct our algorithm and observe significant im-
provements in WS, wirelength and buffering cost com-
pared with existing works.

The rest of paper is organized as follow. We first introduce
basic concepts and our problem formulation in Section 2.
Our timing-driven, over the-block RST construction algo-
rithm will be presented in Section 3, which includes three
subsections. Section 3.1 discusses how to use pre-buffering
to guide the tree construction. Section 3.2 discusses how to
use over-the-block routing resources to reduce delays on crit-
ical paths without violating slew constraints. modify BOB-
RSMT to ensure slew for over-the-block part. Section 3.3 in-
troduces the post-buffering topology tuning algorithm which
achieves considerable timing improvement without consum-
ing noticeable wirelength and buffering cost. Experimental
results will be shown in Section 4, followed by conclusions
in Section 5.

2. NOTATIONS AND PROBLEM FORMU-
LATION

In a two-dimensional routing region, we are given a net
N = {so,51,82,...,8,} with n + 1 pins, where so is the
unique source and the rest are sinks. L = {b1,b2,...,bn} is
a set of non-overlapping rectilinear blocks in a two-dimensional
space R. For V s; € N, s; is not inside the two-dimensional
space occupied by L. Any area with high-density logic cells
not allowed for buffering is also taken as buffering blockage
into L.

Our algorithm constructs a timing-driven buffered tree
T(V,E) to connect all the pins in N, where V is the set
of nodes and F is the set of horizontal and vertical edges.



T might intersect with blocks in L, which confines a set of
trees S = {T1,Ty,...,T;} inside blocks. We call trees in S
inside trees. The outside-the-block part of T' is defined as
To. The buffered tree T5(Vs, Eb) is generated from T after
we insert a set of nodes V'’ which corresponds to the buffers
chosen from buffer library B, and V;, = VU V',

The Steiner tree has a unique path P(so,s;) from sg to
each sink s;. The presence of buffers along the path could
separate the path into stages, each of which consists of a
driver, a set of driven nodes as well as edges connecting the
driver and the driven nodes. The total delay on a path is
the summation of the delay on each stage along that path,
which can be computed in many ways. As in this discussion,
we adopt the Elmore model for wires and a switch-level lin-
ear model for gates. The models we adopt are simple and
informative enough to guide our approach, yet our formula-
tion is by no means restricted to these models. The delay of
each stage in the path is expressed as:

t(d(u), u) = rele(0-5cele + Cu(]))

e=(i,j)€p(d(u),u)

+RyCa(d(u)) + Do (1)

Total delay of the path is the summation over all stages in

the path:
>

u€V’Np(so,s;)

The slack of sink s; is defined as slack(s;) = RAT(s;) —
d(so,si). WS is defined as WS(T') = min{slack(s;)|1 <1i <
n}, and the worst negative slack is determined by WNS(T') =
min{0, WS}. Notations amongst the formulation are as fol-
lows:

d(s0,s:) = t(d(u),w) 2)

e [. = length of edge e,

e 1. = unit length wire resistance on a chosen layer for
edge e,

e c. = unit length wire capacitance on a chosen layer for
edge e,
e R, = chosen buffer or source output resistance,

e (', = chosen buffer or source input capacitance,

e D, = internal buffer or source delay,

e d(u) = the driver of node wu,

e ¢(u,v) = delay from node u to node v,

e C4(v) = total capacitance of the sub-tree rooted at
node v down to the nearest downstream buffer or sinks,
including the sink or buffer input capacitance,

e Cy(v) = C4(v) if v is not a buffer or source; C if v is
a buffer or source node,

For slew calculation, we adopt the PERI model [16]:
S(v) = V/S(vi)2 + Sstep(vi, v;)? ®3)

S(vj) is the slew at any node v;, calculated as the root-mean
square of the step slew from v; to v; and output slew at node
v;. The output slew at v; is described by a 2-D lookup ta-
ble of input slew and load capacitance. The experimental
results in [16] show the error of PERI is within 1%, which is
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indistinguishable from what is obtained using SPICE simu-
lation. For simplicity, we use Bakoglu’s metric [4] for step
slew calculation:

Sstep(Vi, v5) = ax Elmore(v;, v;), a0 = In9

(4)

The combination of Bakoglu’s metric and the PERI model
is shown to have error within 4% [16], which is, in general,
accurate enough for RST construction purpose.

Our algorithm will construct a buffered RST T to connect
all sinks and root while ensuring the slew rate on every point
in the tree is within constraints. We use slew mode buffering
as our buffering scheme as it is more predominantly used
([11,22]) and saves buffering cost. The slew mode buffering
satisfies the slew constraints on every point of the buffered
tree with minimum buffering cost. Our buffered tree will
have edges over the blocks but no buffers are allowed over
the blocks. The object is to minimize the WNS of the tree
with the lowest buffering cost.

3. TIMING-DRIVEN OVER-THE-BLOCK RST

Our approach constructs a timing-driven, over the-block
RST with slew constraints. First, the approach uses cou-
pled buffering and topology generation to provide AT and
criticality at each sink. Then, a timing-driven RST is con-
structed based on pre-buffering. Second, the topologies of
over-the-block trees are optimized to meet the slew con-
straints while maintaining the delay to critical sinks. Then,
buffering is performed on the constructed tree structure. Fi-
nally, the constructed tree is tuned based on buffering infor-
mation followed by buffering again. The overall algorithm
of proposed approach is illustrated in Algorithm1.

Algorithm 1 The overall algorithm

Input: Set of pins N and blocks L
Output: Timing-driven over-the-block RST T

. Construct timing-driven initial RST T with pre-buffering
Change the topology of T to meet the slew constraints
Perform buffering on T
Tune the topology of T based on buffering information
Perform buffering on T

return T

3.1 Initial Tree Generation with Pre-Buffering

Timing-driven RST requires the calculation of AT on each
sink and might need RAT on internal nodes during the tree
construction. Simple estimation of timing is inaccurate since
there is no way to calculate the delay of un-constructed part
of the tree or consider the final buffer distribution in the tree
construction phase. Instead of using estimation, we apply
pre-buffering to guide the tree construction.

Fig.4 depicts the proposed initial tree generation flow. We
first generate a tree through any timing-driven RST algo-
rithm. In this paper, we use state-of-the-art critical-trunk-
based RST algorithm [19] to generate this initial tree (not
considering blockages in this stage). Then pre-buffering part
will buffer the RST and analyze timing. We save these topol-
ogy and buffering if they are best-so-far. We calculate the
real AT based on the buffered tree to substitute the pseudo
time used in the tree topology generation algorithm as feed-
back information.

In the next iteration, all real critical sinks and critical
trunks are re-determined because of the new timing infor-
mation. In RST algorithm, we re-fix the critical trunks while
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Figure 4: Flow of initial tree generation

the other two-pin nets are ripped up and re-routed by maze
routing after the timing-driven critical trunk growth. Fi-
nally a post-process including rectilinearization and redirec-
tion is applied, which produces another RST. We will iterate
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Figure 5: (a) is the initial critical trunk based tree
with root S and sinks A,B,C,D. (b) reconstructs the
tree according to the pre-buffering and timing in-
formation from (a). The tree topology converges in

(©)-

the whole procedure until the tree topology converges, or os-
cillates between several states, or the time limit is reached.
Then we choose the best topology and WNS in our itera-
tions as our initial tree. The new part of pre-buffering is
indicated by dashed lines in Fig.4.

Example in Fig.5 shows that the topology and timing con-
verge during the iterations. Initial structure in Fig.5(a) di-
rectly connects sink A to root as the RAT of A is small.
In the next iteration, the topology generator decides to di-
rectly connect A to the trunk as in Fig.5(b), since according
to Fig.5(a) the delay to A is small enough to meet the RAT,
which in turn allows late branch. The late branch in Fig.5(b)
leads to larger delay to sink A and eventually the topology
converges to Fig.5(c) where the branch point of the path
from root to A sits in the middle trunk leading to a star-like
RSMT structure.
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Table 1: Notation of variables in our formulation
Xij binary variable denoting the choice of PPS:’J.7
Xi; = 1 if it is chosen, otherwise X;; =0

E;j; step slew reduction at EP{’ if EPit moves to PPS;;
Bij output slew reduction on D if EP} moves to PPS,;
Wi; | estimated wirelength penalty of EPlt if EPit moves to PPS;;
C; estimated the timing criticality of EP;]

3.2 Buffering-Aware Over-the-Block Routing

We generate the initial tree without considering the blocks.
The initial tree could cross over the blocks and break slew
constraints even after buffer insertion. To prevent these vi-
olations, we change the topologies of over-the-block inside
trees by approach similar to [25]. The objective in [25] is
to minimize total wirelength only. Yet, in order to consider
timing at the same time, we integrate criticality and slack
into the objective function which minimize the wirelength of
non-critical path as well as delay on critical path.

The initial tree confines a set of inside trees. For each
inside tree, the ports, excluding the driver, on the bound-
aries of the block are called escaping points (EP). We use a
mid-size hypothetical buffer at the driver and mid-size hy-
pothetical buffers at each EP to determine if the tree has
slew violation. Using mid-size hypothetical buffers instead
of two extreme sizes will weaken the capability of utilizing
more over-the-block routing resources, but the former turns
out a more practical assumption and leads to less buffer-
ing cost as more solutions can propagate through this inside
tree. If any inside tree violates the slew constraints, we ap-
ply three optimization primitives including parallel sliding,
perpendicular sliding and EP merging [25] to fix the slew
violations. Three optimization primitives are with different
cost in our formulation since we consider timing as well.

For each inside tree t with slew violations, we first sort
the illegal EPs per their slew violations. Next, in every
iteration we choose the first illegal escaping point EP} with
the worst slew violation based on sorting. To improve slew
for EP{, each escaping point from {EP{, EP;,... EPype}
may slide to a different position by taking a combination of
primitives.

The combination of optimization primitives provides each
escaping point a set of possible points. Each possible point
in the set is a point on the boundary edge where escap-
ing point may move to, which in turn improves the worst
slew. Moving every escaping point to certain possible point
guarantees slew! to meet slew requirement. In the extreme
situation where maximum slew constraint is zero, EP{ can
still become legal escaping point after we merge one es-
caping point to another until only the driver is left. For
any non-fixed EP} € {EP'}, the j** possible point asso-
ciated with EPf is denoted as PP;j. PP;; is stored in a
3-tuple format {E;j;, Bij, Wi;}. Ei; and Bi; represent the
step slew at EP} and output slew reduction of the driver
if EP; moves to PP;;. W;; stands for the correspondingly
estimated wirelength penalty. The possible point set associ-
ated with EPf in the current iteration is denoted as PPS?.
PPS! = {PP};,PPl,..., PP.}, where r is the number of
possible points inside.

In order to construct the inside tree under the slew con-
straint as well as meeting slack constraints, VEP} € EP"!
we need to decide which possible point to choose. The si-
multaneous point choice problem can be formulated in an
optimization problem as follows (notation in Table 1):
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The objective function (5) is to minimize the increase in
delay on the critical paths and wirelength on non-critical
paths. W;;Cy(EP}) is the multiplication of resistance and
total downstream capacitance, which estimates the amount
of increase in delay for every sink downstream from EP!.
Ci = 3_,, |slack(sk)| is the weight for critical paths below

EP!, summing all absolute values of negative slacks of sinks
downstream from EP!. The weight 8 in the objective func-
tion selects solution with less estimated wirelength penalty
on non-critical paths. The value of 8 is set remarkably
smaller than Cd(EPf)Ci to avoid affecting critical paths.
This objective function prefers less change on the critical
paths while [25] can choose to increase the wire on critical
path and exacerbate the WNS. Through the change of for-
mulation, our new formulation considers the delay on criti-
cal paths and wirelength of non-critical paths.One example
is that Fig.6(c) is preferred to Fig.6(b) because the former
reserves the timing for critical sink by moving escaping point
on non-critical path to satisfy slew constraints. Constraint
(5a) restricts that the total slew reduction on EP} has to be
able to pull slew! down below requirement. Constraint (5b)
is used to limit only one position chosen for each escaping
point.

Vie {1,2,...,|EP'} (5b)

Figure 6: The root is S and three sinks are A, B,C.
(a) is the initial timing-driven RST with slew vio-
lations. (b) fixes the slew violations with minimum
wirelength penalty. (c) fixes the slew violations and
considers the delay on critical path.
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3.3 Timing-driven Buffer-location-based Tun-
ing

We apply the slew mode buffering to the timing-driven,
over-the-block RST, which satisfies slew constraints with
minimum buffering cost. In the slew mode buffering, each
buffer is desired to drive to its limit, implying that the worst
slew rate among all receivers (buffers or sinks) should reach
the slew limit. Similar to the concept of slack in timing
calculation, we define slew margin which means the worst
input slew rate among all receivers does not reach the slew
limit. The existence of slew margin is because the driver or
Steiner points in the tree topology may enforce the buffering
solution to place one buffer to shield capacitance from one
side.

3.3.1 Slew Margin

In a RST, a Steiner point is the joint point for at least two
sub-branches to merge at. Before propagating buffer solu-
tions through the Steiner point, each sub-branch will have an
unbuffered segment connected to the Steiner point, such as
OB, Ob; in Fig.7(a). These segments do not require buffers
individually, but as a whole they may exceed the amount one
large buffer can drive after propagating the Steiner point.
The buffering tool has to place at least one buffer right be-
low the Steiner point to shield one remaining segment to
keep this solution legal. The buffering tool will place an-
other buffer above the Steiner point to drive the unshielded
parts along with the wire segment above the Steiner tree
(this buffer can be saved if root is above the Steiner point
with ability to drive). For instance, in fig.7(b), S is driver
and O is a Steiner point. The segment OB is shielded by in-
serting a new buffer b2. The shielding buffer b2 will not drive
to its limit as we already know that the length of driven seg-
ment is less than the optimal reach length. Therefore, the
stage below by ends up with slew margin. In Fig.7(a), the
slew limit we adapt is 70ps, and the stage driven by b2 ex-
hibits slew margin with maximum slew 60ps at sink B. We
also notice that the stage driven by driver S also has slew
margin since the maximum slew is 65ps at the input of buffer

bi.
§o _ SO 65ps
b
70ps
B A B A
(a) (b)
Figure 7: (a) bottom-up buffer solutions before

merge at Steiner node O. (b) slew margin after
propagation through Steiner node O

3.3.2 Buffer-location-based Tuning

Because the slew margin implies that the wire can be elon-
gated to some extent without violating the slew constraints,
the elongation of wires allows the change in topology without
additional buffering cost. Per our approach, there exists a
way of changing topology to improve timing on critical path
by elongating the wire with slew margin. As the slew mar-



gin occurs below the Steiner point, we extracts the simplified
pattern with one Steiner point and two buffers demonstrated
in Fig.8(a). Buffer b; sits right below the Steiner point for
shielding and buffer b2 stays above the Steiner point as in
Fig.8(a). We analyze this simplified pattern to generalize the
way of changing topology used in our topology-tuning algo-
rithm. We annotate the stage driven by b as stagei, that

Figure 8: (a) depicts the pattern of slew margin.
(b) shows buffer-location-based tuning if the input
capacitance of buffers is negligible. (c) illustrates
buffer-location-based tuning without neglecting the
input capacitance of buffers.

driven by b2 as stagez and that above by as stageg. Since
stage; contains slew margin, we can calculate the elongation
amount [ to use up the slew margin. We denote the distance
between ba and O as I(b2, O).

Observation 1. If [ > [(b2,O) and the input capacitance of
buffers is negligible compared with wire capacitance, all slew
constraints will be satisfied if we move the Steiner point to
the location of by and shift buffer by up to the location right
below the new location of the Steiner.

Fig.8(b) shows this buffer-location-based tuning. Under the
assumption of negligible input capacitance of buffer, the load
and slew of stageo are not changed. The slew of the stagei
is still within constraints owing to I > I(b2, O).

Observation 11. If [ > I(b2,0) 4+ Cy/ce and the input ca-
pacitance of buffers is not neglected, we can keep all slew
constraints satisfied by moving the Steiner point to Cy/ce
above bz and shifting buffer b1 up to the location right be-
low the new location of the Steiner node. (Cj is the input
capacitance of buffer b; and c. is the unit capacitance for
the wire segment above bs)

Fig.8(c) illustrates the topology and buffering after the re-
location of Steiner point O to Cy/c. above bs and buffer
shifting. Because the wirelength above by is curtailed by
Chy/ce, the downstream capacitance for stageg is reduced
by Cy/ce * ce accordingly. Buffer by is attached to stageo
during buffer-location-based tuning, including C} into the
downstream capacitance. Therefore the total downstream
capacitance remains the same for stageg. The amount of
the downstream capacitance of stages increases by Cp/ce *ce
as wire 0”0’ is added below b2. The input capacitance of
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b1 is removed from stages where the downstream capaci-
tance is reduced by Cj. Hence the total downstream ca-
pacitance below by stays the same. Under the assumption
I > l(b2,0) + Cp/ce, the slew of stage; is still under slew
constraints.

Algorithm 2 Buffer-location-based Tuning

Input: Buffered tree T
Output: Timing improved buffered tree T
1: Sort sinks in ascending order of slack
. for each sink s; with negative slack do

3 node n = s;
4 while n! = so do
5: if n is Steiner point then
6: if find buffer buffers b; right below n and by above n
then
T Calculate | based on slew margin
8: if 1 > I(ba,0) + Cp/ce then
9: Teopy =T
10: Relocate n to Cy/c. above by and reconnect wires
11: Shift buffer b; up to right below n
12: if WNS(T) <= WNS(Teopy) then
13: T =Teopy
14: end if
15: end if
16: end if
17: end if
18: n = Parent(n)
19: end while
20: end for
21: return T

3.3.3 Algorithms

Our proposed algorithm searches for the pattern which
satisfies all the above assumptions. The algorithm scans the
buffered topology in a bottom-up fashion. Once a pattern
analyzed in Section3.3.2 is detected, we perform the above-
mentioned buffer-location-based tuning. The search starts
from the worst negative slack sink among the set of sorted
negative slack sinks. We evaluate the newly generated topol-
ogy and commit the potential improvements. The algorithm
is described in Algorithm?2.

4. EXPERIMENTAL RESULTS

We have implemented our algorithm in the C++ program-
ming language. The experiments are conducted on an Intel
Core 3.0GHz Linux machine with 32GB memory. We choose
Gurobi Optimizer 5.10 as our solver for the integer linear
programming.

RCO01-RC12 are benchmarks in our experiments, same as
those in [19]. We use two sizes of buffers in our experiment.
The output resistances for two buffers are 450 ohms and 850
ohms, and the input capacitance are 3.8 fF and 1.9 fF respec-
tively. Environment settings for wire and slew are calculated
based on ITRS [1]. We use different resistance and capaci-
tance for both horizontal and vertical layers. Each Steiner
tree is placed on pre-selected layers. The slew constraint
is set as 70 ps. Since the benchmarks do not comprise any
timing information, to test the effectiveness of the slack opti-
mization in our approach, we set RAT such that about 15%
of the sinks are with negative slack in a buffered minimum
spanning tree interconnection.

We will evaluate pre-buffering, over-the-block routing and
post-buffering tuning individually. We use the algorithm in
[19] as baseline for our comparison since as far as we know
it possesses state-of-the-art performance driven RST con-
struction with buffering while others (such as [25] and [13])



Table 2: Comparisons between TOB-RST-1, TOB-RST-2 and TOB-RST

Bench Lin [19 TOB-RST-1 TOB-RST-2 TOB-RST

-marks [WNS (ps) | Buff | WL (um) | WNS (ps) | Buff | WL (um) | WNS (ps) | Buff | WL (um) | WNS (ps) | Bulf | WL (um) | CPU (5)
RC1 -86 32 30220 -86 32 30220 34 31 29370 34 31 29370 0.52
RC2 -206 58 | 55700 -157 54 | 50880 0 52 | 48750 0 52 | 48750 0.89
RC3 -160 7 75730 -141 71 64270 -92 63 | 59530 -92 63 | 59530 0.82
RC4 -347 80 | 76340 0 84 | 79720 0 76 72920 0 76 | 72920 0.85
RC5 -305 95 | 92650 177 102 | 97470 -108 96 | 96570 -108 96 | 96570 1.03
RC6 722 134 | 130055 722 134 | 130055 -521 123 | 118342 -423 123 | 119545 1.26
RC7 -605 179 | 185064 -574 174 | 182188 -249 162 | 178504 -162 162 | 179051 3.08
RCS8 -418 189 | 185320 -220 191 | 190775 0 175 | 176920 0 175 | 176920 4.51
RC9 -787 182 | 177603 -517 186 | 180089 -126 168 | 162815 0 168 | 167240 7.70
RC10 -455 203 | 210040 -272 206 | 211910 -23 198 | 205650 0 198 | 209908 6.85
RC11 -1268 | 259 | 282338 -1142 | 265 | 287312 -1027 | 262 | 284077 -965 262 | 285290 11.41
RC12 -1221 | 885 | 1107538 -1008 | 912 | 1144662 -687 881 | 1101521 -245 881 | 1108324 | 27.38

Average | -548 1 1 418 1.02 1.02 239 0.96 | 0.97 169 0.96| 0.98 5.525

are not timing-driven RST. We notate the timing-driven
OA-RST constructed with pre-buffering as TOB-RST-1, the
timing-driven RST with both pre-buffering, over-the-block
routing as TOB-RST-2, and the final tree with pre-buffering,
over-the-block routing and post-buffering tuning as TOB-
RST.

4.1 Effectiveness of Pre-Buffering

First, to solely evaluate pre-buffering, we compare the per-
formance of TOB-RST-1 with that of OA-RSMT generated
by [19] in Table 2. Columns 5, 6, 7 in the table list the
WNS, buffering cost and total wirelength of TOB-RST-1,
while columns 2 to 4 present those for [19]. Since the re-
quired time of each sink is different in our experiments, the
wirelength in column 2 is different from that of SD-OARST
in [19]. As we can see, WNS is improved for most test cases,
and the average improvement is 130 ps, while the change
of buffering and wirelength is within 2%. The similarity
of wirelength (buffering cost) demonstrates that the differ-
ent set of critical sinks selected by pre-buffering benefits the
slack with little impact on wirelength (buffering cost). In
the experiments, the topologies of most benchmarks con-
verge while only the topology of RC4 oscillates between two
states and the better one of the two states is returned. Also,
all of the benchmarks converge or oscillate remarkably fast
within four iterations at most.

4.2 Over-the-Block RST

To evaluate the effectiveness of over-the-block routing in
TOB-RST-2, we compare TOB-RST-2 with TOB-RST-1.
Columns 5 to 7 in Table 2 illustrate the WNS, buffering cost
and total wirelength of TOB-RST-1 while the columns 8 to
10 are for TOB-RST-2. As shown in the table, over-the-
block routing can improve WNS for all benchmarks. The
average WNS improved from over-the-block routing is 179
ps with buffering cost and wirelength reduced by 6% and
5% respectively.

4.3 Post-buffering Topology Tuning

We compare TOB-RST with TOB-RST-2 to evaluate the
effectiveness of post-buffering topology tuning. We only ap-
ply buffer-location-based tuning on critical paths with neg-
ative slack. Columns 11 to 13 in Table 2 present the WNS,
buffering cost and total wirelength of TOB-RST. TOB-RST
acquires about 70 ps improvements in WNS on average with
less than 1% more wirelength. The buffering cost is the same
since the post-buffering topology tuning does not consume
buffering resources. We include total CPU runtime for TOB-
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RST algorithm in column 14 of Table 2, which contains total
runtime of pre-buffering, over-the-block routing and post-
buffering topology tuning. TOB-RST turns out to be fast
since the maximum runtime is within one minute.

5. CONCLUSION

In this paper, we study a new class of RST problems,
i.e., timing-driven over-the-block rectilinear Steiner mini-
mum tree. We propose an effective and efficient algorithm
which applies pre-buffering, over-the-block optimization and
post-buffering tuning to optimize the slack on critical paths
while saving wirelength on non-critical ones. Per our pro-
posed approach, the generated topologies significantly im-
prove WNS for all benchmarks along with 2% less wirelength
and 4% less buffering cost than SD-OARST approach. Our
proposed TOB-RST algorithm can be used in routing or
post-routing stage to provide high-quality topologies to help
close timing. This is the first work to solve timing-driven
over-the-block RST problem crucial to high performance IC
designs with multiple IP-blocks.
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