
1

Evolving Challenges and Techniques for Nanometer

SoC Clock Network Synthesis

Subhendu Roy1, Pavlos M. Mattheakis2, Laurent Masse-Navette2, David Z. Pan1

1. Department of Electrical and Computer Engineering, University of Texas at Austin, USA

2. Mentor Graphics, Grenoble, France

subhendu@utexas.edu, {pavlos matthaiakis, Laurent Masse-Navette}@mentor.com,

dpan@ece.utexas.edu

Abstract—With continued technology scaling, increased vari-
ability effects and growing design complexity, the problem of
clock network synthesis is becoming more challenging. In this pa-
per, we discuss the key issues encountered while synthesizing the
clock network. Furthermore, we present a clock tree resynthesis
methodology to address some of the above challenges. It involves
incremental modification on an already synthesized/routed clock
tree for multi-corner multi-mode timing closure and has been
validated on industrial designs using cutting-edge technology
nodes.

I. INTRODUCTION

Clock Network Synthesis (CNS) is a fundamental problem

in physical design to synchronize sequential elements (sinks)

in the design. The inaccuracy in clock synchronization is

quantified by clock skew which is defined as the maximum

difference in clock arrival time between any two sinks. Clock

network may be a tree or non-tree structure. Historically,

clock tree has been widely used for ASICs, but clock meshes

may be used for better robustness at the cost of power

overhead [1][2], and microprocessors have used clock meshes.

The traditional Clock Tree Synthesis (CTS) problem can be

abstracted to a single-net buffering problem with the objective

of minimization of clock skew using minimum buffer/routing

resources. A lot of work has been done in the past targeting

global zero skew [3][4][5], but that requires a large area

overhead and insertion delay (clock source to sink delay) for

large-scale designs. Industry-tools typically try to minimize

the buffer/routing resources with the constraint of a given skew

and insertion delay margin.

With aggressive technology scaling, the main challenge in

CNS for modern designs is to cope with (i) variation effects,

(ii) design complexity and (iii) low power objective. Due to

wide variations from chip to chip, multi-corner analysis has

become more tedious [6][7]. In addition, on-chip-variation

(OCV) considers the local variations within a chip, and OCV-

impact has increased significantly in advanced technology

nodes. These variations have intrusive impact in controlling

clock skew. Furthermore, there has been a paradigm shift

from one clock to multiple clock domains or one mode to

multiple modes (driven by architectural choices) in modern

SoC designs, which creates difficulty in clock balancing.

Finally, low power is the most important concern in current

VLSI design industry. Several techniques, such as clock gating

[8][9], multi-Vdd design [10], etc., have been employed to

reduce power. But these techniques are disruptive to meeting

the CTS objectives and massive clock gating is one of the

main reasons for steering away the CTS problem from single

net buffering problem with uniform balancing constraint to

the problem of multiple clock domains with prescribed clock

arrivals among groups of clock pins.

In spite of careful optimization at every step after synthesis,

timing violations still persist after placement/routing. Useful

clock skew optimization is an effective approach to achieve the

timing closure and design convergence [11][12][13][14]. Most

of the existing approaches on useful clock skew optimization

do not account for implementability of the clock schedules

at the later stages of design cycle. Useful clock skew has

been implemented in deep routing stage for multi-corner,

multi-mode (MCMM) industrial designs in [15], although the

approach is local, and not practical for high-performance time-

constrained real designs. A recent work [16] tackles the useful

clock skew optimization in large-scale industrial designs in

a two step approach. The first phase is based on a skew

scheduling engine, which calculates the clock schedules at the

clock pins after a clock tree has been synthesized and routed.

Then this schedule is implemented, resulting in significant

timing improvement with marginal resource overhead in the

clock tree.

The rest of the paper is organized as follows. Section II

illustrates the evolving issues in CNS for modern designs.

Section III presents a clock resynthesis methodology to tackle

some of these challenges with conclusion in Section IV.

II. EVOLVING CNS ISSUES

CNS challenges have evolved from time to time in the last

few decades. Initially, minimization of clock skew was the

primary objective. But the area/power cost to target zero clock

skew is very high. In addition, it limits the maximum operating

frequency. So there has been a paradigm shift from zero clock

skew to useful clock skew optimization and skew margin. The

key challenges for CNS/CTS in modern SoC designs include

the following.

A. Variations

Several works targeted chip level clock tree synthesis to

tackle clock divergence issues across various corners [17].

978-1-4799-3282-5/14/$31.00 ©2014 IEEE ICSICT2014, Guilin, China

But it does not consider any timing information of the data-

path. [18] resolves the clock skew scheduling problem in

presence of process variations by ILP formulation. Link-

insertion technique has been proposed to build variation toler-

ant clock network synthesis [19][20]. TSV (Through-Silicon-

Via) induced stress could cause timing corner mismatch, and

is another challenge in 3D clock tree synthesis which has been

addressed in [21].

However, it is difficult to model OCV-impact to guide clock

tree synthesis. Typically in industrial timers two types of clock

arrivals are calculated for each pin, namely early arrival and

late arrival to accommodate OCV, and are characterized by

OCV-derates [22]. For instance, suppose one level of buffer

delay is 60ps and OCV-derates are 0.95-1.05. Then the early

delay (late delay) for that level would be 60 × 0.95 = 57ps

(60 × 1.05 = 63ps). As OCV-derates increase, i.e., derates

become more apart from 1.00, it becomes difficult to achieve

the timing closure. Also, accurate estimation of OCV is

impossible to perform unless the clock tree is synthesized,

because the effect of OCV can not be accounted for unless

launch/capture path branching points are known. Furthermore,

the advanced OCV analysis, which depends on the path length

from clock source to sink, relies on the clock tree routing as

well. So it is imperative to incrementally modify the clock

tree even after clock tree synthesis and routing to tackle OCV-

impact.

B. Low Power Objective

Clock nets switch frequently, and as a result the switching

power is typically very high for clock nets. 50-70% of total

dynamic power of the design can be consumed in the clock

network for lower technology nodes [23]. Clock gating is one

of the most efficient techniques to reduce power dissipation in

the clock network. Several types of clock gating, such as RTL

gating, data-driven clock gating [8] or lookahead clock gating

[9], have been proposed. In data-driven gating, sequential

elements are gated if the D and Q-signals match. An example

of data-driven clock gating is shown in Fig. 1. The D-pin

and Q-pin output are XOR-ed to generate the enable signal

for the Integrating Clock Gating (ICG) cell. But this costs

area overhead and needs additional timing margin in the data-

path. Recently, the concept of lookahead clock-gating has been

introduced [9] which avoids the constraint of timing margin

with more resource overhead. For RTL clock gating, enable

signals need to be derived. From CTS perspective, this adds

constraint on timing margins, as the group of flip-flops driving

the enable logic need to be balanced. These groups are termed

as skew groups.

Clock gating can also impact the extent of NBTI (Negative

Bias Temperature Instability) induced threshold-voltage degra-

dation in the clock buffers leading to increase in clock skew,

which is tackled in [24] by a practical design-time technique.

Multi-bit-flip-flop (MBFF) is also an effective technique for

low power clock network design, and simultaneous consid-

eration of MBFF and clock gating is done in [25] for clock

network optimization.

Multi-Vdd design [10] is an alternative for power reduction.

Level shifters and isolation cells are generally needed for this

Fig. 1. Data-driven Clock Gating

adding complexity and latency. Clock tree balancing across

different power domains is also a challenging task for the

designers. In addition, a chip can operate at several modes

to reduce power dissipation. For instance, a design can be

in active or sleep mode when performance or power is the

main concern respectively. To handle multiple power modes,

functional timing paths across all active modes need to be

analyzed for timing closure adding complexity to CTS.

C. Design Complexity

In order to cope with Moore’s law, design size is increasing

day-by-day. So flat-CTS for designs with multi-million flip-

flops is no more feasible, and the way-out is the hierarchi-

cal clock gating structures with tens of thousands of clock

gators. Clock-multiplexers and pre-existing structures such as

isolation/level-shifter cells also need to be inserted respectively

to support multi-mode and multiple power domains. In ad-

dition, physical constraints such as blockages/macros create

issues in placing and routing the clock buffers.

With growing design complexity, variation effects and low

power objective, timing closure has become very challenging

job for today’s multi-corner, multi-mode designs. Clock tree

aware placements are performed in [26][27] to minimize wire-

length and switching power. A few studies have been con-

ducted on timing optimization during placement and routing

as well [28][29][30]. [31] presents a novel algorithm for

permuting latch positions and sizes in the late stages of design

flow for timing closure. But in spite of all these efforts, timing

violations persist in deep routing stage and the designers

need to manually fix those violations for every corner/mode

combination. As a result, data-path aware clock scheduling,

that too in the deep routing stage, has become an inevitable

step to meet stringent delivery targets.

III. CLOCK TREE RESYNTHESIS

Performing simultaneous optimization of timing and power

in presence of variation effects by building the clock network

from scratch is a very difficult task, if not impossible. So

post-CTS optimizations are essential to meet timing closure.

Such optimizations, such as datapath optimization, at the post-

CTS stage typically cost very high area/power overhead. This

calls for clock tree resynthesis, i.e., incremental clock tree

modification after the clock tree has been synthesized. There

978-1-4799-3282-5/14/$31.00 ©2014 IEEE ICSICT2014, Guilin, China

Floorplanning, Placement

Pre-CTS Optimization

Clock Tree Synthesis and Clock Tree Routing

Post-CTS Timing Closure

Clock Tree Resynthesis

Fig. 2. Clock tree resynthesis in a conventional back-end flow [16]

are a few works on this. [32] formulates an LP problem to

optimize clock period by bounded delay buffering at the leaves

of the clock trees, i.e., the input pins of the sequential flip-

flops. Another work [15] has focused on useful clock skew

realization in MCMM designs locally by adding/removing

buffers. The key limitations in these approaches are (i) the

high area cost, since buffers are added at the leaf level, and

(ii) implementability as it is difficult to place and route many

buffers in an already synthesized/routed clock tree of modern

space-constrained designs.

To address this, a new clock tree resynthesis methodology

was proposed in [16]. Fig. 2 shows how this methodology

fits into the conventional back-end flow. Instead of calculating

clock schedule at the leaf-level registers, it computes the

offsets in clock arrival at the clock tree driver pins of a placed

design with already synthesized and routed clock tree. Offsets

can be positive and negative, translating to respectively delay

and acceleration in clock arrival at the clock tree pins. For

instance, a positive offset of 50ps at a clock driver pin p

means the clock arrival at p needs to be delayed by 50ps.

An LP engine [33] is used to estimate these offsets which

consider multi-mode, multi-corner scenarios. The computation

of offsets is also OCV-aware, and it is realizable since the LP

engine has the prior knowledge of depth and path-lengths of

the individual clock sinks in the post-CTS and post-routed

clock tree. The offsets are discretized in terms of intrinsic

buffer delay or the minimum delay of the buffer in the clock

tree and the LP engine is capable of restricting the levels of

offsets.

The LP engine can only compute the offsets and predict the

improvement in the timing metrics, such as total negative slack

(TNS) or worst negative slack (WNS), if those offsets can

be accurately realized in the targeted synthesized/routed clock

tree. Fig. 3 presents the scheme to implement the positive

offsets. A positive offset doff at the output pin op of the buffer

B1 can be realized by inserting a delay element D (may be

a buffer or a chain of buffers). Although this approach has

some area overhead, it is non-disruptive to the other parts of

the clock tree as there is no impact of D on the siblings of

B1. However, difficulty arises when the negative offsets are

exercised. This is because the negative offsets can be realized

either by sizing or restructuring the clock tree, and not by

inserting any extra delay elements like in case of positive

offsets. But these would have negative effects on the timing

profile of the rest of the clock tree and can possibly cause

severe degradation on the TNS/WNS of the design.

B1

B1

D

B2 B2B3 B3

B4

B4 B5

B5

B0B0

op +doff

Fig. 3. Positive offset realization [16]

In this context, the capability of the LP engine to restrict the

levels of offsets is exploited. Since more the negative offset,

more is the difficulty to implement it, a set of experiments are

performed with this LP engine on four industrial designs to

bound the offset range and a conclusion is derived as potential

TNS gain is possible by realizing many levels of positive

offsets with one level of negative offset in conjunction.

Clock tree restructuring and sizing are performed to realize

this one level of negative offset. It should be noted that restruc-

turing is done within the scope of a hyper-net to guarantee

that the clock gating functionality is restored. A hyper-net is a

set of logically equivalent or opposite polarity nets separated

by buffers/inverters in the same physical partition as the root

clock driver of the top net, and essentially connected in a tree-

topology.

The key strategy for clock tree restructuring is the utilization

of the positive slack. If all sequential cells in the transitive

fanout (TFO) cone of a clock tree driver pin have positive

slack (more specifically slack at the Q-pin), then that driver

pin is annotated as a potential acceptors for a pin with

negative offset. So for each of the pins annotated with negative

offset, the potential acceptors are explored which could give

necessary speed-up in the clock arrival, and the best move

in terms of accurately realizing negative offset is accepted

with backtracking mechanism. Any move which introduces

DRC violation is discarded. The geometrical proximity of

the moving pin and the acceptor pin is considered in order

to avoid any extra buffering which could increase the area.

To identify the potential acceptor pins, a slack manager is

developed to track the slack values and this is updated after

each restructuring.

An example is illustrated in Fig. 4, where the pin p of the

buffer B1 is annotated with a negative offset. With the slack

manager, the potential acceptor pins are extracted and it comes

out (from the best cost) that the output pin of B6 could be

the best insertion point. So a restructuring is performed by

detaching B1 from B0’s fanout and connecting it to B6. Fig.

4(a) and 4(b) respectively show the clock tree before and after

the restructuring.

This methodology is applied on several industrial designs

978-1-4799-3282-5/14/$31.00 ©2014 IEEE ICSICT2014, Guilin, China

B1B2 B3

B4 B5

B6

B7
B8B0

level = x− 1

level = x

level = x+ 1p

(a) Clock tree hyper-net where p has negative offset of 1
clock tree level.

B1

B2 B3
B4 B5

B6

B7
B8B0

level = x− 1

level = x

level = x+ 1
p

(b) Resultant clock tree hyper-net where the negative
offset at p is realized by restructuring.

Fig. 4. Negative offset realization example [16]

using cutting-edge technology nodes (20-32nm). An average

improvement of 57%, 12% and 42% in TNS, WNS and failure-

end-point (FEP) respectively is achieved with an average clock

tree area overhead of 26%. The baseline or the initial timing

metrics are after placement, clock tree synthesis and routing

by an industrial tool. With only one level of negative offset

realization (no positive ones), the corresponding improvements

in TNS, WNS, FEP are respectively 16%, 1% and 12%

with average clock tree overhead less than 2%. Results show

that the negative offset realization is area-efficient, but the

improvement in timing metrics is less, while coupling this with

positive offset realization results to a significant improvement

in timing but at the cost of the area overhead.

IV. CONCLUSION

The problem of clock network synthesis has evolved over

time, initially from building single clock net buffering problem

with zero skew to OCV-aware useful clock skew optimiza-

tion targeting low power in multi-corner multi-mode designs

spanning multiple clock domains. In this paper, we have

discussed several key challenges in modern clock network

synthesis and presented a clock resynthesis methodology [16]

to address some of those issues. We anticipate more research

in this area, such as OCV-aware data-clock co-optimization to

achieve timing closure in MCMM designs with low area/power

overhead.

REFERENCES

[1] A. Rajaram and D. Z. Pan, “Meshworks: An efficient framework for
planning, synthesis and optimization of clock mesh networks,” ASPDAC,
pp. 250–57, 2008.

[2] M. Cho, D. Z. Pan, and R. Puri, “Novel binary linear programming for
high performance clock mesh synthesis,” International Conference on

Computer Aided Design, pp. 438–43, 2010.

[3] R. Tsay, “An exact zero skew clock routing algorithm,” IEEE Trans-

actions on Computer Aided Design of Integrated Circuits and Systems,
pp. 242–249, 1993.

[4] J. L. Tsai, T. H. Chen, and C. C. Chen, “Zero skew clock-tree optimiza-
tion with buffer insertion/sizing and wire sizing,” IEEE Transactions on

Computer Aided Design of Integrated Circuits and Systems, pp. 565–
572, 2006.

[5] K. D. Boese and A. B. Kahng, “Zero skew clock-routing trees with
minimum wirelength,” ASIC Conference and Exhibit, pp. 17–21, 1992.

[6] Y. Taur and D. Buchanan, “CMOS scaling in nanometer regime,” Proc.

IEEE, pp. 486–503, 1997.
[7] V. Mehrotra and D. Boning, “Technology scaling impact of variation

on clock skew and interconnecet delay,” Interconnect Tech. Conference,
pp. 4–6, 2001.

[8] S. Wimer and I. Koren, “Design flow for flip-flop grouping in data-
driven clock gating,” IEEE Transactions Very Large Scale Integration

(VLSI) Systems, pp. 771–78, 2014.
[9] S. Wimer and A. Albahari, “A look-ahead clock gating based on

auto-gated flip-flops,” IEEE Transactions on Circuits and Systems-1,
pp. 1465–72, 2014.

[10] M. D. F. Wong, “Low power design with multi-vdd and voltage islands,”
International Conference on ASIC, p. 1325, 2007.

[11] J. P. Fishburn, “Clock skew optimization,” IEEE Trans. on Computers,
pp. 945–51, 1990.

[12] R. Deokar and S. Sapatnekar, “A graph-theoretic approach to clock skew
optimization,” ISCAS, pp. 407–10, 1994.

[13] L. F. Chao and H. M. Sha, “Retiming and clock skew for synchronous
systems,” ISCAS, pp. 283–86, 1994.

[14] X. Liu, M. C. Papaefthymiou, and E. G. Friedman, “Maximizing
performance by retiming and clock skew scheduling,” DAC, pp. 231–36,
1999.

[15] W. Shen, Y. Cai, W. Chen, Y. Lu, Q. Zhou, and J. Hu, “Useful clock
skew optimization under a multi-corner multi-mode design framework,”
International Symposium on Quality Electronic Design, pp. 62–68, 2010.

[16] S. Roy, P. M. Mattheakis, L. Masse-Navette, and D. Z. Pan, “Clock tree
resynthesis for multi-corner multi-mode timing closure,” ISPD, pp. 69–
76, 2014.

[17] A. Rajaram and D. Z. Pan, “Robust chip-level clock tree synthesis for
SOC designs,” DAC, pp. 720–723, 2008.

[18] V. Nawale and T. W. Chen, “Optimal useful clock skew scheduling in
the presence of variations using robust ILP formulations,” International

Conference on Computer-Aided Design, pp. 27–32, 2006.
[19] T. Mittal and C. K. Koh, “Cross link insertion for improving tolerance

to variations in clock network synthesis,” ISPD, pp. 29–36, 2011.
[20] A. Rajaram and D. Z. Pan, “Variation tolerant buffered clock network

synthesis with cross links,” ISPD, pp. 157–64, 2006.
[21] J. Yang, J. S. Pak, X. Zhao, S. K. Lim, and D. Z. Pan, “Robust clock tree

synthesis with timing optimization for 3D-ICs,” ASPDAC, pp. 621–26,
2011.

[22] J. Bhaskar and R. Chadha, Static Timing Analysis for Nanometer

Designs: A Practical Approach. Springer, 2009.
[23] D. Liu and C. Svensson, “Power consumtion estimation in CMOS VLSI

chips,” IEEE Journal of Solid State Circuits, pp. 663–70, 1994.
[24] A. Chakraborty and D. Z. Pan, “Skew management of NBTI impacted

gated clock trees,” ISPD, pp. 127–33, 2010.
[25] S. C. Lo, C. C. Hsu, and M. P. Lin, “Power optimization for clock

network with clock gate cloning and flip-flop merging,” ISPD, pp. 77–
84, 2014.

[26] D. Lee and I. L. Markov, “Obstacle-aware clock-tree shaping during
placement,” ISPD, pp. 123–130, 2011.

[27] Y. Wang, Q. Zhou, X. Hong, and Y. Cai, “Clock-tree aware placement
based on dynamic clock-tree building,” ISCAS, pp. 2040–43, 2007.

[28] K. Rajagopal, T. Shaked, Y. Parasuram, T. Cao, A. Chowdhury, and
B. Halpin, “Timing driven force directed placement with physical net
constraints,” ISPD, pp. 60–66, 2003.

[29] Y. Liu, R. S. Shelar, and J. Hu, “Delay-optimal simultaneous technology
mapping and placement with applications to timing optimization,” In-

ternational Conference on Computer-Aided Design, pp. 101–106, 2008.
[30] S. W. Hur, A. Jagannathan, and J. Lillis, “Timing driven maze routing,”

TCAD, pp. 234–241, 2000.
[31] S. Held and U. Schorr, “Post-routing latch optimization for timing

closure,” DAC, 2014.
[32] J. Lu and B. Taskin, “Post-CTS clock skew scheduling with limited delay

buffering,” International Midwest Symposium on Circuits and Systems,
pp. 224–227, 2009.

[33] V. Ramachandran, “Functional skew aware clock tree synthesis,” ISPD,
2012.

978-1-4799-3282-5/14/$31.00 ©2014 IEEE ICSICT2014, Guilin, China

