
0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2652221, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 1

TILA-S: Timing-Driven Incremental Layer Assignment Avoiding
Slew Violations

Derong Liu, Bei Yu Member, IEEE, Salim Chowdhury Member, IEEE, and David Z. Pan Fellow, IEEE

Abstract—As VLSI technology scales to deep submicron and beyond,
interconnect delay greatly limits the circuit performance. The traditional
2D global routing and subsequent net by net assignment of available empty
tracks on various layers lacks a global view for timing optimization. To
overcome the limitation, this paper presents a timing driven incremental
layer assignment tool, TILA-S, to reassign layers among routing segments
of critical nets and non-critical nets. Lagrangian relaxation techniques are
proposed to iteratively provide consistent layer/via assignments. Modeling
via min-cost flow for layer shuffling avoids using integer programming
and yet guarantees integer solutions via uni-modular property of the
inherent model. In addition, multiprocessing of K × K partitions of the
whole chip provides runtime speed up. Furthermore, a slew targeted
optimization is presented to reduce the number of violations incrementally
through iteration-based Lagrangian relaxation, followed by a post greedy
algorithm to fix local violations. Certain parameters introduced in the
models provide trade-off between timing optimization and via count.
Experimental results in both ISPD 2008 and industry benchmark suites
demonstrate the effectiveness of the proposed incremental algorithms.

Index Terms—Global routing, layer assignment, timing, min-cost network
flow.

I. INTRODUCTION

AS VLSI technology scales to deep submicron and beyond, inter-
connect delay plays a determining role in timing [1]. Therefore,

interconnect synthesis, including buffer insertion / sizing and timing-
driven routing, becomes a critical problem for achieving timing closure
[2]. Global routing is an integral part of a timing convergence flow
to determine the topologies and layers of nets, which greatly affect
the circuit performance [3]–[9]. In emerging technology nodes, back-
end-of-line (BEOL) metal stack offers heterogeneous routing resources,
i.e., dense metal at the lower layers and wider pitches at the upper
layers. Fig. 1 gives one example of cross section of IC interconnection
stack in advanced technology nodes [10], where wires and vias on top
metal layers are much wider and much less resistive than those on
lower metals. Besides, the normalized pitches of different metal layers
from [11] are also listed. Advanced routing algorithms should not only
be able to achieve routability, but also intelligently assign layers to
overcome interconnect timing issues.

Layer assignment is an important step in global routing to assign
each net segment to a metal layer. It is commonly generated during or
after the wire synthesis to meet tight frequency targets, and to reduce
interconnect delay on timing critical paths [12]. In layer assignment,
wires on thick metals are much wider and thus, less resistive than those
on thin metals. If timing critical nets are assigned to lower layers, it
will make timing worse due to narrower wire width/spacing. Although
top metal layers are less resistive than those in lower (thin) metals, it is
impossible to assign all wires to top layers. That is, layer assignment
should satisfy the capacity constraints on metal layers. If an excessive
number of wires are assigned to a particular layer, it will aggravate

The preliminary version has been presented at the International Conference
on Computer-Aided Design (ICCAD) in 2015. This work is supported in part
by Oracle Lab Funding, NSF, SRC, and CUHK Direct Grant for Research.

D. Liu and D. Pan are with the Department of Electrical and Computer
Engineering, The University of Texas at Austin, TX, USA.

B. Yu is with the Department of Computer Science and Engineering, The
Chinese University of Hong Kong, NT, Hong Kong.

S. Chowdhury is with Oracle Corp., Austin, TX, USA.

Wire

Via

Metal 1

Lower
Metal Layers

Intermediate
Metal Layers

Top
Metal Layers

Layer Pitch

M10 1.00
M9 1.00
M8 0.63
M7 0.63
M6 0.63
M5 0.63
M4 0.63
M3 0.33
M2 0.35
M1 0.33

Fig. 1: The cross section of IC interconnection stack in advanced
technology nodes [10], where wires and vias on top metal layers are
much wider and much less resistive than those on lower metals. The
normalized pitch lengths of different metal layers are listed in the table
(source: [11]).

congestion and crosstalk. Meanwhile, the delay due to vias cannot be
ignored in emerging technology nodes [1]. In addition, during timing
closure slew violations could affect the utilization of buffering resources
[13]. Thus to guarantee signal integrity and reduce buffering resources,
slew violations need to be avoided during layer assignment.

Recently, layer assignment has been considered in two design stages,
i.e., buffered tree planning and 3D global routing. Some studies consider
layer assignment during buffer routing trees design [12], [14], [15]. Li
et al. [12] proposed a set of heuristics for simultaneous buffer insertion
and layer assignment. Hu et al. [14], [15] proved that, even if buffer
positions are determined, the layer assignment with timing constraints
is NP-complete. During 3D global routing, layer assignment is a
popular technique for via minimization. Cho et al. [3] proposed an
integer linear programming (ILP) based method to solve the layer
assignment problem. Since via minimization is the major objective,
all wires tend to be assigned onto the lower layers. [16], [17] applied
dynamic programming to solve optimal layer assignment for a single
net. To overcome the impact of net ordering, different heuristics or
negotiation techniques were proposed in [18], [19]. Ao et al. [19]
considered the delay in layer assignment, but since via capacity was
not considered, more segments can be illegally pushed onto higher
routing layers. A min-cost flow based refinement was developed in
[20] to further reduce the number of vias. Furthermore, Lee et al. [21]
proposed an enhanced global router with layer assignment refinement
to reduce possible violations through min-cost max-flow network. This
framework works at one edge each time in a sequential order. For slew
optimization, repeaters/buffers insertions are widely adopted to fix the
potential slew violations [12], [13], [22]. Zhang et al. [23] utilized an
ILP approach to reconstruct the over-the-block steiner tree structure to
improve slew.

Existing layer assignment studies suffer from one or more of the fol-
lowing limitations: (1) Most works only target at via number minimiza-
tion, but no timing issues are considered. Since timing requirements
within a single net are usually different for different sinks, assigning

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2652221, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 2

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 0 20 40 60 80 100 120 140 160

207807

max delay = 144 x 10
5

N
u

m
b

e
r

o
f

N
e

ts

Delay Distribution (10
5
)

NVM

(a)

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 0 20 40 60 80 100 120 140 160

207894

max delay = 23 x 10
5

N
u

m
b

e
r

o
f

N
e

ts

Delay Distribution (10
5
)

TILA-S-5%

(b)

Fig. 2: Net delay distribution for benchmark adaptec2. (a) Result by
layer assignment solver NVM [18]; (b) Result by our timing-driven
incremental layer assignment solver TILA-S, where 5% most critical
nets are reassigned layers.

all segments of a set of nets on higher metal layers is not the best use
of critical metal layer resources. That is, intelligent layer assignment
should not blindly assign all segments of a net to a set (a pair, for
example) of higher metal layers. It should be aware of capacitive
loading of individual segments within a net to achieve better timing
with the limited available higher metal layer resources. (2) In emerging
technology nodes, the via delays contribute a non-negligible part of total
interconnect delay. But the delay impact derived from vias is usually
ignored in previous layer assignment works. (3) During post routing
stage, slew violations may cause more buffering resources. There are
limited works to avoid slew violations globally during layer assignment
stage. (4) The net-by-net strategy may lead to local optimality, i.e.,
for some nets the timings are over-optimized, while some other nets
may have no enough resources in high layers. Meanwhile, considering
one edge at each time may lose potential optimality because the edge
ordering could also affect the subsequent solutions.

To close on timing for critical nets that need to go long dis-
tances, layer assignment needs to be controlled by multi-net global
optimization. For example, Fig. 2 compares the delay distributions of
benchmark ‘adaptec2’ by conventional layer assignment solver [18] and
our incremental timing-driven solution, while Fig. 3 compares the slew
distribution results. We can see that, since conventional layer assignment
only targets at via minimization, the maximum delay and the maximum
slew can be very large. Since our timing-driven planner is with global
view, the maximum delay can be much better, i.e., the normalized
maximum delay can be reduced from 144×105 to 23×105. Meanwhile,
the slew violations can also be reduced significantly. The maximum
slew decreases from 12.74× 105 to 2.16× 105. Here we do not take
buffered information into accounts for this benchmark.

For very large high-performance circuits, either long computation
times have to be accepted or routing quality must be compromised.
Therefore, an incremental layer assignment to iteratively improve
routing quality is a must. In this paper, we propose an incremental layer
assignment framework targeting at timing optimization. Incremental

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140

519468

max slew = 12.74 x 10
5

N
u

m
b

e
r

o
f

S
in

k
s

Slew Distribution (10
4
)

NVM

(a)

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140

528484

max slew = 2.16 x 10
5

N
u

m
b

e
r

o
f

S
in

k
s

Slew Distribution (10
4
)

TILA-S-1%

(b)

Fig. 3: Sink slew distribution for benchmark adaptec2. (a) Result by
layer assignment solver NVM [18]; (b) Result by our timing-driven
incremental layer assignment solver TILA-S, where 1% most critical
nets are reassigned layers.

optimizations or designs are very important in physical design and
CAD field to achieve good timing closure [24]. Fast incremental
improvements are developed in different timing optimization stages,
such as incremental clock scheduling [25], [26], incremental buffer
insertion [27], and incremental clock tree synthesis [28]. To further
improve timing, incremental placement is also a very typical solution
[29], [30]. Besides, there are several incremental routing studies (e.g.
[31]) to introduce cheap and incremental topological reconstruction.

To the best of our knowledge, this work is the first incremental
layer assignment work integrating via delay and solving all the nets
simultaneously. A multilayer global router can either route all nets
directly on multilayer solution space [4], [5] or 2D routing followed
by post-stage layer assignment [6]–[9]. Note that as an incremental
layer assignment solution, our tool can smoothly work with either type
of global router. Our contributions are highlighted as follows.

• A mathematical formulation gives the layer assignment solutions
with optimal total wire delays and via delays.

• A Lagrangian relaxation based optimization iteratively improves
the layer assignment solution.

• Lagrangian relaxation subproblem (LRS) is solved via min-cost
flow model that guarantees integer solutions due to inherent uni-
modular property, thus, avoiding runtime extensive methods such
as ILP.

• An iterative Lagrangian relaxation based slew optimization strat-
egy is proposed to reduce the violations globally.

• A post slew optimization algorithm searches potential usable layers
for fixing local violations.

• Multiprocessing of K ×K partitions of the whole chip provides
runtime speed up.

• Both ISPD 2008 and industry benchmarks demonstrate the effec-
tivenesses of our framework.

The remainder of this paper is organized as follows. Section II
provides some preliminaries and the problem formulation. Section
III gives mathematical formulation, and also proposes sequence of

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2652221, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 3

M9
M8
M7
M6

(a) (b)

Fig. 4: Layer design and grid models. (a) A design with four routing
layers {M6, M7, M8, M9}; (b) Grid model with preferred routing
directions.

multi-threaded min-cost flow algorithm to achieve further speed-up. In
addition, mitigating slew violations is discussed in this Section. Section
IV reports experimental results, followed by conclusion in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section we introduce the graph model and the timing model
applied in this paper. Then the problem formulation of timing-driven
incremental layer assignment is provided.

A. Graph Model

Similar to the 3D global routing problem, layer assignment problem
can be modeled on a 3D grid graph, where each vertex represents a
rectangular region of the chip, so called a global routing cell (G-Cell),
while each edge represents the boundary between two vertices. In the
presence of multiple layers, the edges in the z-direction represent vias
connecting different layers. Fig. 4(a) shows a grid graph for routing a
circuit in multi-metal layer manufacturing process. Each metal layer is
dedicated to either horizontal or vertical wires. The corresponding 3D
grid graph is shown in Fig. 4(b).

To model the capacity constraint, for each x/y-direction edge, we
denote its maximum routing capacity as ce. Besides, the via capacity of
each vertex, denoted by cv , is computed as in [32]. In brief, via capacity
refers to the available space for vias passing through the cell, and is
determined by the available routing capacity of those two x/y-direction
edges connected with the vertex. If there is no routing space for those
two edges, no vias are allowed to be inserted in this cell. Thus, this via
capacity model helps to keep adequate routing space for vias through
layers, and places the limits of wires on higher metal layers, which may
result in wire delay degradation.

B. Delay Model

We are given a global routing of nets, where each net is a tree topology
with one source and multiple sinks. Based on the topology, for each net
we have a set of segments S. Here we give an example of net model in
Fig. 5, where each net contains two segments. To evaluate the timing of
each net, we adopt Elmore delay model, which is widely used during
interconnect synthesis in physical design. The delay of a segment si
on a layer l, denoted by de(i, l), is computed as follows:

de(i, l) = Re(l) · (C(l)/2 + Cdown(si)), (1)

where Re(l), C(l) refer to the edge resistance on layer l, and edge
capacitance on layer l, respectively. Cdown(si) refers to the downstream
capacitance of si. Note that the downstream capacitance of si is
determined by the assigned layers of its all downstream segments. To
calculate the downstream capacitance for each si, we should traverse
the net tree from sinks to source in a bottom-up manner. Therefore,
the downstream capacitance of the source segment, i.e. the segment
connected with the driver pin, should be calculated after all the other
segments have obtained their downstream capacitances.

S1 S2

S3

S4 Buffer

Driver

Fig. 5: Example of net model.

For a via vm connecting segments between layers l and l + 1, its
delay can be calculated as follows.

dv(vm, l) = Rv(l) · Cdown(vm). (2)

Here Rv(l) is the resistance of via between layers l and l + 1, and
Cdown(vm) is the downstream capacitance of the upstream segment
connected to via vm. If the downstream capacitance of a via is equal
to zero, then we assume the via delay is negligible.

In addition, buffer positions can be considered in our delay model.
That is, for one segment si, if there is one buffer at its end point,
its downstream capacitance Cdown(si) should be equal to the buffer
input capacitance. As shown in Fig. 5, Cdown(s2) is equal to the
input capacitance of the buffer. Because buffers are fabricated in silicon
and have pins connected with a specified metal layer, integration with
buffers in our assumption would affect the downstream capacitance
for the corresponding pin. Meanwhile, integration with buffers would
also introduce buffer intrinsic delay and driving delay for each driving
net. The intrinsic delay is dependent on the driving buffer, while
the driving delay is in proportion to the downstream capacitance.
Because capacitances of different layers vary less than resistances, we
do not include the buffer driving delay in our work. Therefore, through
updating the downstream capacitances and including buffer intrinsic
delay, our framework can handle timing optimization for both pre-
buffered and post-buffered designs.

C. Slew Model
Besides delay, our framework also considers slew computation to reduce
the potential slew violations. Since each routing net is a tree topology in
essence, we traverse the tree in a breadth-first manner from the driver
to each sink and calculate the slew for each pin. For each segment,
the input slew is represented by its upstream pin slew, and the output
slew by its downstream pin slew. To calculate the output slew, we adopt
PERI model, which has been shown to provide less than 1% error [33].
The calculation is given in Eq. (3), where Slw(pu(si)), Slw(pd(si))
are the input and output slew of si, respectively, while Slwstep(si) is
the step slew.

Slw(pd(si)) =
√
Slw(pu(si))2 + Slwstep(si)2. (3)

Based on PERI model, the segment output slew depends on both its
input slew and step slew. The input slew is also the output slew of
the upstream segment, so it can be obtained iteratively through Eq. (3).
Regarding the step slew, we calculate it through the combination of
PERI model and Bakoglu’s metric. It is proved to have error within
4% [33]. The calculation is shown in Eq. (4), where l(si) is the layer
on which si is assigned, and de(i, l) is Elmore delay of segment si on
layer l.

Slwstep(si) = Slwstep(i, l(si)) = ln9 · de(i, l(si)). (4)

With the calculated step slew, we can obtain the output slew for each
segment. To see the impact of layer assignment, the output slew can be
represented as a function of its input slew and the layer to be assigned.

Slwe(i, l(si)) =
√
Slw(pu(si))2 + (ln9 · de(i, l(si)))2. (5)

Besides, via slew should also be considered during slew calculation
and computed in a similar way as segment slew. Eq. (6) gives the slew

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2652221, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 4

n1

n2

n3 n1
n2

n3

Non-Critical Nets: n1 n2 ; Critical Net: n3

Fig. 6: An example of timing driven layer assignment. In initial layer
assignment net n3 is timing critical net. Through resource releasing
from nets n1 and n2, the total timing gets improvement.

for via vm from layer l to layer l + 1.

Slwv(vm, l + 1) =
√
Slw(pvm)2 + (ln9 · dv(vm, l))2. (6)

In contrary to downstream capacitance calculation in a bottom-up
manner, here we start from the segment connected with the net driver.
Then each segment and its connected via are traversed in a breadth-first
manner until every sink is reached. With this approach, we obtain the
output slew for each net sink sequentially. If the sink slew exceeds a
specified slew constraint, we assume there is a slew violation.

D. Problem Formulation
Based on the grid model and timing model discussed in the preceding
section, we define the timing-driven incremental layer assignment
(TILA) problem as follows:

Problem 1 (TILA). Given a global routing grid, a set of critical net
segments and layer / via capacity information, timing-driven incremen-
tal layer assignment assigns each segment passing through an edge to a
layer, so that layer assignment costs (weighted sum of segment delays,
via delays, and slew violations) can be minimized, while the capacity
constraints of each edge on each layer are satisfied.

It shall be noted that in this work we only consider layer assignment
for timing optimization, while other techniques such as buffering are
not discussed. One instance of TILA problem with three nets is
demonstrated in Fig. 6, where nets n1 and n2 are non-critical nets,
while net n3 is timing critical net. In the initial layer assignment, net
n3 is assigned lower layers. Since the routing resources are utilized by
nets n1 and n2, n3 cannot be shuffled into higher layers to improve
timing. Through a global layer reassignment, we are able to achieve a
better timing assignment solution, where both n1 and n2 release high
layer resources to n3.

Naclerio et al. proved that even if no timing is considered, the
decision version of layer assignment for via minimization is NP-
complete [34]. Thus the decision version of TILA problem is NP-
complete as well.

III. TILA ALGORITHMS

In this section, we introduce our framework to solve the TILA problem.
First a mathematical formulation targeting delay optimization will be
given. Then a Lagrangian relaxation based optimization methodology
is proposed to solve this problem. After the delay optimization, a
Lagrangian relaxation based slew optimization is presented, followed
by a post optimization stage. For convenience, some notations used in
this section are listed in TABLE I.

A. Mathematical Formulation
The starting mathematical formulation of TILA problem is shown in
Formula (7). In the objective function, the first term is to calculate

TABLE I: Notations used in this paper.
L number of layers
S set of all segments considered
E set of all edges
G set of all g-cells on 2-D plane
Ex set of all pairs of crossing segments
P (si) nodes of segment si, i.e. upstream pin and downstream pin
N(vm) set of neighboring segments of via vm
Se(i) set of segments assigned to the same edge as si
Ex(g) set of crossing segment pairs passing through g-cell g
aij binary variable; if i-th segment is assigned to layer j then

aij = 1, otherwise aij = 0

de(i, j) timing cost if si is assigned to layer j
dv(i, p, k) timing cost of via v from layer k to k+1, where v ∈ P (si)∩

P (sp)

l(si) layer where segment si is assigned
ce(i, j) routing capacity of edge e through which si passes on layer

j

cg(k) available via capacity of g-cell g on layer k

the cost from segments, while the second term is to calculate the cost
from vias. Here de(i, j) is calculated through Eq. (1), and dv(i, p, k)
is derived from Eq. (2).

min
∑
i∈S

L∑
j=1

de(i, j) · aij+

∑
(i,p)∈Ex

L∑
j=1

L∑
q=1

max(j,q)−1∑
k=min(j,q)

dv(i, p, k) · aij · apq, (7a)

s.t.
∑
j

aij = 1, ∀i ∈ [1, S], (7b)∑
si∈Se(i)

aij ≤ ce(i, j),∀e ∈ E, ∀j ∈ [1, L], (7c)

∑
(i,p)∈Ex(g)

∑
min(j,q)≤k<max(j,q)

aij · apq ≤ cg(k),

∀g ∈ G, ∀k ∈ (1, L), (7d)

aij is binary . (7e)

Constraint (7b) is to ensure that each segment of nets would be
assigned to one and only one layer. Each edge e ∈ E is associated
with one capacity ce(i, j), and constraint (7c) is for the edge capacity
of each layer. Constraint (7d) is for the via capacity in each layer, which
restricts the available via capacity for each layer at certain grid position.

First, we show that if each Cdown(si) is constant, the TILA can
be formulated as an integer linear programming (ILP), then a mature
ILP solver is possible to be applied. Here Cdown(si) is downstream
capacitance of segment si. We can use a boolean variable γij,pq
to replace each non-linear term aij · apq . Then Formula (7) can
be transferred into ILP through introducing the following artificial
constraints: {

aij + apq ≤ γij,pq + 1,
aij ≥ γij,pq, apq ≥ γij,pq.

(8)

Due to the computational complexity, ILP formulation suffers from
serious runtime overhead, especially for those practical routing test
cases. A popular speedup technique is to relax the ILP into linear
programming (LP) by removing the constraint (7e). It is obvious that
the LP solution provides a lower bound to the original ILP formulation.
We observe that the LP solution would be like this: each aij is assigned
to 0.5 and each γij,pq is 0. By this way, all the constraints are satisfied,
and the objective function is minimized. However, all these 0.5 values to

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2652221, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 5

aij provide no useful information in guiding the layer assignment, as we
prefer each aij closes to either 0 or 1. In other words, the LP relaxation
is hard to provide reasonable good solution. Instead of expensive ILP
formulation or its LP relaxation, our framework proposes a Lagrangian
relaxation based algorithm to solve the original Formula (7).

B. Lagrangian Relaxation based Optimization
Lagrangian relaxation [35] is a technique solving optimization problems
with difficult constraints, where some or all hard constraints are moved
into objective function. In the updated objective function, each new term
is multiplied with a constant known as Lagrange Multiplier (LM). Our
idea is to relax the via capacity constraint (7d) and incorporate it into
the objective function. We specify each aij · apq a non-negative LM
λij,pq , and move the constraint into objective function. The modified
formula is called Lagrangian relaxation subproblem (LRS), as shown
in Formula (9). Through this relaxation methodology, via capacity
overflow is handled with timing optimization simultaneously.

min
∑
i∈S

L∑
j=1

de(i, j) · aij

+
∑

(i,p)∈Ex

L∑
j=1

L∑
q=1

max(j,q)−1∑
k=min(j,q)

dv(i, p, k) · aij · apq

+
∑

(i,p)∈Ex

λij,pq(aij · apq − cg(k)), (9)

s.t. (7b)− (7c), (7e).

It is known that for any fixed set of LM λij,pq , the optimal result
to the LRS problem is smaller or equal to the optimal solution of
the original Formula (7) [35]. That is, the original formulation is the
primal problem and the Lagrange multiplier optimization is the dual
problem. Therefore, the Lagrangian dual problem (LDP) is to maximize
the minimum value obtained for the LRS problem by updating LMs
accordingly.

Algorithm 1 TILA

Require: Initial layer assignment solution;
Require: Critical net ratio α;

1: Select all segments based on α; . Section III-D
2: Initialize Cdown(si) for each segment si;
3: Initialize LMs;
4: while not converged do
5: Solve LRS; . Section III-C
6: Update Cdown(si) for all si;
7: Update LMs;
8: end while

Algorithm 1 gives a high level description of our Lagrangian relax-
ation based framework to the TILA problem. The inputs are an initial
layer assignment solution and a critical net ratio value α. Based on the
α value we select some critical nets and non-critical nets (line 1). All the
segments belonging to these (selected critical and non-critical) nets are
reassigned layers by our incremental framework. Please refer to Section
III-D for more details of our critical and non-critical net selection. Based
on the initial layer assignment solution, we initialize all the Cdown(si)
for each selected segment si (line 2). The LMs are also initialized in
line 3. In our implementation, the initial values of all LMs are set to
2000. Our framework iteratively solves a set of Lagrangian relaxation
subproblems (LRS), with fixed LM values (lines 4–8). In solving LRS,
we minimize the objective function in Eq. (9) based on the current set
of LMs. The details of solving LRS are discussed in Section III-C.
After solving each LRS, we re-calculate the downstream capacitances

of all the segments Cdown(si) based on Eq. (1) (line 6). We use a
subgradient-based algorithm [36] to update the LMs to maximize LDP
(line 7). In more details, the LM in the current iteration is dependent
on the LM from the last iteration λ′i,j,p,q , the step length θijpq , and the
available resources.

λi,j,p,q = λ′i,j,p,q + θijpq · (aij · apq − cg). (10)

The available via resources can be obtained directly by updating the
current via capacity as in [32]. To decide the step length, we adopt the
classic calculation as follows:

θijpq =
φ · [UB − L(λi,j,p,q)]

‖(aij · apq − cg)‖2
. (11)

Based on Eq. (11), UB refers to the upper bound of the total costs of via
v and segments connecting to v, while L(λi,j,p,q) refers to the current
total costs. φ is the scaling factor traditionally from 2 to 0, and here
we choose it as 1 for convenience. Through this updating procedure,
LMs help to fix the potential via violations. In our implementation,
the iteration in line 4 will end if one of the following two conditions
is satisfied: either the iteration number is larger than 20; or both the
wire delay improvement and the via delay improvement are less than
a pre-specified fraction.

C. Solving Lagrangian Subproblem (LRS)
Through removing the constant items and reorganizing objective func-
tion of Formula (9), we re-write LRS into Formula (12).

min
S∑

i=1

L∑
j=1

c(i, j) · ai,j +
∑

(i,p)∈Ex

L∑
j=1

L∑
q=1

c(i, j, p, q) · aij · apq,

(12)

s.t. (7b)− (7c), (7e),

where
c(i, j) = de(i, j),

c(i, j, p, q) =
max(j,q)−1∑
k=min(j,q)

dv(i, p, k) + λij,pq.

Theorem 1. For a set of fixed λij,pq , LRS is NP-hard.

Due to space limit, the detailed proof is omitted. Because of nonlinear
term aij · apq , the proof can be through a reduction from quadratic
assignment problem [37]. In addition, unless P = NP , the quadratic
assignment problem cannot be approximated in polynomial time within
some finite approximation ratio [38]. Inspired by MacCormick En-
velops, we prefer to linearize the term aij · apq:

c(i, j, p, q) · aij · apq ≈ c(i, j, p, q) · (a′pq · aij + a′ij · apq), (13)

where a′pq is the value of apq in previous iteration, and a′ij is the
value of aij in previous iteration. This linearization is based on the
segment assignment of the last iteration. Since LRS is solved iteratively
through updating LMs, this approximation is acceptable. Taking a18 ·
a29 as an instance, where a′18, a′29 are 1, we can obtain that segments
s1 and s2 are assigned on layers 8 and 9 in the previous iteration,
respectively. This means that segments s1 and s2 should belong to
critical nets because they have been assigned on high metal layers by our
framework. Thus, in later iterations, when considering the assignment
of segment s1, we assume that segment s2 is assigned on layer 9, and
vice versa, according to Eq. (13). In this manner, segments s1 and s2
are probable to be assigned on high metal layers as before. Since each
critical segment has a tendency to be assigned on high metal layers,
the problem converges after several iterations.

Through the linearization technique in Eq. (13), the objective function
in Formula (12) is a weighted sum of all the aij . We will show that the

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2652221, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 6

s1
e6,1

e8,1

e6,2

e8,2

s2

s3

s4

s t

e7,3

e9,3

Fig. 7: An example of min-cost flow model.

linearized LRS can be solved through a min-cost network flow model.
The basic idea is that the weighted sum of all the aij can be viewed as
several assignments from segments to layers, while the weight of each
aij is the cost to assign segment i to layer j. Constraints (7b) and (7c)
can be integrated into the flow model through specified edge capacity.
Constraint (7e) is satisfied due to the inherent uni-modular property of
min-cost network flow [36].

An example of such min-cost flow model is illustrated in Fig. 7.
Given four different segments s1, s2, s3, s4 and several edges, we build
up a directed graph G = (V,E) to represent the layer assignment
relationships. The vertex set V includes four parts: start vertex s,
segment vertices VS , layer vertices VL, and end vertex t. Here both start
and end vertices are pseudo vertices. Segment vertices VS represent
a collection of segments to be assigned, where the collection size
is equal to the number of segments. Similarly, a layer vertex in VL

represents a layer on which a segment can be reassigned. The edge
set E is composed of three sets of edges: {s → VS}, {VS → VL},
and {VL → t}. Notably, here the edge set E represents the edges
in the network flow, while the layer vertices represent the layers of
edges in the global routing grid model. We define all the edge costs as
follows: the cost of one edge from VS to VL is the cost of assigning
the segment to corresponding layer; the costs of all other edges are set
to 0. For segments whose directions are not compatible with certain
layers, no edge exists between those segment and layer vertices. We
define all the edge capacities as follows: the capacity of one edge
from VL to node t is the capacity of the corresponding edge in the
routing grid model; while the capacities of all other edges are set to 1.
Then edge capacity constraint can be satisfied by the capacity of edge
from VL to node t, and the capacity from node s to VS guarantees that
one segment can just be assigned on one layer. As shown in Fig. 7,
segment s1 can be assigned on either layer 6 or layer 8 of edge 1;
similarly, segment s2 can also be assigned on two layers of edge 2. The
numbers shown in VL vertices indicate the specified layer of this edge
and the corresponding edge index, respectively. The corresponding grid
model is given in Fig. 5, where we can see that segment s1 shares the
same routing edge with s3, therefore s1 competes the routing resource
with s3. Meanwhile, segment s4 has a different routing direction with
the other three segments so it has to be assigned on other layers for
vertical routing. When the number of segments to be assigned on one
edge exceeds the edge routing capacity, our framework will assign the
segments in order to minimize the assigning costs. In this example, we
assume that each segment passes through one edge with its length equal
to the grid size, as shown in Fig. 5. For a segment passing through
multiple edges, we prefer to split it into a set of sub-segments, and
each sub-segment has the same length as the grid size. We construct
the flow graph where each sub-segment has its own assigning cost,
and the number of sub-segments to be assigned on one layer is also
constrained by the layer node.

thread 1 thread 2

thread 3 thread 4

(a)

thread 1

thread 2

thread 3

thread 4

(b)

Fig. 8: Our parallel scheme to support multi-threading computing on
K × K partitions. (Here K = 4). (a) Parallel pattern 1; (b) Parallel
pattern 2.

D. Critical & Non-Critical Net Selection
Given an input ratio value α, our framework would automatically
identify α% of the total nets as critical nets, while other α% of the
total nets as non-critical nets. Both the selected critical nets and the
selected non-critical nets would be reassigned layers. The motivation
of critical net selection is to reassign their layers to improve timing,
while the motivation of non-critical net selection is to release some high
layer resources to the critical nets. By this way, our incremental layer
assignment flow is able to overcome the limitation of any net order in
original layer assignment. In our implementation, the default value of
α is set to 1, which means 1% of nets would be identified as critical
nets, while the other 1% of nets are selected as non-critical nets.

To identify all the critical nets can be trivial: first all the net timing
costs in original layer assignment are calculated based on our delay
model as in Section II, and then the α% of worst delays are selected.
Yet, non-critical net selection is not so straightforward, as randomly
selecting α% of best timing nets may not be beneficial to improve
critical net timing. Therefore, we prefer to select those nets with best
timing sharing more routing resources with the critical nets while these
nets are assigned on high metal layers. Otherwise, releasing the non-
critical nets on lower layers have no benefits for final timing results.
In our implementation, we check the 2 ·α best timing nets to associate
each net with a score to indicate their overlapping resources with critical
nets. Meanwhile, if there is an overlap with critical nets, the assigned
layer of this short net should be higher than the lowest layer of these
critical nets. Otherwise, it is not regarded as an effective overlap. Then
we select half of them with the best scores as non-critical nets.

E. Parallel Scheme
Our framework supports parallel scheme by dividing the global routing
graph into K ×K parts. An example of such division is illustrated in
Fig. 8, where K = 4. The timing-driven incremental layer assignment
is solved in each partition separately. During partitioning, each segment
is ensured to be solved in one and only one partition. To achieve this,
for segments crossing boundaries between different partitions, they are
assigned in the same partition as its geometric center. If its geometric
center is exactly on the boundary, we assume this segment belongs
to the partition in its left/bottom side. The reason of such division
is twofold. Firstly, our Lagrangian relaxation based optimization is to
solve a set of min-cost flow models, as discussed in Section III-B and
Section III-C. The runtime complexity to solve a single flow model is
O(|V | · |E|), where |V | and |E| are the vertex number and the edge
number of the graph. Dividing the whole problem into a set of sub-
problems can achieve significant speed-up. In addition, multi-threading
is applied to provide further speed-up. For instance, in Fig. 8(a) four
threads are used to solve different regions simultaneously. Secondly,
inspired by the Gauss-Seidel method [39], when one thread is solving
flow model in one partition, the most recently updated results by peer

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2652221, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 7

 Delay Optimization

 Partition
Critical Ratio α

Initial Layer
Assignment

Solution

K ⇥ K

 Post Slew Optimization

 New Assignment

 Slew Optimization

 Iterative Slew Optimization

Fig. 9: Overall timing optimization flow.

Driver
S2 S1

��

n1

Fig. 10: An example of difference between delay and slew optimization.

threads are taken into account, even if the updating occurs in the current
iteration. Besides the above example, we also propose a more general
type of parallel pattern suitable for any K×K partition, as illustrated in
Fig. 8(b). In this example, neighboring threads start in inverse directions
and avoid operating on neighboring partitions simultaneously as much
as possible. After solving different partitions, we synchronize the newly
updated layer assignment results to eliminate the potential conflicts.
This second pattern is more suitable for multi-processing considering
its synchronization mechanism.

F. Iterative Slew Optimization
During timing closure, slew violations are important performance
metrics that may cause a huge demand for buffering resources. Thus,
we should also focus on reducing the number of slew violations
besides delay optimization. Fig. 9 depicts the overall algorithm flow,
which mainly consists of two stages: delay optimization and slew
optimization. The details of delay optimization are already introduced
from Section III-B to Section III-E. As discussed in Section II-C,
segment step slew is in proportion to its delay. With the constant
segment input slew, the higher layer this segment is assigned, the fewer
output slew can be obtained. Therefore, delay optimization is deemed
to mitigate slew violations. Nevertheless, segment delay optimization
mainly considers the layer assignments of its downstream segments due
to the existence of downstream capacitance, but neglects its upstream
segments. Since layer assignments of the upstream segments affect the
segment input slew, the upstream segments should also be taken into
accounts.

An example is given in Fig. 10. Here we assume that both net
n1 and net n2 are critical while there is only one available routing
capacity for each edge, so segments s1 and s2 should compete for
the higher layer resource. Regarding delay optimization, segment s2
is possible to be assigned on a higher layer because it owes a larger
downstream capacitance with a closer distance to its driver; while in
fact, segment s1 should be placed on a higher layer because it is
on a longer path which may introduce slew violations. Through slew
optimization flow as shown in Fig. 9, segment s1 will be assigned a
higher priority on a higher layer. The details of the algorithm flow
will be given later. The main reason is that slew optimization considers
the impact of both upstream segments and downstream segments. In

TABLE II: Notations used for slew model.
Nslw set of nets with slew violations

Pcritical path with slew violations
pd(si) downstream node of segment si
pu(si) upstream node of segment si

Slwsink(Pcritical) sink slew of critical path Pcritical

Slw(pd(si)) output slew of segment si
Slw(pu(si)) input slew of segment si
Slwstep(i, j) step slew of segment si on layer j
Slwe(i, j) output slew of segment si assigned on layer j
Slwc given slew constraint
Slwimp most slew improvement
δSlw(i, l) slew improvement by assigning si on layer l
δSlwip slew improvement by switching si and sp

this manner, slew optimization has a different impact on assignment of
critical nets in comparison to delay optimization. If we consider both
optimizations simultaneously, they may affect each other to degrade the
final performance. The detailed reasons are two-fold: First, critical nets
can be selected in a different way during delay and slew optimization. In
the stage of slew improvement, these nets exceeding slew constraints are
to be selected as critical nets to fix their violations; however in the first
stage we mark these nets with higher total delays as critical nets. This
may induce potential discrepancies for nets to be optimized. Secondly,
delay improvement targets at total delay reduction considering via
overflows, while slew improvement targets at slew violations reduction.
Due to different optimal objectives, assigning costs for both delay
and slew optimization may lead to a trade-off based on their weights.
Considering the assigning differences of s1 and s2 in Fig. 10, possible
oscillation may be introduced by setting different weights to delay and
slew optimization. Therefore, due to the differences of selected nets and
optimal objectives, we prefer to target delay and slew separately in an
explicit manner, and reduce slew violations globally as a second stage
after delay optimization.

Fig. 9 also outlines the slew optimization flow, whose input is
the assignment result after delay optimization. The slew optimization
consists of two steps: iterative slew optimization and post greedy
optimization. This section focuses on the first step to reduce slew
violations based on flow model, while Section III-G provides the details
of post slew optimization. Some notations used in slew optimization are
listed in TABLE II.

In the iterative optimization, similar with delay optimization flow,
the same ratio of critical and non-critical nets are selected based on
their slews. To calculate the net criticality, we divide the net into a
set of paths, and calculate the sink slew of each path. If the sink slew
exceeds the given slew constraint, this path is defined as a critical path,
i.e. Pcritical, and the exceptional slew is counted as critical value.
Meanwhile, segment input slews are initialized based on the input
result because each segment should be reassigned simultaneously. Then
we reassign these nets through iteration-based Lagrangian relaxation
optimization. When the number of slew violations converges to a certain
ratio, the iteration-based optimization stops.

Now we go over the details about how to solve the problem through
min-cost flow model. First all the segments on critical paths are
considered because their layer assignments affect the path sink slew.
During slew optimization, we lower the slew constraint by 5% in order
to leave enough slew slacks. Eq. (14) gives the slew constraint:

Slw(pd(si)) ≤ 0.95 · Slwc, i ∈ Pcritical, (14)

where Slw(pd(si)) is the segment output slew, and Slwc is the slew
constraint. To solve this problem, we relax Eq. (14) through Lagrangian
Relaxation by moving the slew calculation into the objective function,

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2652221, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 8

and eliminate all the 0.95 · Slwc because they are constants. Eq. (15)
provides the corresponding slew optimization formulation, where each
segment slew is multiplied with a Lagrangian Multiplier (LM), i.e. βij ,
which is set to 1 as the initial value.

min
∑

i∈Pcritical

L∑
j=1

βij · Slwe(i, j) · aij , (15)

s.t. (7b)− (7e).

During each iteration, LMs are updated as shown in Eq. (16),

βij = β′ij ·
√
Slwsink(Pcritical)

Slwc
, (16)

where β′ij is the LM in previous iteration, and Slwsink(Pcritical) is the
sink slew of critical path Pcritical. With the consideration of sink slew,
we impose more weights on longer paths. Therefore, in the example of
Fig. 10, segment s1 has a higher priority than s2.

Similar with Eq. (7), Eq. (15) is solvable through ILP because we
can obtain Slwe(i, j) based on the last iteration. Still, we incorporate
the via capacity constraints into the objective function with the same
linearization method as in Eq. (13). Ultimately, the problem can be
formulated as a weighted sum of aijs and solved through min-cost
max-flow model.

After solving the problem in each iteration, we update the input
slews and check if there is a convergence of slew violations. If the
improvement is below a certain ratio, then the slew optimization
flow terminates. In summary, this algorithm provides a slew targeted
optimization because it considers both the upstream segments and
downstream segments. Meanwhile, more emphasis is placed on critical
paths by taking the sink slew into accounts.

Based on the slew model, the segment input slew can affect the
output slew directly, but during each iteration, we obtain the input
slew of each segment based on the last iteration. Thus, it may
introduce slew discrepancies by calculating the segment slew based
on the previous assignments. Therefore, we implement a post slew
optimization algorithm, which mainly focuses on fixing local violations
while considering current layer assignments of the whole path. The
details of this algorithm are given in Section III-G.

G. Post Slew Optimization
In this section, we propose a post slew optimization algorithm to further
reduce the slew violations. The pseudo code is shown in Algorithm 2.
Based on the global optimization results, we traverse each net sink to
check if there exist slew violations. For those nets with violations, they
are saved in a net set, i.e. Nslw, and sorted in the descending order
of slew violations (line 2). The net with the highest priority is the one
with the most segments causing slew violations. To cope with slew
violations, we start from the first segment on the critical path (line 4),
and adjust the layer assignment of each segment si through two steps
(lines 5–34).

First, if there exists any available routing capacity for si on higher
layers (line 7) and its segment slew can be improved (line 8), we
record the improvement and mark this layer as a candidate (line 9).
Meanwhile, the induced via capacity violations cannot exceed a given
ratio, Ra. After traversing each possible layer, the layer with the most
improvement is selected for si to assign (line 13). In this way, the sink
slews of other nets are not affected while the current segment output
slew is improved. However, if no available layer is found, a second step
is required to improve the segment slew violation (lines 14–28).

In the second step, we search for a non-critical segment on the same
edge with si. When exchanging its layer with segment si, we would
not degrade its slew much while improving the output slew of si. In
order to find this segment, we traverse each non-critical segment sp
that is assigned on a layer higher than l(si) and able to bring slew

Algorithm 2 Post Slew Optimization Algorithm

Require: Current layer assignment solution;
1: Save all slew critical nets in Nslw;
2: Sort nets in the descending order of slew violations;
3: for each net n ∈ Nslw do
4: for each si ∈ Pcritical do
5: Initialize Slwimp = 0;
6: for each l ∈ e(si) do
7: if Routing capacity exists for layer l then
8: if δSlw(i, l) ≥ Slwimp and OV ≤ Ra then
9: Update ltemp and Slwimp;

10: end if
11: end if
12: end for
13: Assign si on ltemp;
14: if No ltemp is found then
15: for each non-critical sp on e(si) do
16: if δSlw(i, l(sp)) ≤ 0 then
17: Continue;
18: end if
19: δSlwip = δSlw(i, l(sp)) + δSlw(p, l(si));
20: if δSlwip ≥ Slwimp and OV ≤ Ra then
21: if Slwn(sp) ≤ α · Slwc then
22: Update stemp and Slwimp;
23: end if
24: end if
25: end for
26: Switch layers between si and stemp;
27: Update Slw for n(si) and n(stemp);
28: end if
29: if Slwsink(Pcritical) ≤ Slwc then
30: break;
31: end if
32: if Slw(i, l′) ≥ Slwc then
33: break;
34: end if
35: end for
36: end for

improvements for si (lines 16–18). Then the slew improvement is
calculated by switching the layer of segment si and segment sp (line
19). If the improvement outperforms the current most improvement, we
signify this segment as stemp, and record its layer (lines 20–24). Here
we also take into accounts the net which segment sp belongs to. When
its sink slew is close to the given slew constraint, then segment sp
will not be considered as an exchange candidate. After traversing each
segment on higher layers, we switch the assigned layers of segments
si and stemp and update the slews of the corresponding nets (lines
26–27). When the slew violation of Pcritical has been fixed, then we
continue to fix the next net in Nslw (lines 29–31). The segments of each
net are traversed in a top-down manner from driver to sinks. When a
segment has already exceeded the slew constraint, we will skip the
remaining segments in this net because there is no further optimization
space for sink slews of this net. By this way we can further reduce
the runtime overhead (lines 32–34). The algorithm ends until all nets
in Nslw are traversed. In comparison to slew optimization in Section
III-F, this algorithm adjusts the layer assignment of segments based on
their real input slew, thus providing a more accurate slew optimization.
Meanwhile, if there are only a few slew critical nets, it is efficient to
fix the violations through this algorithm.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2652221, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 9

TABLE III: Normalized capacitance and resistance.
Wire [11] Via

Layer C R Layer R

M1 1.14 23.26 v1,2 25.9
M2 1.05 19.30 v2,3 16.7
M3 1.05 23.26 v3,4 16.7
M4 0.95 5.58 v4,5 16.7
M5 1.05 3.26 v5,6 5.9
M6 1.05 3.26 v6,7 5.9
M7 1.05 3.26 v7,8 5.9
M8 1.00 3.26 v8,9 1.0
M9 1.05 1.00 v9,10 1.0
M10 1.00 1.00 - -

IV. EXPERIMENTAL RESULTS

We implemented the proposed timing-driven incremental layer assign-
ment framework in C++, and tested it on a Linux machine with 2.9
GHz Intel R© Core and 192 GB memory. We selected open source graph
library LEMON [40] as our min-cost network flow solver, and utilized
OpenMP [41] to provide parallel computing. In our implementation,
the default K value is set to 6, and the default thread number is set to
6.

A. Evaluation on ISPD 2008 Benchmarks
In the first experiment, we evaluate our timing-driven layer assignment
framework on ISPD 2008 benchmarks [42]. The NCTU-GR 2.0 [9] is
utilized to generate the initial global routing solutions. The initial layer
assignment results are from NVM [18], which is targeting at via number
and overflow minimization. Our framework is tested the effectiveness to
incrementally optimize the timing. To calculate the wire delay in Eq. (1)
and via delay in Eq. (2), all the metal wire resistances, metal wire
capacitances, and via resistances are listed in TABLE III. Column “C”
lists the capacitance. Columns “R” list the resistances for wire layers
and via layers, respectively. The resistances and capacitances of wires
are directly from [11], while the via resistance values are normalized
from industry settings in advanced technology nodes. Since ISPD 2008
benchmarks do not provide the input capacitance and output resistance
values of sinks, here we assume they are zero.

TABLE IV compares NVM [18] with our incremental layer assign-
ment tools TILA-1% and TILA-5%. NVM provides a minimum number
of vias during layer assignment with very low runtime overhead. In
“TILA-1%” and “TILA-5%” the ratio value α are set to 1% and 5%,
respectively. That is, in TILA-1%, 1% of timing critical nets and 1%
of non-critical nets are reassigned layers. In TILA-5%, 5% of timing
critical nets and 5% of non-critical nets are reassigned layers. For each
methodology, columns “OE#”, “OV#”, “Davg”, “Dmax”, and “via#”
list the resulting edge overflow, via overflow number, average delay,
maximum delay, and total via number, separately. Here the calculation
of via overflow is described in [32]. Besides, “CPU(s)” reports the
runtime in seconds for both NVM and TILA. We do not test our tools
on test case newblue3 as NCTU-GR [9] cannot generate a legal global
routing solution where the number of segments passing one edge in 2-D
dimension exceeds the total edge capacities. We also cannot report the
results from another recent work [19], as for this benchmark suite their
binary gets assertion fault before dumping out results.

From TABLE IV we can see that in TILA-1%, when 1% of the most
critical nets are shuffled layers, maximum delay can be reduced by
53% on the ISPD 2008 benchmarks. Meanwhile, the overflow number
and the average delay are reduced by 3% and 10%, respectively. The
penalty of such timing improvement is that the via number is increased
by only 3%. On the average, TILA-1% requires around 409 seconds
for each test case. Compared with extreme fast net-by-net solver NVM,
although our planner solves a global optimization problem, its runtimes

are reasonable. For instance, based on [18], for test cases adaptec1
and adaptec5, NVM needs around 36 and 99 seconds, respectively.
Our planner needs around 125 and 493 seconds, respectively. In TILA-
5%, when 5% of the most critical nets are reassigned layers, the
maximum delay is reduced by 53%. Meanwhile, the overflow number
and the average delay are reduced by 3% and 19%, respectively. The
penalty of TILA-5% is that the via number is increased by 11%. From
TABLE IV we can see that even small amount of critical nets (e.g.
1%) are considered, the maximum delay can be effectively optimized.
When more nets are inputted in our planner, better average delay and
less overflow number are expected. We pay a penalty of increasing
via counts to achieve better timing results with more released nets.
Meanwhile, runtime shows a slight increase with more reassigned nets
because of the larger problem size. In addition, our framework is with
good scalability, i.e., with problem size increases fivefold, the runtime
of TILA-5% is just around one and half times of TILA-1%.

Critical net ratio α is a user-defined parameter to control how many
nets are released to incremental layer assignment. In TABLE IV, ratio
α is set to 1% and 5%. Fig. 11 analyzes the impact of ratio value to
the performance of incremental layer assignment framework. Fig. 11(a)
shows the impact of ratio value on the maximum delay, where we can
see that the maximum delays are kept the same. This means for these
test cases, releasing 1% of critical nets is enough for maximum delay
optimization. Fig. 11(b) shows the impact of ratio value on the average
delay, where we can see increasing the ratio value can slightly improve
the average delay. Fig. 11(c) is the impact on the runtime, where we
can see that the runtime increases along with the increase of ratio value.
From these figures we can see that the ratio value can provide a trade-off
between average delay and the speed of our tool.

Our incremental layer assignment utilizes OpenMP [41] to imple-
ment multi-threading. Fig. 12 analyzes the performance of our layer
assignment framework under different partition and thread numbers.
Thread 1 corresponds to 1× 1 partition, thread 2 corresponds to 2× 2
partitions, and so on. With more partitions, the size of network flow
model is reduced quadratically thus benefiting the runtime significantly
together with multi-threads. From Fig. 12(a) and Fig. 12(b) we can see
that the impact of thread number on both maximum delay and average
delay is insignificant. Similarly, through Fig. 12(c) we can see the
impact on overflow is also negligible. From Fig. 12(d) we can observe
that more thread number can achieve more speed-ups. However, when
thread number is larger or equal to 6, the benefit to runtime is not clear.
Therefore, in our implementation the thread number is set to 6.

To demonstrate the benefit of solving the problem in a global
manner, we implement a greedy strategy to assign segments in a net-
by-net manner. All the reassigned nets are sorted based on their timing
priorities so that a more critical net has higher priority for higher metal
resources. For each net, segments are traversed sequentially and layers
are selected based on the same costs as that in min-cost max-flow
network. Here we release 1% critical nets and 1% non-critical nets.
The results are shown in Fig. 13. From the figure, we can observe that
for both average and maximum delay TILA can achieve a little bit better
results compared with the greedy method. The main reason is that the
greedy methodology assigns higher priorities to those critical nets so
that these nets are able to take advantage of higher layer resources.
Since those nets utilize high metal layers efficiently, significant timing
optimization can also be achieved through this greedy methodology.
Nevertheless, they sacrifice the via capacity violations due to their
preferences to high layer resources. Regarding the runtime, as shown
in Fig. 13(d), due to the net-by-net scheme, the greedy method is
faster than TILA. Therefore, to control timing optimization and capacity
constraint in a reasonable manner, a global optimization engine is more
promising.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2652221, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 10

TABLE IV: Performance comparisons on ISPD 2008 benchmarks.
NVM [18] TILA-1% TILA-5%

Bench OE# OV# Davg Dmax via# CPU OE# OV# Davg Dmax via# CPU OV# Davg Dmax via# CPU
(103) (103) (105) (s) (103) (103) (105) (s) (103) (103) (105) (s)

adaptec1 0 48588 7.26 8776.6 19.03 36.2 0 50716 6.84 7126.0 19.26 124.6 53472 6.37 7107.2 20.18 146.6
adaptec2 0 39468 4.35 14424.9 19.01 31.5 0 36824 3.61 2365.8 19.38 115.6 32266 3.19 2365.8 20.63 145.3
adaptec3 0 91996 9.70 24998.9 36.29 89.3 0 89800 8.67 7861.3 36.77 396.5 89598 7.89 7860.0 38.83 796.3
adaptec4 0 77542 6.96 38646.7 31.56 55.1 0 67946 5.89 9745.2 32.55 330.7 56037 5.25 9746.0 34.80 562.5
adaptec5 0 79101 10.95 9958.0 54.30 98.5 0 81956 9.98 8740.2 55.43 493.4 85590 9.11 8693.1 58.54 587.2
bigblue1 0 43029 13.50 3675.4 21.25 48.4 0 46151 12.93 3434.7 21.68 235.7 52779 12.10 3390.4 22.67 246.9
bigblue2 12 117989 3.02 58259.1 42.70 48.8 12 114215 2.63 18294.9 43.44 208.4 114220 2.44 18279.0 45.35 239.3
bigblue3 0 66790 4.98 3122.2 51.29 81.4 0 65437 4.15 2708.9 53.22 378.4 66639 3.49 2710.1 60.04 675.6
bigblue4 447 97355 8.22 53401.4 107.65 169.4 447 114215 7.08 35310.7 111.01 743.6 113744 6.08 35320.1 122.08 984.4
newblue1 179 58656 1.21 670.7 22.03 21.6 179 56602 1.00 566.2 22.39 99.1 51721 0.93 565.4 23.67 122.8
newblue2 0 40959 4.31 12265.2 28.36 35.3 0 33941 3.97 10569.2 29.02 159.2 19997 3.57 10567.1 31.04 253.3
newblue4 108 88220 4.17 15478.3 46.85 83.2 108 84273 3.88 8976.9 47.65 302.7 77931 3.55 8963.8 50.41 429.5
newblue5 0 160141 6.19 11910.3 84.61 136.6 0 151300 5.64 4551.7 86.88 644.2 141974 5.12 4552.9 93.86 991.8
newblue6 0 94425 7.28 18987.0 77.43 103.4 0 96740 6.57 3963.7 78.67 686.8 105034 5.99 3964.6 82.39 842.6
newblue7 369 146737 7.01 13416.0 160.57 236.7 369 141936 5.91 12028.2 166.58 1213.3 158329 5.06 12033.0 183.94 1427.9

average 74 83400 6.61 19199.4 53.5 85.0 74 81121 5.92 9082.9 54.93 408.8 81289 5.34 9074.6 59.23 563.5
ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.90 0.47 1.03 – 0.97 0.81 0.47 1.11 –

 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

 7x10
6

 8x10
6

 1 2 3 4 5 6

D
m

a
x

ratio (%)

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6

D
a
v
g

ratio (%)

(b)

 0

 50

 100

 150

 200

 1 2 3 4 5 6
ru

n
ti
m

e
 (

s
)

ratio (%)

adaptec1
adaptec2
bigblue1

(c)

Fig. 11: Performance impact on different ratio values. (a) The impact of ratio on maximum delay; (b) The impact of ratio on average delay; (c)
The impact of ratio on runtime.

 0

 2x10
6

 4x10
6

 6x10
6

adaptec1 adaptec2 bigblue1

D
m

a
x

1-thread
2-thread
4-thread

6-thread
8-thread

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

adaptec1 adaptec2 bigblue1

D
a
v
g

(b)

 0

 10000

 20000

 30000

 40000

 50000

adaptec1 adaptec2 bigblue1

O
V

#

(c)

 0

 1000

adaptec1 adaptec2 bigblue1

C
P

U
(s

)

(d)

Fig. 12: Evaluation thread number impact on three test cases in ISPD 2008 benchmark suite. (a) The impact on maximum delay; (b) The impact
on average delay; (c) The impact on overflow; (d) The impact on runtime.

B. Evaluation on 20nm Industry Benchmarks

In the second experiment, we test our incremental layer assign-
ment framework on eight 20nm industry test cases (Industry1–
Industry8). We called an industry tool to generate initial global
routing and layer assignment solutions. Different from the preceding
experiment, here we use industry resistance and capacitance values

to calculate the wire delays and the via delays. TABLE V lists the
details of performance evaluation, where for each method columns
“OV#”, “Davg”, “Dmax”, and “via#” provide the overflow number,
average delay, maximum delay, and total via number. Since all the
critical nets are provided in the benchmarks, the critical and non-critical
selection phases are skipped in this benchmark suite. We can see that

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2652221, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 11

 0

 4000

 8000

 12000

 16000

adaptec1

adaptec2

bigblue1

bigblue2

new
blue1

new
blue2

D
a

v
g

Greedy-1% TILA-1%

(a)

 0

 5x10
6

 1x10
7

 1.5x10
7

 2x10
7

adaptec1

adaptec2

bigblue1

bigblue2

new
blue1

new
blue2

D
m

a
x

(b)

 0

 40000

 80000

 120000

 160000

adaptec1

adaptec2

bigblue1

bigblue2

new
blue1

new
blue2

O
V

 #

(c)

 0

 50

 100

 150

 200

adaptec1

adaptec2

bigblue1

bigblue2

new
blue1

new
blue2

R
u
n
 t
im

e

(d)

Fig. 13: Comparison between greedy methodology and TILA on some small test cases: (a) on average delay; (b) on maximum delay; (c) on via
overflow; (d) on runtime.

TABLE V: Performance Comparisons on 20nm Industry Benchmarks.

Bench
Industry Layer Assignment TILA

OV# Davg Dmax via# OV# Davg Dmax via# CPU(s)

Industry1 0 6204.0 68444.4 51805.0 0 3696.6 28667.2 49302.0 6.6
Industry2 0 6049.6 68713.0 52996.0 0 3796.4 27416.3 50331.0 7.0
Industry3 0 6025.4 81030.3 53905.0 0 3906.2 38230.8 51726.0 8.0
Industry4 0 5702.8 58478.5 56393.0 0 3669.2 25858.9 54188.0 9.3
Industry5 0 5531.4 78391.4 58944.0 0 3799.3 34347.0 56623.0 11.5
Industry6 0 5443.5 77803.0 60083.0 0 3692.9 33096.3 57456.0 12.7
Industry7 0 5066.0 114597.7 70658.0 0 3693.7 29348.7 70106.0 38.5
Industry8 0 4096.4 46893.7 75790.0 0 3040.2 20137.7 78823.0 127.8

average 0 5514.9 74294.0 60071.6 0 3661.8 29637.9 58569.4 127.8
ratio 0 1.00 1.00 1.00 0 0.66 0.40 0.97 -

compared with industry layer assignment solution, our framework can
achieve 60% maximum delay improvement and 34% average delay
improvement. The total via number after our iterative optimization
is very similar to the initial solution. The reasons to reach a similar
number, or even a slightly better number of vias are due to the
following factors: Firstly, critical segments are assigned on high metal
layers while non-critical segments are assigned on low layers together
with their neighboring segments. Few vias will be induced for those
connecting segments are on close layers. Secondly, via delays are also
included in our mathematical formulation, which also helps to control
the via counts. Finally, industrial benchmarks provide a more even
layer assignment of segments through all the layers. This provides us a
potential space for via counts optimization. The initial layer assignment
solution is with zero overflow, and our framework can also maintain
such zero overflow performance. In summary, from TABLE V we can
see our incremental layer assignment framework can achieve significant
timing improvement.

C. Slew Comparisons on ISPD & 20nm Industry Benchmarks
In this section, we compare TILA with slew optimization (TILA-S)
against TILA without slew improvement (TILA). Still, the effectiveness
is verified by both ISPD and industry benchmarks with slew constraints.
For ISPD benchmarks, the problem sizes are so different that one
single constraint is not applicable to all benchmarks. Thus, we set the
slew constraint of each benchmark as 5 times its initial average delay
as shown in TABLE IV. In this manner, the initial number of slew

violations is in proportion to the number of total segments for each
benchmark. However, the slew constraints for industry benchmarks are
given based on industrial settings.

TABLE VI lists the results for ISPD benchmarks by comparing
TILA-S-1% with TILA-1% while releasing 1%. Besides the perfor-
mance metrics shown in TABLE IV, we introduce an additional column
“SV#” which gives the number of slew violations, and the second
column lists the initial number of violations. TILA-1% provides the
intermediate results after delay optimization, while TILA-S-1% shows
the final results. We can see that TILA-1% is able to reduce the slew
violations significantly from 6.89× 104 to 3.57× 104, because delay
optimization also benefits slew violations considering the downstream
segments. However, with the slew targeted optimization, this number
can further be reduced by 48%. Meanwhile, average delay also de-
creases by 2%, which shows that slew optimization can also benefit
delay slightly. The maximum delay keeps similar with TILA, because
its optimization space is limited after delay optimization. For vias and
violations, there is no obvious difference between TILA-S and TILA.
The main penalty of TILA-S is the 69% increase of runtime due to
additional two-stage slew optimization. Based on the results, we observe
that TILA-S can handle slew violations efficiently while keeping similar
delay and via performance.

Fig. 14 shows the effect of adopting post slew optimization for some
small cases of ISPD 2008 benchmarks. It is shown that the post slew
optimization stage improves the number of slew violations slightly

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2652221, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 12

TABLE VI: Comparisons on ISPD 2008 benchmarks for slew optimization.
NVM [18] TILA-1% TILA-S-1%

Bench SV# SV# VO# Davg Dmax via# CPU SV# VO# Davg Dmax via# CPU
(103) (103) (103) (103) (105) (s) (103) (103) (103) (105) (s)

adaptec1 8.57 4.59 50716 6.84 7126.0 19.26 110.8 3.76 50873 6.80 7128.8 19.30 185.5
adaptec2 24.75 10.38 36824 3.61 2365.8 19.38 98.6 6.22 36518 3.55 2365.9 19.53 158.7
adaptec3 19.77 8.22 89800 8.67 7861.3 36.77 361.2 7.09 89963 8.63 7861.4 36.88 614.9
adaptec4 54.23 16.05 67946 5.89 9745.2 32.55 330.7 12.28 67611 5.84 9744.9 32.66 510.6
adaptec5 54.65 21.35 81956 9.98 8740.2 55.43 493.4 14.32 83207 9.88 8724.2 55.70 869.3
bigblue1 16.68 8.12 46151 12.93 3434.7 21.68 158.8 6.21 46724 12.85 3438.8 21.75 407.0
bigblue2 81.77 59.00 114215 2.63 18294.9 43.44 184.7 43.59 113332 2.58 18299.9 43.77 437.1
bigblue3 67.42 38.06 65437 4.15 2708.9 53.22 378.4 19.86 63974 4.00 2710.2 54.33 732.4
bigblue4 118.28 67.48 98987 7.08 35310.7 111.01 743.6 28.50 98307 6.87 35414.9 113.11 1484.1
newblue1 46.67 36.60 56602 1.00 566.2 22.39 82.7 21.26 55417 0.98 566.1 22.78 132.6
newblue2 62.98 29.76 33941 3.97 10569.2 29.02 144.2 9.73 30043 3.85 10269.3 29.76 265.1
newblue4 52.56 25.43 84273 3.88 8976.9 47.65 302.7 12.42 83412 3.82 8973.8 48.14 396.4
newblue5 155.50 70.99 151300 5.64 4551.7 86.88 644.2 39.12 150477 5.53 4553.8 88.08 1169.0
newblue6 88.69 49.83 96740 6.57 3963.7 78.67 686.8 22.22 100305 6.39 3963.5 79.61 993.0
newblue7 181.17 89.48 141936 5.91 12028.2 166.58 1213.3 34.23 141209 5.71 12030.2 169.80 1695.7

average 68.91 35.69 81122 5.92 9082.9 54.93 408.8 18.68 80758 5.82 9069.7 55.68 670.1
ratio 1.00 1.00 1.00 1.00 1.00 1.00 0.52 1.00 0.98 1.00 1.01 1.69

 0

 4000

 8000

 12000

 16000

adaptec1

adaptec2

bigblue1

bigblue2

new
blue1

new
blue2

D
a
v
g

w/o. post w. post

(a)

 0

 5x10
6

 1x10
7

 1.5x10
7

 2x10
7

adaptec1

adaptec2

bigblue1

bigblue2

new
blue1

new
blue2

D
m

a
x

(b)

 0

 20000

 40000

 60000

adaptec1

adaptec2

bigblue1

bigblue2

new
blue1

new
blue2

S
V

 #

(c)

Fig. 14: Comparison between with and without post slew optimization stage on some small test cases: (a) on average delay; (b) on maximum
delay; (c) on slew violations.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1 2 3 4 5

D
a

v
g

Iter

adaptec1
adaptec2
bigblue1

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1 2 3 4 5

S
V

#

Iter

(b)

Fig. 15: Convergence with iteration number of TILA-S on some small
test cases: (a) on average delay; (b) on slew violations.

without affecting average delay and maximum delay. The main reason
is that during selection of switching candidate segments, we take its
current slew into consideration. Once the candidate is selected with the
smallest slew degradation, its impact on delay is also negligible because
slew is closely related with delay.

To illustrate the timing convergence of our iterative framework, we
relax the convergence constraint for delay and slew optimization, and
record the average delay and slew violation number for each iteration till
the fifth iteration. Fig. 15 shows the timing convergence with iteration
number. The 0-th iteration correpsonds to the initial solution, where we
can see a clear convergence after first two iterations.

As stated in Section III-F and Section III-G, our slew optimization

 0

 5000

 10000

 15000

 20000

 25000

 30000

adaptec1

adaptec2

adaptec3

adaptec4

adaptec5

bigblue1

bigblue2

bigblue3

bigblue4

new
blue1

new
blue2

new
blue4

new
blue5

new
blue6

new
blue7

Avg

B
U

F
 #

No Slew Opt With Slew Opt

Fig. 16: Buffering overhead saving with slew optimization.

flow reduces the number of slew violations and benefits the buffering
overhead. To make this explicit, we measure the number of buffers
we may adopt for each ISPD 2008 benchmark in Fig. 16. Here we
implement a top-down algorithm to insert buffers in a net-by-net
manner. For each net with slew violations, we traverse from its driver
and insert one buffer when there is a slew violation; meanwhile, we
assume the input slew of each net and the output slew from the buffer
are both equal to 0. After traversing one net, we can obtain the number
of buffers used in this net to fix the violations. It is shown that the
average buffering overhead can be reduced from 9258 to 7586 in
Fig. 16. Therefore, our post slew-targeted optimization helps to reduce
the buffering overhead, and is also able to provide an estimate of
buffering overhead at pre-buffering stage.

For the 20nm industry benchmarks, besides delay and via metrics,
we also take slew violations into account. TABLE VII shows that

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2652221, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 13

TABLE VII: Comparisons on 20nm industry benchmarks for slew optimization.

Bench
TILA TILA-S

SV# Davg Dmax via# CPU(s) SV# Davg Dmax via# CPU(s)

Industry1 24 3606.6 28667.2 49302 6.6 19 3686.2 27202.3 49308 7.1
Industry2 18 3796.4 27416.3 50331 7.0 14 3779.7 25934.5 50333 7.2
Industry3 10 3906.2 38230.8 51726 8.0 3 3898.8 34092.1 51742 8.5
Industry4 7 3669.2 25858.9 54188 9.3 2 3665.2 24159.9 54188 9.3
Industry5 0 3799.3 34347.0 56623 11.5 0 3799.3 34347.0 56623 11.5
Industry6 0 3692.9 33096.3 57456 12.7 0 3692.9 33096.3 57456 12.7
Industry7 0 3693.7 29348.7 70106 38.5 0 3693.7 29348.7 70106 38.5
Industry8 0 3040.2 20137.7 78823 127.8 0 3040.2 20137.7 78823 127.8

average 7.4 3650.6 29637.9 58569 27.7 4.8 3657.0 28539.8 58572 27.8
ratio 1.0 1.00 1.00 1.00 1.00 0.64 1.00 0.96 1.00 1.01

the violations are reduced by 36%. This proves the efficiency of our
slew optimization flow to fix some local violations. Meanwhile, since
we target at improving the current segment slew without affecting
others considerably, the average delay keeps the same as before.
In addition, the maximum delay is reduced by 4%, because slew
optimization considers the layer assignments of both upstream segments
and downstream segments. We can also see that there is almost no
difference for vias between TILA-S and TILA. Because of the very few
number of slew violations in industrial benchmarks, we prefer to skip
the first global optimal stage. The results from TABLE VII show the
ability of post optimization stage to reduce violations with little runtime
overhead. Therefore, with the additional slew optimization flow, TILA-S
contributes lots of efforts to fixing slew violations while keeping similar
delay performance as TILA, both for ISPD benchmarks and industrial
benchmarks.

V. CONCLUSION

In this paper we have proposed a set of algorithms to the timing-driven
incremental layer assignment problem while mitigating slew violations.
At first the mathematical formulation is given to search for optimal
total wire delays and via delays. Then Lagrangian relaxation based
method is proposed to iteratively improve the timing of all the nets.
The Lagrangian relaxation subproblem (LRS) is modeled through min-
cost flow model to provide effective integral solutions. In addition,
multiprocessing of K×K partitions of the whole chip provides runtime
speed up. Then we integrate the slew violation optimization method
into our framework to mitigate the violations. Our incremental layer
assignment tool with/without slew optimization, TILA-S, is verified in
both ISPD 2008 and industry benchmark suites, and has demonstrated
its effectiveness. In our current implementation, slew improvement is
achieved through a separate stage with delay optimization. As a future
work, we plan to consider layer assignment targeting at delay and slew
optimization concurrently while reducing buffering overhead. As in
emerging technology nodes, the routing algorithm should be able to
adapt the heterogeneous layer structures, we believe this paper will
stimulate more research for timing improvement in advanced routing,
and shed more light on traditional EDA topics.

ACKNOWLEDGMENT

The authors would like to thank Shiyan Hu at Michigan Technological
University and Wen-Hao Liu at Cadence Design Systems for helpful
discussions and comments.

REFERENCES

[1] J. H.-C. Chen, T. E. Standaert, E. Alptekin, T. A. Spooner, and V. Paruchuri,
“Interconnect performance and scaling strategy at 7 nm node,” in IEEE
International Interconnect Technology Conference (IITC), 2014, pp. 93–
96.

[2] J. Cong, “An interconnect-centric design flow for nanometer technologies,”
Proceedings of the IEEE, vol. 89, no. 4, pp. 505–528, 2001.

[3] M. Cho and D. Z. Pan, “BoxRouter: a new global router based on box
expansion and progressive ILP,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 26, no. 12, pp.
2130–2143, 2007.

[4] J. Roy and I. Markov, “High-performance routing at the nanometer scale,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 27, no. 6, pp. 1066–1077, 2008.

[5] T.-H. Wu, A. Davoodi, and J. T. Linderoth, “GRIP: Global routing via
integer programming,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 30, no. 1, pp. 72–84, 2011.

[6] M. D. Moffitt, “MaizeRouter: Engineering an effective global router,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 27, no. 11, pp. 2017–2026, 2008.

[7] C.-H. Hsu, H.-Y. Chen, and Y.-W. Chang, “Multilayer global routing with
via and wire capacity considerations,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 29, no. 5,
pp. 685–696, 2010.

[8] Y.-J. Chang, Y.-T. Lee, J.-R. Gao, P.-C. Wu, and T.-C. Wang, “NTHU-
Route 2.0: a robust global router for modern designs,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 29, no. 12, pp. 1931–1944, 2010.

[9] W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao, “NCTU-GR 2.0: multi-
threaded collision-aware global routing with bounded-length maze routing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 32, no. 5, pp. 709–722, 2013.

[10] “ITRS,” http://www.itrs.net.
[11] M.-K. Hsu, N. Katta, H. Y.-H. Lin, K. T.-H. Lin, K. H. Tam, and K. C.-

H. Wang, “Design and manufacturing process co-optimization in nano-
technology,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2014, pp. 574–581.

[12] Z. Li, C. J. Alpert, S. Hu, T. Muhmud, S. T. Quay, and P. G. Villarrubia,
“Fast interconnect synthesis with layer assignment,” in ACM International
Symposium on Physical Design (ISPD), 2008, pp. 71–77.

[13] S. Hu, C. J. Alpert, J. Hu, S. K. Karandikar, Z. Li, W. Shi, and C. N.
Sze, “Fast algorithms for slew-constrained minimum cost buffering,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 26, no. 11, pp. 2009–2022, 2007.

[14] S. Hu, Z. Li, and C. J. Alpert, “A polynomial time approximation scheme
for timing constrained minimum cost layer assignment,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2008, pp.
112–115.

[15] ——, “A faster approximation scheme for timing driven minimum cost
layer assignment,” in ACM International Symposium on Physical Design
(ISPD), 2009, pp. 167–174.

[16] T.-H. Lee and T.-C. Wang, “Congestion-constrained layer assignment for
via minimization in global routing,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 27, no. 9, pp.
1643–1656, 2008.

[17] K.-R. Dai, W.-H. Liu, and Y.-L. Li, “NCTU-GR: efficient simulated
evolution-based rerouting and congestion-relaxed layer assignment on 3-D
global routing,” IEEE Transactions on Very Large Scale Integration Systems
(TVLSI), vol. 20, no. 3, pp. 459–472, 2012.

[18] W.-H. Liu and Y.-L. Li, “Negotiation-based layer assignment for via count
and via overflow minimization,” in IEEE/ACM Asia and South Pacific
Design Automation Conference (ASPDAC), 2011, pp. 539–544.

http://www.itrs.net

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2652221, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 14

[19] J. Ao, S. Dong, S. Chen, and S. Goto, “Delay-driven layer assignment in
global routing under multi-tier interconnect structure,” in ACM Interna-
tional Symposium on Physical Design (ISPD), 2013, pp. 101–107.

[20] T.-H. Lee and T.-C. Wang, “Simultaneous antenna avoidance and via opti-
mization in layer assignment of multi-layer global routing,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2010, pp.
312–318.

[21] T.-H. Lee, Y.-J. Chang, and T.-C. Wang, “An enhanced global router with
consideration of general layer directives,” in ACM International Symposium
on Physical Design (ISPD), 2011, pp. 53–60.

[22] Y. Peng and X. Liu, “Low-power repeater insertion with both delay and
slew rate constraints,” in ACM/IEEE Design Automation Conference (DAC),
2006, pp. 302–307.

[23] Y. Zhang, A. Chakraborty, S. Chowdhury, and D. Z. Pan, “Reclaiming
over-the-IP-block routing resources with buffering-aware rectilinear steiner
minimum tree construction,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2012, pp. 137–143.

[24] O. Coudert, J. Cong, S. Malik, and M. Sarrafzadeh, “Incremental CAD,” in
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
2000, pp. 236–244.

[25] C. Albrecht, “Efficient incremental clock latency scheduling for large
circuits,” in IEEE/ACM Proceedings Design, Automation and Test in
Eurpoe (DATE), 2006, pp. 1–6.

[26] H.-Y. Chang, I.-R. Jiang, and Y.-W. Chang, “Timing ECO optimization via
Bézier curve smoothing and fixability identification,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 31, no. 12, pp. 1857–1866, 2012.

[27] S. K. Karandikar, C. J. Alpert, M. C. Yildiz, P. Villarrubia, S. Quay,
and T. Mahmud, “Fast electrical correction using resizing and buffering,”
in IEEE/ACM Asia and South Pacific Design Automation Conference
(ASPDAC), 2007, pp. 553–558.

[28] S. Roy, P. M. Mattheakis, L. Masse-Navette, and D. Z. Pan, “Clock
tree resynthesis for multi-corner multi-mode timing closure,” in ACM
International Symposium on Physical Design (ISPD), 2014, pp. 69–76.

[29] J. A. Roy and I. L. Markov, “ECO-system: Embracing the change in
placement,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 26, no. 12, pp. 2173–2185, 2007.

[30] T. Luo, D. A. Papa, Z. Li, C. N. Sze, C. J. Alpert, and D. Z. Pan,
“Pyramids: an efficient computational geometry-based approach for timing-
driven placement,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2008, pp. 204–211.

[31] Y. Zhang and C. Chu, “GDRouter: Interleaved global routing and detailed
routing for ultimate routability,” in ACM/IEEE Design Automation Confer-
ence (DAC), 2012, pp. 597–602.

[32] C.-H. Hsu, H.-Y. Chen, and Y.-W. Chang, “Multi-layer global routing con-
sidering via and wire capacities,” in IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2008, pp. 350–355.

[33] C. V. Kashyap, C. J. Alpert, F. Liu, and A. Devgan, “Closed form
expressions for extending step delay and slew metrics to ramp inputs,”
in ACM International Symposium on Physical Design (ISPD), 2003, pp.
24–31.

[34] N. J. Naclerio, S. Masuda, and K. Nakajima, “The via minimization
problem is NP-complete,” IEEE Transactions on Computers, vol. 38,
no. 11, pp. 1604–1608, 1989.

[35] A. P. Ruszczyński, Nonlinear Optimization. Princeton university press,
2006, vol. 13.

[36] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Prentice Hall/Pearson, 2005.

[37] R. G. Michael and S. J. David, Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[38] M. Queyranne, “Performance ratio of polynomial heuristics for triangle
inequality quadratic assignment problems,” Operations Research Letters,
vol. 4, no. 5, pp. 231–234, 1986.

[39] A. D. Gunawardena, S. Jain, and L. Snyder, “Modified iterative methods
for consistent linear systems,” Linear Algebra and its Applications, vol.
154, pp. 123–143, 1991.

[40] “LEMON,” http://lemon.cs.elte.hu/trac/lemon.
[41] “OpenMP,” http://www.openmp.org/.
[42] G.-J. Nam, C. Sze, and M. Yildiz, “The ISPD global routing benchmark

suite,” in ACM International Symposium on Physical Design (ISPD), 2008,
pp. 156–159.

Derong Liu received her B.S. degree in microelectron-
ics from Fudan University, Shanghai, China, in 2011.
She is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
University of Texas at Austin, Austin, TX, USA, under
the supervision of Prof. David Z. Pan. Her current
research interests include physical design and design
automation for logic synthesis.

Bei Yu (S’11–M’14) received his Ph.D. degree from
the Department of Electrical and Computer Engineer-
ing, University of Texas at Austin in 2014. He is
currently an Assistant Professor in the Department
of Computer Science and Engineering, The Chinese
University of Hong Kong. He has served in the editorial
boards of Integration, the VLSI Journal and IET Cyber-
Physical Systems: Theory & Applications.

He has received three Best Paper Awards at SPIE
Advanced Lithography Conference 2016, International
Conference on Computer Aided Design (ICCAD)

2013, and Asia and South Pacific Design Automation Conference (ASPDAC)
2012, three other Best Paper Award Nominations at Design Automation Con-
ference (DAC) 2014, ASPDAC 2013, ICCAD 2011, and three ICCAD contest
awards in 2015, 2013 and 2012. He has also received European Design and
Automation Association (EDAA) Outstanding Dissertation Award in 2014,
Chinese Government Award for Outstanding Students Abroad in 2014, SPIE
Scholarship in 2013, and IBM PhD Scholarship in 2012.

Salim Chowdhury received his Ph.D. degree in 1986
from the University of Southern California, Los An-
geles. He taught at University of Iowa, Iowa City
for some years where he obtained multiple research
grants from National Science Foundation. He had been
working with semiconductor industries since then, with
Motorola, Sun Microsystem and until recently with
Oracle America. Dr. Salim Chowdhury obtained a best
paper award from DAC and holds many patents and
publications.

David Z. Pan (S’97–M’00–SM’06-F’14) received his
B.S. degree from Peking University, and his M.S. and
Ph.D. degrees from University of California, Los An-
geles (UCLA). From 2000 to 2003, he was a Research
Staff Member with IBM T. J. Watson Research Center.
He is currently the Engineering Foundation Endowed
Professor at the Department of Electrical and Computer
Engineering, The University of Texas at Austin. He
has published over 250 papers in refereed journals
and conferences, and is the holder of 8 U.S. patents.
His research interests include cross-layer nanometer

IC design for manufacturability, reliability, security, new frontiers of physical
design, and CAD for emerging technologies.

He has served as a Senior Associate Editor for ACM Transactions on
Design Automation of Electronic Systems (TODAES), an Associate Editor
for IEEE Design & Test, IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems (TCAD), IEEE Transactions on Very Large
Scale Integration Systems (TVLSI), IEEE Transactions on Circuits and Systems
PART I (TCAS-I), IEEE Transactions on Circuits and Systems PART II (TCAS-
II), Science China Information Sciences (SCIS), Journal of Computer Science
and Technology (JCST), etc. He has served as Program/General Chair of ISPD
2007/2008, TPC Chair for ASPDAC 2016, Vice Program Chair for ICCAD 2017,
Tutorial Chair for DAC 2014, among others.

He has received a number of awards, including the SRC 2013 Technical
Excellence Award, DAC Top 10 Author in Fifth Decade, DAC Prolific Author
Award, ASPDAC Frequently Cited Author Award, 13 Best Paper Awards
and several international CAD contest awards, Communications of the ACM
Research Highlights (2014), ACM/SIGDA Outstanding New Faculty Award
(2005), NSF CAREER Award (2007), SRC Inventor Recognition Award three
times, IBM Faculty Award four times, UCLA Engineering Distinguished Young
Alumnus Award (2009), and UT Austin RAISE Faculty Excellence Award
(2014).

http://lemon.cs.elte.hu/trac/lemon
http://www.openmp.org/

