
Novel Binary Linear Programming for

High Performance Clock Mesh Synthesis

Minsik Cho, David Z. Pan∗ and Ruchir Puri
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598

∗Dept. of ECE, The University of Texas at Austin, Austin, TX 78712

minsikcho@us.ibm.com, dpan@ece.utexas.edu, ruchir@us.ibm.com

Abstract— Clock mesh is popular in high performance VLSI design
because it is more robust against variations than clock tree at a cost of
higher power consumption. In this paper, we propose novel techniques
based on binary linear programming for clock mesh synthesis for the

first time in the literature. The proposed approach can explore both
regular and irregular mesh configurations, adapting to non-uniform
load capacitance distribution. Our synthesis consists of two steps: mesh

construction to minimize total capacitance and skew, and balanced sink
assignment to improve slew/skew characteristics. We first show that
mesh construction can be analytically formulated as binary polynomial
programming (a class of nonlinear discrete optimization), then apply

a compact linearization technique to transform into binary linear
programming, significantly reducing computational overhead. Second,
our balanced sink assignment enables a sink to tap the least loaded mesh
segment (not the nearest one) with another binary linear programming

which reduces both slew and skew. Experiments show that our techniques
improve the worst skew and total capacitance by 14% and 15% over the
state-of-the-art clock mesh algorithm [19] on ISPD09 benchmarks.

I. INTRODUCTION

With aggressive technology scaling to sub 32nm nodes, the im-

pacts of process variation, power supply noise, and temperature fluc-

tuation on clock network are becoming more critical [2], [14], [17],

[24]. Such impacts result in larger clock skew, directly decreasing the

performance of a VLSI system. Therefore, various design techniques

to build more robust clock network have been introduced [6], [11]–

[13], [15], [16], [18], [19], [22]. Among them, clock mesh with

global clock tree in Fig. 1 has been shown to be highly effective in

minimizing the impacts of PVT (process, voltage, and temperature)

variations on clock skew [20], [21], thanks to the redundant current

paths from a clock source to a sink.

The key challenge in clock mesh design is to optimize two con-

flicting objectives, power dissipation and worst skew (e.g., variation

tolerance) [2]. The redundant mesh structure makes clock skew less

sensitive to the variations, but substantially increases total capacitance

(leading to higher power consumption). In order to build more robust

and power efficient clock mesh, various algorithms have been pro-

posed. [4] proposed wire sizing for an existing clock mesh to reduce

capacitance without degrading clock skew. [22] proposed set-covering

based buffering and mesh reduction for a given mesh configuration to

reduce power consumption while keeping similar variation tolerance.

[19] suggested an iterative technique to determine a regular mesh

configuration, followed by buffering and mesh reduction techniques

both extended from [22].

However, most of existing approaches are either incrementally

tuning a given clock mesh or lacking global planning. [7], [19] do

not take non-uniform sink distribution and different clock domains

into consideration upfront, resorting to post-processing step (e.g.,

mesh reduction), which may result in a sub-optimal clock mesh.

In all previous work, a sink taps the nearest clock mesh segment,

which is not necessarily the best decision when taking uneven sink

capacitance distribution and buffering blockages into the account.

Fig. 1. Illustration of a clock mesh driven by a buffered global clock tree,
and clock sinks tapping the clock mesh through stub wires [19].

Lastly, the impact of clock mesh design on global clock tree has not

been comprehensively analyzed/reported before.

In this paper, we propose two novel binary linear programming

formulations for clock mesh synthesis. The first one explores various

(both regular and irregular) clock mesh configurations. It auto-

matically determines the mesh dimension (rows and columns) and

physical wire locations with lower skew at less power consump-

tion, adapting to non-uniform load capacitance distribution (e.g.,

sink distribution or blockages). Once a clock mesh configuration is

determined, the second binary linear programming is applied to assign

each sink to the least loaded mesh segment in order to improve slew

and skew. To our best knowledge, this is the first time that clock mesh

synthesis is formulated in a rigorous mathematical programming

manner, which 1) searches for the best trade-off between capacitance

and skew and 2) targets for more uniform load capacitance distribu-

tion. The major contributions of this paper include the following:

• We develop a simple/linear but high-fidelity skew bound model

for clock mesh synthesis, which is incorporated into our clock

mesh synthesis framework.

• We propose a novel binary polynomial programming formula-

tion for clock mesh synthesis, which is further linearized into

binary linear programming based on [1] for lower computational

overhead. Our formulation can explore both regular and irregular

mesh configurations to determine the optimal mesh dimension

(e.g., row/column) and find the best trade-off between skew and

capacitance (or power).

• We propose balanced sink assignment using binary linear pro-

gramming in order to balance effective capacitance seen by each

buffer, which will result in smaller slew and skew. We also take

buffer blockages into consideration.

The rest of the paper is organized as follows. Section II provides

notations/assumptions in this work, and Section III presents our

proposed algorithm. Experimental results are in Section IV, followed

by the conclusion in Section V.

II. NOTATIONS & ASSUMPTIONS

The notations in this paper are listed in Table I. lsm is to measure

distance between a sink s and a mesh candidate m during the mesh

978-1-4244-819 - /10/$26.00 ©2010 IEEE 4384 1

TABLE I

THE NOTATIONS IN THIS PAPER.

ro unit wire resistance

co unit wire capacitance

S a set of the sinks (indexed by s)

ts latency to the sink s

Cs load capacitance of the sink s

V a set of vertical mesh candidates (indexed by v)

H a set of horizontal mesh candidates (indexed by h)

Lm the length of the mesh candidate m

lsm the minimum distance from the sink s to mesh candidate m

W the stub (a wire from a sink to the clock mesh) length limit

V s a set of mesh candidates ∈ V within W from the sink s

Hs a set of mesh candidates ∈ H within W from the sink s

ls the stub length from the sink s to the (final) clock mesh

lsv the vertical distance from the sink s to the clock mesh

ls
h

the horizontal distance from the sink s to the clock mesh

B the set of potential buffer locations (indexed by b)

which are on the intersections of v ∈ V and h ∈ H

bs the nearest buffer location b ∈ B from the sink s

ms
b

the Manhattan distance from the sink s to bs

G a set of mesh segments from the final mesh (indexed by g)

Sg the length of a mesh segment g

ng the number of unblocked buffer locations

on a mesh segment g (0 ≤ ng ≤ 2)

construction step in Section III-C, and ls denotes stub length between

a sink and the final clock mesh which is built with a sub-set of V ∪H .

If the stub from a sink s runs vertically to touch the final clock mesh,

ls = lsv , otherwise ls = lsh.

We assume that the clock buffers driving a clock mesh will be

located at the cross-sections of mesh candidates [19], [22], as long

as the location is unblocked [10] (e.g., the leaf level buffers in Fig. 1).

These clock buffers become sinks to the global clock tree in Fig. 1.

We additionally assume zero-skew and identical violation-free slew

from a global clock tree to the inputs of these clock buffers. Also,

while exploring various clock mesh configurations in our algorithm,

we assume that a nominal strength buffer is placed at ∀b ∈ B.

These assumptions on buffering are only to make our mesh synthesis

less complex. Hence, more accurate buffer sizing (even removal) can

be done after our flow. Even though we use a single wire type in

this work (ro, co), our techniques can be readily extended to handle

various wire types.

III. ALGORITHM

In this section, we present our clock mesh synthesis. We begin with

the overview in Section III-A. We propose a linear skew bound model

for clock mesh in Section III-B, and then introduce our algorithm,

which consists of mesh construction in Section III-C and balanced

sink assignment in Section III-D.

A. Overview

Fig. 2 illustrates our algorithm flow. For a given input sink distri-

bution, we create a set of horizontal/vertical clock mesh candidates

as in Fig. 2 (a). Then, the binary linear formulation linearized from

the binary polynomial formulation in Section III-C selects a set of

mesh candidates to determine a mesh configuration as in Fig. 2

(b), minimizing total wire capacitance and skew bound based on

Section III-B. Our formulation will not only automatically configure

the dimensions of the clock mesh but also adjust the spacing between

mesh wires from a given set of mesh candidates, accommodating

non-uniform load capacitance distribution. Once a clock mesh is

(a) Sink distribution
with mesh candidates
in dashed lines.

(b) Mesh candidates
selected by mesh
construction.

(c) Final clock mesh
after sink assignment
and clean-up.

Fig. 2. Overall flow of the proposed algorithm.

constructed, we connect sinks to the clock mesh by solving the

binary linear programming formulation in Section III-D while trying

to uniformly distribute load capacitance. After removing any dangling

wire segments, we will obtain the final clock mesh in Fig. 2 (c).

B. Skew Bound Modeling

Due to non-tree structure, an accurate analytical model for skew

in clock mesh is currently unknown. Therefore, a skew bound is

used in [19] to select the right mesh configuration. However, the

skew bound in [19] is too complex to be used in an analytical

optimization framework because it is nonlinear and requires full

knowledge of mesh configuration. Hence, we propose a simpler/linear

skew bound model to enable efficient analytical optimization of mesh

configuration under the assumptions in Section II.

Consider Fig. 3 where a sink i is right below a buffer b and sink j is

connected to b through wire whose length is l. Cb is a parasitic/output

capacitance in b and Ce represents any visible capacitance from b
(e.g., other sinks and mesh segments in the proximity). Since i is

right below b, we can regard that i is fully and solely driven by b.

Then, the delay to i can be approximated as

ti ≈ Rb(Cb + Ce + Ci + col + Cj) (1)

Meanwhile, j has some distance to b and may get partially driven

by other buffers in the proximity. Therefore, by ignoring the currents

from other buffers, we can compute the upper bound of tj as follows:

tj ≤ Rb(Cb + Ce + Ci + col + Cj) + rol(
col

2
+ Cj) (2)

Therefore, the worst latency difference in the proximity of b can be

expressed as

Kb = max({tj − ti|bi = bj = b}) (3)

≤ max({rom
s
b(

com
s
b

2
+ Cs)|bs = b}) (4)

≤ max({rom
s
b(coW + Cs)|bs = b}) (5)

In detail, the latency difference between the sinks i and j is rol(
col

2
+

Cj) from Eq. (1) and (2). Thus, if we replace l with the longest ms
b

(a Manhattan distance from a sink s to the buffer b = bs), the skew

in the proximity of b can be bounded by Eq. (4). However, as Eq. (4)

is quadratic, it is expensive for optimization and cannot be used in

a linear programming model. Since ms
b ≤ 2W (∀s ∈ S, ∀b ∈ B)

Rb

Cb Ce Ci

rol

col
2

col
2

Cj

Sink i Sink j

buffer

Fig. 3. Simplified RC network to estimate the skew upper bound.

439

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Simulated skew from SPICE

E
st

im
a

te
d

 s
k

ew

Fig. 4. Skew bound estimation based on Eq. (6).

due to Eq. (12) and (13), we can find a linearized skew bound in the

proximity of b as in Eq. (5) (see Section III-C for details).

ms
b is the key physical parameter which heavily affects the clock

skew bound, and Eq. (5) implies that the longest distance from any

sink to its nearest buffer has the first-order impact on the skew. ms
b

can be computed as in Eq. (11), even when a clock mesh is being

constructed. Then, we take the following as our skew bound:

K = max({Kb|∀b ∈ B}) (6)

This is not the exact definition of skew (max({ts|s ∈ S}) −
min({ts|s ∈ S})), as our scope is limited to the proximity of each

buffer. However, our estimation is to obtain a skew bound rather

than the real skew value, and we found that our skew bound model

is practically sufficient enough for optimization. Fig. 4 shows the

fidelity of our skew bound estimation based on 740 different clock

mesh configurations. Our skew estimation always overestimates the

skew from SPICE simulation and shows high-fidelity (r = 0.94).

C. Mesh Construction

In this section, we present our binary linear programming formu-

lation for clock mesh construction. The inputs are a set of sinks

and a set of vertical/horizontal mesh candidates as discussed in

Fig. 2 (a), and the output is a set of mesh candidates selected under

capacitance/skew consideration. Although we used a set of regularly

spaced candidates in our implementation, a designer can add custom

candidates if needed. For example, when a custom block or IP require

a special clock pin access, some design-specific candidates can be

prepared to meet the requirements.

Let xm be a binary variable set to 1 if the mesh candidate m is

selected (xm = 1− xm). Then, we can formulate mesh construction

as follows:

min : co(
∑

m∈V ∪V
Lm +

∑
s∈S

ls) + αK (7)

s.t : ls = P (Vs ∪ Hs, s) ∀s ∈ S (8)

lsv = P (Vs, s) ∀s ∈ S (9)

lsh = P (Hs, s) ∀s ∈ S (10)

ms
b = lsv + lsh ∀s ∈ S (11)∑
v∈Vs

xv ≥ 1 ∀s ∈ S (12)
∑

h∈Hs
xh ≥ 1 ∀s ∈ S (13)

K ≥ Kb ∀b ∈ B (14)

xm ∈ {0, 1} ∀m ∈ V ∪ H

The objective in Eq. (7) is to minimize weighted summation of total

wire capacitance and skew bound (α is a weight parameter). The

total wire capacitance consists of two factors: one from the mesh

candidates (Lm) and the other from stubs (ls) between the sinks and

the clock mesh. lvs and lhs represent the vertical/horizontal distance to

the final clock mesh. When connecting a sink s to a mesh, we only

W

S WW

W

t

(a) A set of mesh candidates for
a sink s determined by W .

v1 v2 v3 v4

h1

h2

h3

l
s
v1

l
s
v4

l
s
h3

l
s
v2

l
s
v3

l
s
h1

l
s
h2

S

t

(b) 3 vertical and 3 horizontal mesh
candidates and their distances from
s, when zoomed-in from (a).

Fig. 5. Example of mesh candidates around the sink s within distance W .

consider the mesh candidates whose distance to s is shorter than W
as in Fig. 5 (a), which form Vs and Hs depending on direction. In

order to guarantee the final result forms a mesh, we need to pick at

least one vertical and horizontal candidates around any sink within

W as in Eq. (12) and (13) which explains ms
b ≤ 2W in Section III-B

along with the buffer location assumption in Section II. Eq. (8) is to

compute the shortest distance to any of selected mesh candidates in

the proximity of a sink s. Eq. (11) is to compute ms
b , a Manhattan

distance from a sink to the nearest buffer location, which will be used

to compute skew bound based on Eq. (6) as in Eq. (14).

The most challenging part of the formulation is how to compute

lvs in Eq. (9), lhs in in Eq. (10), and ls in Eq. (8) which are the

vertical/horizontal/shortest distances to the clock meshes, when the

final clock mesh is unknown yet (we are in the process of selecting

mesh candidates to construct the clock mesh). Since Eq. (9), (10),

and (8) share the same goal (computing distance to the final mesh),

we express these distances in a compact mathematical form covering

all possible mesh candidate selections using a polynomial function

P (U, s) without loss of generality, which is defined as follows:

P (U, s) =
∑

u∈U

(lsu
∏

{i|ls
i
<lsu}

xixu) (15)

which returns the shortest distance to any mesh candidate u ∈ U from

a sink s. For example, P (Vs, s) in Eq. (9) returns the shortest distance

from s to any (vertical) mesh candidates in Vs, and P (Vs ∪ Hs, s)
returns the shortest distance from s to any in Vs ∪ Hs.

Eq. (15) is essentially to encode all possible mesh candidate

combinations as a one-hot priority encoder, since we are interested

in only the shortest distance from s to ∀u ∈ U . Fig. 5 (b) illustrates

how to compute ls = P (Vs ∪Hs, s) where Vs = {v1, v2, v3}, Hs =
{h1, h2, h3} using the priority encoder idea in Eq. (15) (v4 /∈ Vs,

because lsv4
> W). Note that lsh and lsv can be computed by providing

Vs and Hs respectively to Eq. (15). First, we can sort all the

candidates in Vs ∪ Hs in the ascending order of distance from s,

which leads to lsh2
< lsv2

< lsh1
< lsv3

< lsh3
< lsv1

. Accordingly, we

can assign higher priority to a mesh candidate with a shorter distance.

The reason for prioritization is that once a mesh candidate with higher

priority is selected, then other candidates with lower priorities can be

ignored. Consider Table II which shows the value of ls depending on

the selection of mesh candidates in Vs∪Hs. For instance, if h2 is not

selected but v2 is selected (the second row in Table II), then ls = lsv2

regardless of the remaining candidates, making them again as don’t-

cares, which is the exact behavior of priority encoder. By leveraging

a binary representation of a priority encoder, we can express ls for

the case in Fig. 5 (b) as following:

ls = P (Vs ∪ Hs, s) = lsh2
xh2

+ lsv3
xh2xv3

440

+ lsh1
xh2xv3xh1

+ lsv3
xh2xv3xh1xv3

+ lsh3
xh2xv3xh1xv3xh3

+ lsv1
xh2xv3xh1xv3xh3xv1 (16)

Due to the nature of one-hot scheme, each term in Eq. (16) (also,∏
{i|ls

i
<lsu}

xixu in Eq. (15)) is mutually exclusive. This is because

some mesh candidates in Vs ∪ Hs can be selected by neighboring

sinks such as t in Fig. 5 (b). For example, even when h3 is selected

for t (which means lt = lth3
), ls will not be impacted if any mesh

candidate with higher priority than h3 is selected for s. Consequently,

ls in Eq. (15) is determined as lsu when
∏

{i|ls
i
<lsu}

xixu = 1, which

means xu = 1 and any candidate i which has higher priority than u
(e.g., {i|lsi < lsu}) is not selected. The priority encoder representation

of ls is the most compact expression of the shortest distance from

a sink to the final clock mesh, covering all possible mesh candidate

combinations. We can guarantees that ls in Eq. (15) will have a valid

distance, because each term in Eq. (15) is mutually exclusive and we

have the Eq. (12) and (13) as constraints.

So far, we show that a stub length (ls) can be expressed in a

compact mathematical manner. However, as Eq. (15) makes our

formulation binary polynomial programming which belongs to a class

of discrete nonlinear optimization, the computational complexity is

extraordinarily high. Therefore, we need to lower the complexity and

we accomplished it by linearizing Eq. (15) with the transformation

technique in [1]. It is known that binary linear programming is

computationally much more affordable than binary polynomial pro-

gramming [1], [5]. Mathematically, any binary polynomial
∏

i∈I
xi

where xi ∈ {0, 1}, can be linearized with one continuous auxiliary

variable and |I|+1 linear constraints as following:
∏

i∈I

xi ≡ z (17)

z ≤ min({xi|i ∈ I})

z ≥ max(
∑

i∈I

xi − |I| + 1, 0)

Note that the auxiliary variable z can be declared as a continuous

variable (helping the solver), since it will naturally be either 0 or

1 due to the linear constraints. Hence, based on Eq. (17), we can

redefine a linearized P (U, s) with additional linear constraints for

the optimization in Eq. (7) as below:

P (U, s) =
∑

u∈U

luzu (18)

zu ≤ min({xi|l
s
i < lsu} ∪ {xu})

zu ≥ max(
∑

{i|ls
i
<lsu}

xi + xu − |{i|lsi < lsu}|, 0)

The key benefit of our analytical formulation over [19] is that it can

explore various regular/irregular mesh configurations to find the best

trade-off between total wire capacitance and skew bound by adapting

to non-uniform capacitance distribution (either due to blockages or

sink distribution).

D. Balanced Sink Assignment

During mesh construction in Section III-C, we assume that each

sink would tap the clock mesh with minimum stub length as in

Eq. (8). However, we observe that assigning a sink to the nearest

mesh segment as in [19] is not necessarily the best in terms of

slew/skew, despite it will minimize the capacitance from stubs. In

TABLE II

TRUTH TABLE TO COMPUTE ls FOR FIG. 5 (B).

ls xh2
xv2 xh1

xv3 xh3
xv1

ls
h2

1 * * * * *

lsv2
0 1 * * * *

ls
h1

0 0 1 * * *

lsv3
0 0 0 1 * *

ls
h3

0 0 0 0 1 *

lsv1
0 0 0 0 0 1

fact, the larger skew or more slew violations caused by poorly

balanced load distribution (e.g., from the nearest sink assignment

scheme) may eventually result in even larger total capacitance due to

larger overhead in buffering. Therefore, once a mesh configuration

is determined based on Section III-C, we further explore the trade-

off between capacitance and slew/skew during sink assignment by

balancing load capacitance distribution.

e

b c d

a

(a) Sink assignment to the near-
est mesh segment in [19].

e

b c d

a

(b) Sink assignment to the least
loaded mesh segment.

Fig. 6. Example of sink assignment.

Fig. 6 illustrates the basic idea of our balanced sink assignment

where Fig. 6 (a) is from the nearest assignment and (b) is from our

balanced assignment. We can see that horizontal clock mesh segments

are far more loaded than the vertical ones in Fig. 6 (a), which may

lead to far longer latency and slew for b, c, e than d. Whereas, Fig. 6

(b) has more balanced capacitance distribution by assigning the sinks

a, b, c, and e to the less loaded vertical mesh segments.

Additionally, we need to consider the existence of buffers in the

proximity (The ISPD09 clock contest rule does not allow a buffer

in a blocked region), which can influence the driving strength. For

example, when a mesh segment is driven by a single buffer, it should

be less loaded than one with two buffers. Such buffer consideration

is important in our framework, as it can complement the formulation

in Section III-C where blockage is not modeled.

Our balanced sink assignment can be formulated as a binary

linear programming. Let Y g
v and Y g

h be the set of vertical and

horizontal stub candidates touching the mesh segment g, respectively.

Furthermore, suppose ys
v and ys

h are binary variables (set 1 if

selected), representing a vertical and a horizontal stub candidate for

a sink s, respectively. Then, our balanced sink assignment can be

formulated as follows:

min : co(
∑

s∈S
ls) + βE (19)

s.t : ys
v + ys

h = 1 ∀s ∈ S (20)

ys
{v,h} ∈ {0, 1} ∀s ∈ S (21)

E ≥
coSg+

∑
s∈Y

g
v

ys
v(colsv+Cs)

2(ng−1) ∀g ∈ G (22)

E ≥
coSg+

∑
s∈Y

g

h

ys
h
(cols

h
+Cs)

2(ng−1) ∀g ∈ G (23)

ls = lsvys
v + lshys

h ∀s ∈ S (24)

The objective in Eq. (19) is to minimize the weighted summation

of total stub capacitance and maximum relative load on a mesh

441

TABLE III

COMPARISON WITH MESHWORKS [19] ON ISPD09 CLOCK BENCHMARKS.

MeshWorks [19] Ours
benchmark mesh tree cap a mesh cap a total skew (ps) CPU tree cap a mesh cap a total skew (ps) CPU (sec)

size wire bufc wire buf cap a worstbnorm (sec) wire buf wire buf cap a worstbnorm CPLEX total

ispd09f11 8x5 19.9 13.4 33.4 23.2 90.0 45.1 41.4 196.5 16.4 11.1 31.5 12.5 71.5 37.0 33.3 83.4 231.3
ispd09f12 6x6 17.9 12.0 29.7 16.7 76.2 39.3 36.1 142.2 14.5 9.7 28.2 12.2 64.6 30.2 26.4 227.2 365.3
ispd09f21 7x6 23.4 15.8 37.4 24.5 101.1 43.4 39.3 211.9 16.1 10.9 36.2 20.5 83.7 37.1 32.4 1898.9 2099.7
ispd09f22 4x6 10.9 7.3 18.7 13.9 50.9 43.9 40.2 100.6 8.2 5.5 18.3 9.8 41.8 34.1 30.0 276.5 352.2
ispd09f31 9x11 45.1 30.4 65.5 36.5 177.5 39.8 36.6 426.5 36.7 24.7 64.7 34.6 160.7 37.5 33.8 3040.8 3444.2
ispd09f32 10x10 37.5 25.3 55.1 24.3 142.2 38.0 34.8 383.4 29.7 20.0 51.2 27.7 128.7 36.6 32.6 2388.5 2697.8
ispd09f33 11x8 36.7 24.8 52.5 32.3 146.3 36.3 32.8 344.8 29.8 20.1 50.7 28.2 128.9 34.8 30.7 1701.4 1994.4
ispd09f34 8x11 30.8 20.8 44.0 26.8 122.5 42.4 39.2 284.2 27.2 18.3 44.1 27.3 116.9 34.4 31.0 749.2 1041.7
ispd09f35 11x11 37.7 25.4 50.5 46.7 160.3 40.8 37.0 496.2 26.6 17.9 45.3 32.3 122.1 38.7 35.2 709.1 1069.1
ispd09fnb1 7x4 1.3 0.9 6.9 7.0 16.2 40.8 36.9 65.4 1.0 0.7 8.5 5.3 15.6 37.6 32.5 406.3 461.6
ispd09fnb2 5x9 5.6 3.8 17.6 16.9 43.8 54.4 50.4 245.5 4.3 2.9 18.3 18.1 43.6 48.2 44.9 537.2 708.6

sum 266.8 179.9 411.3 268.8 1126.8 464.2 424.7 2897.2 210.5 141.9 397.1 228.4 978.0 406.2 362.8 12018.5 14465.9

ratio 1.27 1.27 1.04 1.18 1.15 1.14 1.17 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 4.15 4.99

a All the capacitances in pF .
b Also known as CLR (clock latency range) in ISPD09 clock contest.
c Buffer.

l
s
h

l
s
v

S

u
l

u
v

l
u
ht l

t
h

l
t
v

b3

b1

b2

b4

gi

g
j

Fig. 7. Example for the balanced sink assignment.

segment (β is a weight parameter). As in Eq. (20), we consider two

possible stubs and do not allow redundant tapping for all the sinks.

The formulation can be extended for more possible stub candidates,

but we stick to only two choices in order to keep ms
b unchanged

which impacts the skew bound model in Section III-B. Eq. (22) and

(23) are to compute E, and Eq. (24) is to computed ls which is the

stub length expressed with ys
v and ys

h. Note that since all the mesh

candidates are known at this time, lsv and lsh are known constants.

Fig. 7 shows an example of sink assignment where the sinks s, t,
and u have two possible stub candidates, vertical and horizontal

ones. The vertical mesh segment gi along with the buffers b1 and

b2 may drive s and t, if both choose the horizontal stubs (ys
h =

yt
h = 1). Therefore, Y gi

h = {s, t} and Y gi
v = φ, thus the constraint

corresponding to Eq. (23) can be shown as follows:

E ≥
coSgi

+ys
h
(cols

h
+Cs)+yt

h
(colt

h
+Ct)

2(2−1)(=2)

The first term is the wire capacitance from gi and the remaining

terms are the conditional capacitance from stub and sink load. Since

ngi
= 2 due to b1 and b2, it is divided by 2. For the horizontal mesh

segment gj , the buffer location b4 is blocked. Therefore, its driving

strength should be penalized accordingly.

IV. EXPERIMENTAL RESULTS

We implemented our clock mesh synthesis in C++ and adopted

CPLEX [23] as our discrete solver. We used the ISPD09 clock

benchmarks [10] and modified the evaluation script (eval2009v10.pl)

for SPICE simulation such that we can deliver the zero-skew clock

and 100ps slew signal to the inputs of clock buffers driving a mesh, as

global clock tree is not the main contribution of this work. However,

we used BST [3], [9] with zero-skew option to estimate clock tree

wire capacitance, and multiplied the average buffer-to-wire ratio of

three winning clock tree algorithms from ISPD09 contest (which is

0.674) to predict required buffer capacitance on clock tree (e.g., non-

leaf level buffers in Fig. 1). We used ngSPICE 18.0 [8] for our

experiments with 45nm library from ISPD09 contest, and ran all

the experiments on a 2.4GHz Linux machine with 4G RAM. As a

post-optimization for both ours and [19], we performed buffer sizing

based on iterative SPICE simulation to satisfy the slew constraint (100

ps) and minimize skew. Along with buffer sizing, we also applied

mesh optimization techniques in [19], [22] to remove under-loaded

mesh segments in all the experiments. We set W maximally 1.5mm
in our experiments, which matches well with the data in [20].

For comprehensive study, we have not only implemented [19], but

further extended it such that it can exhaustively search the entire

solution space through iterative SPICE simulations (e.g., enumerate

all the possible meshes and evaluate accurately through SPICE

simulations). Therefore, each result for [19] in this section is our

best possible solution. Since there is a trade-off between capacitance

and skew, our objective for [19] is to pick a Pareto-optimal solution

with least total capacitance without any slew violation. For our case,

we used a default β but adjusted α such that our total mesh wire

capacitance (which is only controllable during mesh construction)

gets as close as possible to that from [19].

Table III comprehensively compares the performance of our tech-

niques with [19]. The best mesh configuration we found for [19] is

disclosed right next to the benchmark name. In all our optimizations,

we considered 30 vertical/horizontal mesh candidates (in total 60).

Overall, our approach yields 15% less capacitance with 14% less

0

0.2

0.4

0.6

0.8

1

f1
1

f1
2

f2
1

f2
2

f3
1

f3
2

f3
3

f3
4

f3
5

fn
b

1

fn
b

2

Ours

MeshWorks

Fig. 8. Comparison of the HPWL of bounding boxes of mesh-driving clock
buffers.

442

30

40

50

60

70

80

90

100

110

120

0 50 100 150 200 250 300 350

Sink ID

S
le

w
 (

p
s)

Ours

MeshWorks

(a) Slew distribution comparison

290

300

310

320

330

340

350

0 50 100 150 200 250 300 350

Sink ID

L
a

te
n

cy
 (

p
s)

Ours

MeshWorks

(b) Latency distribution comparison

Fig. 9. Comparison of our balanced skew assignment with the one in [19]
on ispd09fnb1.

worst skew at 5x computational overhead. However, note that the

cpu time for [19] is to build one specific/best mesh configuration

(e.g., 8x5 for ispd09f11) without including the total time spent

in exploring/evaluating various other solutions, while ours includes

all the time required to obtain the reported solution. CPLEX to

solve the formulations in Eq. (7) and (19) accounts for 83% of

our runtime. Regarding total capacitance, we can see considerable

capacitance reduction from global clock tree distribution which is

27%. The reason is two fold. First, our approach produces a smaller

bounding box of mesh-driving clock buffers (or sinks to the global

clock tree), which will lead to generally a smaller global clock tree.

Fig. 8 compares the HPWL of bounding boxes from ours with those

from [19] where ours shows on average 13% smaller bounding boxes.

The other reason is the distribution of clock buffers. [19] tends to

distribute the clock buffers uniformly, meanwhile ours makes them

locally clustered.

To see the effectiveness of our balanced sink assignment, we com-

pared it against [19] starting from the identical mesh configuration,

and plotted slew/latency distributions in Fig. 9. We can observe that

our scheme not only minimizes the worst case slew/skew, but also

narrows down the distribution itself. For example, ours has σ = 13.5
and 7.8, while [19] has σ = 16.8 and 8.9 for Fig. 9 (a) and (b),

respectively.

V. CONCLUSION

We propose the first analytical approach for clock mesh synthe-

sis. Our mesh construction based on linearized binary polynomial

programming finds the right mesh configuration while minimizing

both capacitance and skew. Our novel sink assignment based on

binary linear programming further improves slew/skew by balancing

the load on each mesh segment/buffer. Our analytical algorithm can

significantly improve total capacitance (including global clock tree)

and skew which will enhance overall VLSI system performance.

REFERENCES

[1] W. P. Adams, R. J. Forrester, and F. W. Glover. A simple recipe for
concise mixed 0-1 linearizations. Operation Research Letters, 33:55–
61, Jan 2005.

[2] A. Chakraborty, P. Sithambaram, K. Duraisami, A. Macii, E. Macii, and
M. Poncino. Thermal Resilient Bounded-Skew Clock Tree Optimization
Methodology. In Proc. Design, Automation and Test in Eurpoe, 2006.

[3] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao. A clock
distribution network for microprocessors. ACM Trans. on Design

Automation of Electronics Systems, 4, Jan 1999.
[4] M. P. Desai, R. Cvijetic, and J. Jensen. Sizing of clock distribution

networks for high performance CPU chips. In Proc. Design Automation

Conf., 1996.
[5] F. W. Glover and E. Woosley. Converting the 0-1 Polynomial Program-

ming Problem to 0-1 Linear Program. Operation Research, 2:180–182,
Jan 1974.

[6] M. R. Guthaus, D. Sylvester, and R. B. Brown. Process-induced skew
reduction in nominal zero-skew clock trees. In Proc. Asia and South

Pacific Design Automation Conf., 2006.
[7] M. R. Guthaus, G. Wilke, and R. Reis. Non-Uniform Clock Mesh

Optimization with Linear Programming Buffer Insertion. In Proc. Design

Automation Conf., 2010.
[8] http://ngspice.sourceforge.net.
[9] http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/BST.

[10] http://www.sigda.org/ispd/contests/09/ispd09cts.html.
[11] D. Lee and I. L. Markov. Contango: Integrated Optimizations for SoC

Clock Networks. In Proc. Design, Automation and Test in Eurpoe, 2010.
[12] J. Long, J. C. Ku, S. O. Memik, and Y. Ismail. A self-adjusting clock

tree architecture to cope with temperature variations. In Proc. Int. Conf.

on Computer Aided Design, 2007.
[13] P. Mahoney, E. Fetzer, B. Doyle, and S. Naffzigern. Clock distribution

on a dual-core multi-threaded Itanium-family processor. IEEE Int. Solid-

State Circuits Conf. Digest of Technical Papers, 2005.
[14] J. Minz, X. Zhao, and S. K. Lim. Buffered clock tree synthesis for 3D

ICs under thermal variations. In Proc. Asia and South Pacific Design

Automation Conf., 2008.
[15] M. Mondal, A. J. Ricketts, S. Kirolos, T. Ragheb, G. Link, N. Vijaykr-

ishnan, and Y. Massoud. Thermally robust clocking schemes for 3d
integrated circuits. In Proc. Design, Automation and Test in Eurpoe,
2007.

[16] S. Pullela, N. Menezes, and L. T. Pileggi. Post-processing of clock
trees via wiresizing and buffering for robust design. IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems, 15(6):691–
701, June 1996.

[17] A. Rajaram, J. Hu, and R. Mahapatra. Reducing Clock Skew Variability
via Crosslinks. IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, 25(6):1176–1182, Jun 2006.
[18] A. Rajaram and D. Z. Pan. Variation Tolerant Buffered Clock Network

Synthesis with Cross Links. In Proc. Int. Symp. on Physical Design,
Apr 2006.

[19] A. Rajaram and D. Z. Pan. MeshWorks: an efficient framework for
planning, synthesis and optimization of clock mesh networks. In Proc.

Asia and South Pacific Design Automation Conf., 2008.
[20] P. J. Restle, T. G. McNamara, D. A. Webber, P. J. Camporese, K. F. Eng,

K. A. Jenkins, D. H. Allen, M. J. Rohn, M. P. Quaranta, D. W. Boerstler,
C. J. Alpert, C. A. Carter, R. N. Bailey, J. G. Petrovick, B. L. Krauter,
and B. D. McCredie. A clock distribution network for microprocessors.
IEEE J. Solid-State Circuits, 36:792–799, May 2001.

[21] S. Tam, S. Rusu, U. N. Desai, R. Kim, J. Zhang, and I. Young. Clock
generation and distribution for the first IA-64 microprocessor. IEEE J.

Solid-State Circuits, 35:1545–1552, Nov 2000.
[22] G. Venkataraman, Z. Feng, J. Hu, and P. Li. Combinatorial Algorithms

for Fast Clock Mesh Optimization. In Proc. Int. Conf. on Computer

Aided Design, 2006.
[23] www.ibm.com/software/websphere/ilog-migration/cplex.com.
[24] H. Yu, Y. Hu, C. Liu, and L. Heu. Minimal Skew Clock Embedding

Considering Time Variant Temperature Variation with Automatic Corre-
lation Extraction. In Proc. Int. Symp. on Physical Design, 2007.

443

