
Robust Chip-Level Clock Tree Synthesis for SOC Designs

Anand Rajaram
Department of ECE

University of Texas at Austin, Texas
anandr@mail.utexas.edu

David Z. Pan
Department of ECE

University of Texas at Austin, Texas
dpan@ece.utexas.edu

ABSTRACT
A key problem that arises in System-on-a-Chip (SOC) designs
of today is the Chip-level Clock Tree Synthesis (CCTS). CCTS
is done by merging all the clock trees belonging to different
IPs per chip specifications. A primary requirement of CCTS
is to balance the sub-clock-trees belonging to different IPs such
that the entire tree has a small skew across all process cor-
ners. This helps in timing closure across all the design cor-
ners. Another important requirement of CCTS is to reduce
clock divergence between IPs that have critical timing paths
between them, thereby reducing maximum possible clock skew
in the critical paths and thus improves yield. In this work,
we propose effective CCTS algorithms to simultaneously re-
duce multi-corner skew and clock divergence. To the best of
our knowledge, this is the first work that attempts to solve this
practically important problem. Experimental results on several
testcases indicate that our methods achieve 10%-31%(20% on
average) clock divergence reduction and between 16-64ps skew
reduction (1.6%-6.4% of cycle time for a 1GHz clock) with less
than 0.5% increase in buffer area/wirelength compared to ex-
isting CTS algorithms.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits

General Terms
Algorithms

Keywords
Clock Network, Chip-level CTS, Physical Design

1. INTRODUCTION
A System-on-a-Chip (SOC) design can be defined as “an IC,

designed by stitching together multiple stand-alone VLSI de-
signs to provide full functionality for an application” [1]. In
today’s 65nm/45nm VLSI technologies, SOC designs have be-
come increasingly common and the trend is expected to con-
tinue in the future [2]. Most SOC physical design closure is
done in a hierarchical fashion [1]. In such a methodology, differ-
ent logical and physical partitions of the chip are timing closed
independently [1–4] followed by a chip-level timing closure step.
This chip-level timing closure includes CCTS in which a chip-
level clock tree is synthesized to drive all the block-level clock
trees. The primary objective of CCTS is that the full clock tree,
which includes the chip-level and all the block-level clock trees,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

should be balanced and have less skew across all design corners.
Satisfying this requirement is relatively easy when considering
only the nominal delay corner. However, timing closure in most
practical chips involve verifying timing across several corners
that represent several global variation effects. This implies that
the clock trees should have small skews across all the design
corners. This is a very challenging task primarily because of
the possible difference in the way the delays of the different
sub-clock-trees scale, either because of difference in the clock
structures or the relative significance of cell and interconnect
delays. Another objective of CCTS is to minimize the clock
divergence for the IPs with critical path between them. This
helps to minimize skew variation between the critical timing
paths between the IPs and thus improves the overall yield. In
this work, we propose effective algorithms with the objective
of addressing the above two objectives.

2. MOTIVATION

2.1 Significance of Clock Divergence Reduction
The significance of reducing clock divergence between registers

in timing-critical paths is well known. For a given overall delay,
the lesser the divergent delay between the such register-pairs,
the lesser is the value of maximum skew (and skew variation)
that can be seen between them. The same principle is also
applicable at the chip-level where different sub-blocks interact
with each other instead of register pairs.

2.2 Impact of Sub-block Clock Pin Location
Unlike hard IPs, the clock pins of the soft-IPs can be changed

specific to a given chip and floorplan. This flexibility can be
used towards clock divergence reduction between critical IPs.
Figure 1 shows a simple example where the clock pin assign-
ment might make a difference in clock divergence reducing.

Case B

A

B

C

A

B

C

Critical Paths

Case A

Critical Paths

Divergence point
between A,B

Figure 1: Pin location in Case B will result in reduced
clock divergence between A and B.

2.3 Multi-corner skew reduction problem
Consider Figure 2 where only two sub-blocks are present. The

squares in the sub-blocks represent clock sinks. The left-side
block has bigger buffers with longer interconnects and the right-
side block has smaller buffers with shorter interconnect. Let us
assume that both sub-clock-trees have identical delays in the
nominal corner. However, their delays across other corners will
be different, mainly because of the difference in the intercon-
nect lengths and buffer sizes. To balance these two sub-clock-

720

40.4

trees across all corners, the chip-level clock tree should be built
such that the differences in the delays, across all corners, be-
tween the sub-clock-trees gets compensated at the chip-level.
In most SOC designs, there will be several sub-blocks having
clock trees with significant differences in their size, structure,
buffer sizes used and interconnect lengths. Thus, synthesizing
a chip-level clock tree that can simultaneously reduce the skew
across all corners by accounting for these differences while not
significantly increasing the overall delay is a challenging prob-
lem.

Figure 2: Delays of the two blocks will scale differ-
ently across corners due to different buffer sizes and
interconnect lengths.

Problem Formulation: The CCTS problem is formulated
using the following two sub-problems:
Given: Chip-level floorplan and criticality of clock divergence
between all block pairs.
Problem: Select clock pin locations of all soft-IPs to reduce
clock divergence of critical IP pairs.
Given: All information from previous step and information on
sub-clock-tree delays/skews across corners.
Problem: Obtain a chip-level clock tree such that skews/delays
across all corners are reduced, while simultaneously reducing
the weighted sum of clock divergence between all IP pairs. The
value of weight for a given IP pair is directly obtained from the
number and timing criticality of paths between them.
Tradeoff between divergence reduction and delay reduc-
tion: In some cases, we might be able to achieve lesser clock
divergence by increasing the overall delay of the clock tree and
vice-versa. One simple way to quantify this tradeoff is to use
a scaling factor that will determine the percentage of delay
increase that can be tolerated for a given reduction in clock
divergence. Using this scaling factor, we can define the overall
cost as follows:

Cost = x ∗ Max Delay + (1 − x) ∗ DIV COST, (1)

where DIV COST =
∑

∀i,j Wi,j ∗ (
Di

F + Dj
F − 2 ∗ Di,j

C
)
,

x is ∈ 01 quantifies delay Vs divergence tradeoff, Max Delay
is maximum delay to any sink in the tree, DIV COST is the
divergence cost between all IPs pairs, i,j are block numbers
with 1 ≤ i, j ≤ N, i �= j;, Wi,j is criticality of clock divergence
between blocks i,j, Di

F is average root to flop delay in block i,
Di,j

C is the max. common delay between two block pair i, j.
All delay information are w.r.t. the nominal corner.

3. CLOCK PIN ASSIGNMENT ALGORITHM
Under the assumption that the clock pin locations for the

sub-blocks are restricted to the mid points of the four sizes of
the block, clock pin assignment problem can be formulated as
follows. Let Bi denote the sub-block number i where 1 ≤ i ≤
N . Let Wi,j denote the criticality of the paths between blocks
i and j. Also, let all the four possible clock pin assignments
for a given block be denoted by Bi

1, Bi
2, Bi

3, Bi
4 where the

pin locations are numbered starting from bottom point and
proceeds in the clockwise direction. Let the pin selection for
a given block be denoted by a set of four variables: xi

1, xi
2,

xi
3, xi

4. Each of these variables can be either 0 or a 1 and
the sum of the four will always be 1 to make sure exactly one
of the four locations are selected. Using these definitions, the
problem of clock pin assignment for clock divergence reduction

can be formulated as:

Minimize :
∑

xi
p ∗ xj

q ∗ Wi,j ∗ Top Level Dist(Bi
p, Bj

q) (2)

s.t :
∑

xi
p = 1, xi

p ∈ {0, 1}
1 ≤ i, j ≤ N, i �= j; 1 ≤ p ≤ 4; 1 ≤ q ≤ 4;

where, i, j are block numbers, p, q denote the pin locations on
a given block. Top Level Dist(Bi

p, Bj
q) represents the Man-

hattan distance between pin location p of Bi and q of Bj . The
conditions that each of the variables xi

p should be either 0 or
1 and that the sum of all the variables for a given block should
exactly be 1 makes sure that exactly one pin location is se-
lected for each block. The cost function being minimized is the
weighted sum of distances between all the clock pins of all block
pairs where the weight is the criticality of the paths between a
given block pair. The only variables in the above optimization
problem are xi

p and since they can only take values of either
0 or 1, the above problem is a 0-1 Quadratic Programming
problem and can be solved using efficient heuristics.

4. MULTI-CORNER SKEW REDUCTION
The multi-corner skew balancing problem for a given pair of

sub-trees can be divided into two categories. In the first, the
clock pins are located very close to each other and their delays
across corners are very similar. Hence, the multi-corner skew
balancing is trivial since it is possible to merge the clock pins
with just interconnect without adding an extra buffer level.
In the second case, the clock pins are far apart and/or they
have significantly different delays across the corners. In such
situations, we need to add one or more single-fanout buffer
stages (with appropriate buffer sizes/interconnect lengths) to
the root of the sub-trees to reduce their skews across corners. In
future discussions, we call the selection of appropriate buffer
size/interconnect length as selection of an appropriate buffer
configuration. Figure 3 shows an example of a buffer configu-
ration.

Buf1 Buf2 Cap

Len
Slew

Figure 3: Buffer configuration used for multi-corner
delay characterization.

To pick the right buffer configurations for multi-corner skew
reduction, following properties of CCTS problem can be used:

• The CCTS problem will have just a hand full of end
points (clock pins of sub-blocks) that are much more
spread apart in distance than typical registers. This is
because the number of sub-blocks in a typical SOC will
be orders of magnitude lesser than the number of flops in
the whole design.

• As a result, the average fanout for a buffer in the chip-
level clock tree will be considerably less compared to the
block-level clock trees. In most practical cases, this can
be as low as 1 or 2.

In order to distinguish between the different buffer configu-
rations and select the right set of configurations to achieve
multi-corner skew reduction, we can follow the following steps:

• Restrict the maximum fanout for any chip-level clock
buffer to just 1 or 2. The clock power/area penalty due
to this restriction will be negligible because the fanout of
most buffers is expected to be small anyway.

• The fanout restriction reduces the number of possible
buffer configurations, enabling us to do the multi-corner
delay characterization for each configuration quite easily.
For example, for the setup shown in Figure 3, it is triv-
ial to complete multi-corner characterization w.r.t. all
variables shown.

721

• Next, we obtain cross-corner delay ratios (CCDR) for
all buffer configuration by dividing the delays across all
N corners with the nom-corner delay. After this, each
configuration will have a vector of N numbers called its
CCDR. This normalization helps us to compare the rela-
tive cross-corner scaling of different buffer configurations
and choose the appropriate one during sub-tree mergers.

Procedure: Multi Corner Subtree Balance(SA, SB)
Input: Location and delay information for both sub-trees SA & SB .
Output: New sub-tree SC combining SA & SB .
1. Get CCDRs of SA, SB w.r.t. nominal corner.
2. Set Sub trees not close = 1
3. While (Sub trees not close == 1)

(i) Pick sub-tree with min nom-corner delay, denoted by SP .
Let SQ be the sub-tree with max nom-corner delay.

(ii) Select best buffer config. to add to SP such that CCDR of
SP after adding the buffer config. moves closest to
CCDR value of max delay sub-tree without exceeding its delay
significantly(i.e. > biggest buffer delay). Since CCDRs are
vectors, the closeness is defined by L2 norm between them.

(iii) Update delay and CCDR information for SP .
(iv) If skew across corners between sub-trees less than limit

Sub trees not close = 0
4. Using selected buffer configurations, identify the manhattan ring

within which each sub-tree’s new root can be located.
5. If (Two manhattan rings intersect)

Any point within intersecting area can be the new root.
Do wire-snaking to ensure preservation of skews/delays.

Else
Select closest points on the rings to reduce wirelength.
Merge them by constructing a simple symmetric (0 skew) tree.

6. Name the new sub-tree as SC and return SC .

Figure 4: Multi-corner skew balancing heuristic.

The concept of CCDR described above is used in our multi-
corner sub-tree merging heuristic shown in Figure 4. In the
above procedure, we first pick the sub-tree, denoted by SP ,
with lesser nominal corner delay and recursively add buffer
configurations at its root such that the CCDR of the two sub-
tree moves closer. This is repeated till the delays of both the
sub-trees are fairly close across all corners. At this point, the
exact configurations to be added at the roots of both sub-trees
A and B are available. However, the merging point location
of the two sub-trees is still not yet fixed. For a given sub-tree,
the total lengths of all the interconnects added with buffer
configuration gives the radius of the Manhattan ring within
which its root pin is to be located. If the Manhattan rings of
both sub-trees intersect, then any point within the intersection
can be selected as the root with appropriate wire-snaking. If
the Manhattan rings do not overlap, it means that though the
two sub-trees have similar delays, we need to add more buffer
levels to physically merge them. To achieve this, we identify
the closest points/segments on the two Manhattan rings and
merge them with a perfectly symmetric tree. This will preserve
the multi-corner skew balancing between the two sub-trees.

5. CHIP-LEVEL CTS ALGORITHMS
In this section, we briefly describe three modifications of exist-

ing CTS algorithms (used for comparison purposes) and discuss
our dynamic programming based algorithm in detail.

5.1 Existing Algorithms
Single-Corner DME based Approach: This algorithm is a di-

rect application of existing CTS algorithm of [5] using only
nominal corner delays.
Multi-Corner DME based Approach: This approach is identi-

cal to the single-corner approach with the difference that multi-
corner sub-tree merging method described in Figure 4 is used
instead of using only the nominal corner delay.
Greedy CCTS Algorithm: This algorithm is a simple modifi-

cation of [6] in which the sub-trees to be merged are selected
to minimize the cost defined by Equation(1). The node pair
merger is done using the multi-corner skew reduction method
of Figure 4.

Procedure: Dynamic Programming Top Level CTS
Input: Location and delay information for all blocks.
Output: Chip-level clock tree with min delay & clock divergence.
1. Initialize
a. Mergers Completed = 0
b. Active SubTrees = Clock Pins of all blocks
c. For each subtree ∈ Active SubTrees

Status(subtree) = new.
2. While (Mergers Completed == 0)
a. Valid Pairs = Pick Valid Pairs(Active SubTrees)
b. Eliminated Pairs = Pre Eliminate(Valid Pairs)
c. Valid Pairs = Valid Pairs - Eliminated Pairs
d. Generate Cost for merger of each Valid Pairs using Eq.(1)
e. Potential SubTrees = Active SubTrees + Valid Pairs
f. Eliminated SubTrees = Post Eliminate(Potential SubTrees)
g. New Additions = Potential SubTrees - Eliminated SubTrees

- Active SubTrees
h. For each subtree ∈ Active SubTrees

Status(subtree) = old.
i. For each subtree ∈ New Additions

Status(subtree) = new.
j. Active SubTrees = Potential SubTrees - Eliminated SubTrees
k. if (No. of New Additions == 0)

Mergers Completed = 1
3. Pick sub-tree in Active SubTrees with all
blocks and min delay and clock divergence.

Figure 5: Dynamic Programming CCTS. The sub-
steps defined in Figures 6, 7, 8.

5.2 Dynamic programming CCTS Algorithm
Our dynamic programming based CCTS algorithm is shown

in Figure 5. As with any dynamic programming based ap-
proach, two key aspects of our algorithm are optimal solution
of sub-problems and effective pruning of inferior sub-solutions
to avoid exponential run-time. For subsequent discussions, we
use the following terminologies. An active sub-tree is one that
has not yet been eliminated/pruned from subsequent merging
operations. The list of active sub-trees represent the current
list of sub-solutions to CCTS problem. A new sub-tree in the
list of active sub-trees is one that has not gone through even a
single round of mergers with other active sub-trees.
After initialization in step 1 of Figure 5, the existing sub-trees

are iteratively combined in step 2 to get one or more solutions
that drive all target clock pins. In each iteration , the set
of valid sub-tree pairs that can be merged to create new sub-
trees are picked. The steps to consider only the non-eliminated
sub-tree pairs are outlined in Figure 6. The sub-trees that
have gone through one round of merging with each other are
marked as old. Any merger between two old nodes is invalid as
it would have happened in one of the previous iterations. Also,
any merger between two solutions that have overlapping list of
target clock pins is also invalid as it is physically infeasible.

Procedure: Pick V alid Pairs(Active SubTrees)
Input: All active sub-trees.
Output: All pairs of sub-trees that are valid for merger.
1. Valid Pairs = {}; Number sub-trees from 1 to N .
2. For i = 1 to N

For j = i to N
Sub-tree pair considered: Si and Sj

If (Status(Si) == new OR Status(Sj) == new) AND
If (No overlap between Si and Sj on block clock-pins driven)
Valid Pairs → Valid Pairs + (Si, Sj)

3. Return Valid Pairs

Figure 6: Procedure to pick valid pairs for merger.

The pre-elimination procedure of Figure 7 weeds out sub-trees
that can be safely removed from consideration even before ac-
tual merger. For example, if two sub-trees are located very far
away from each other, then it is a good choice to eliminate the
pair because merging them will cause a significant increase in
overall clock tree delay. After pre-elimination, the procedure
in Figure 5 updates the list of valid pairs. Next, each of the
eligible sub-tree pairs are merged using the multi-corner sub-
tree balancing algorithm of Figure 4 at the end of which, each
sub-tree will have a specific cost as defined by Equation(1). Af-
ter this, the set Potential SubTrees is created by merging the

722

Delay(ps) Skew(ps) Divergence(ps) BA WL CPU
TC PAM CCTS Meth. Nom Slow Fast Nom Slow Fast Nom Slow Fast nm2 um (s)

1C-DME 2314 2909 1853 27 119 94 237103 297218 190267 3231469 16326298 0.5
MC-DME 2313 2859 1883 74 99 69 235085 290498 191429 3234319 16332297 1

RND MC-GRD 2295 2840 1863 76 97 83 237314 268882 212592 3245459 16365661 7
Avg MC-DyP 2305 2848 1879 63 82 63 193900 239022 157705 3239869 16350275 32

(20 TCs) 1C-DME 2315 2912 1856 37 113 104 231896 290863 185877 3225499 16308305 1
MC-DME 2346 2900 1911 69 97 64 231445 286111 188578 3229589 16314602 2

QP MC-GRD 2298 2840 1866 66 88 78 229345 259050 206075 3235339 16338849 9
MC-DyP 2331 2888 1904 43 57 40 185953 229559 151434 3234539 16329956 49

Table 1: Results demonstrating the effectiveness of the proposed pin assignment and CCTS algorithms.

Procedure: Pre Eliminate(V alid Pairs)
Input: All Valid Pairs of sub-trees.
Output: All very bad merging choices.
1. Eliminated Pairs = {}. Number Valid Pairs 1 to V .
2. For i = 1 to V

Let SA and SB be sub-trees of the pair i.
If (dist(SA, SB) > Dist Threshold) OR
If (delay diff(SA, SB) > Delay Threshold)
Mark Pair i for potential elimination.

3. For each Pair i marked for potential elimination
Let SA and SB be sub-trees of the pair i.
If (SA and SB have merging pairs not marked for elimination)
Eliminated Pairs → Eliminated Pairs + Pair i

3. Return Eliminated Pairs

Figure 7: The pre-eliminate procedure.

existing active sub-trees and the valid pairs for which merging
cost is available.

Procedure: Post Eliminate(Potential SubTrees)
Input: Full list of potentially valid subtrees.
Output: Sub-treesPairs that can be pruned because of existence of

other dominating sub-trees.

1. Eliminated SubTrees = {};
Number Potential SubTrees sub-trees from 1 to N .

2. For i = 1 to N
For j = i to N
P,Q → List of all sub-block clock pins driven by sub-tree i,j.
If (P ⊆ Q AND cost(P) ≥ cost(Q))
Eliminated SubTrees → Eliminated SubTrees + P;

If (Q ⊂ P AND cost(Q) > cost(P))
Eliminated SubTrees → Eliminated SubTrees + Q;

3. Return Eliminated SubTrees

Figure 8: The post-eliminate procedure.

In the post elimination (Figure 8), all inferior solutions are
eliminated. A sub-tree P is inferior if there exist another sub-
tree Q that covers the same set (or a super-set) of clock pins
covered by sub-tree P with a lower merging cost. After post
elimination, all existing active sub-trees are marked as old as
all possible valid sub-tree pairs from these have been evaluated
already. However, the newly created sub-trees should be al-
lowed to merge, with each other and also with old sub-trees.
So the newly created sub-trees are marked as new. The termi-
nation of the iterations in Figure 5 occurs when there are no
new sub-trees that were added in any given loop.

6. EXPERIMENTAL RESULTS
Using the data available on SOC chips in the literature [1–4],

we define reasonable ranges for a few key parameters such as
the size of the chip, aspect ratio, number of sub-blocks etc. and
randomly generate the testcases with information on chip-level
floorplan, timing criticality information and block-level CTS
delays across corners. We use the 65nm model cards from [7]
for generation of delays across three device corners (Nom, FF,
SS). The four algorithms described in Section 5 are run on
two sets of testcases: one with random pin placement and the
other with Quadratic Programming pin placement. Since the
two testcase sets are identical except in pin locations, com-
paring their results will indicate the effectiveness of clock pin
placement algorithm. We also run each of the four CCTS al-
gorithms on all testcases to compare the effectiveness of the
four CCTS algorithms. We generate 20 random testcases with

unique floorplans. Due to page limit, we only present the aver-
age results from all 20 testcases in Table 1. The acronyms used
in Table 1 and 2 are: TC is Test Case, PAM is the Pin As-
signment Method used (either Quadratic-Programming (QP)
or random pin assignment (RND)), 1C-DME, MC-DME, MC-
GRD, MC-DyP denote the single corner DME, multi-corner
DME, multi-corner greedy and multi-corner dynamic program-
ming respectively. The divergence values given are weighted
sum of clock divergence between all IP pairs. All the results in
Table 1 have been normalized and summarized in Table 2 with
the exception of skew. Since skew is a difference, skew ratios do
not mean anything physically. So we measure the effect of skew
reduction in absolute pico-seconds. The actual significance of
the skew reduction depends on the clock frequency of the chip.
Based on Table 1,2 , we can observe the following:

• Our algorithms significantly reduce skew across corners
(1.6 % to 6.4% of cycle time even for a 1GHz clock) than
the single corner approach.

• Our dynamic programming approach achieves an 18% re-
duction in average divergent delay across all three corners
with 0.5% increase in buffer area/wirelength.

• Compared to 1-corner DME with random pin placement,
the dynamic programming approach with QP pin place-
ment achieves 20% average clock divergence reduction.

CCTS Delay(Ratio) Divergence(Ratio) BA WL
PAM Meth Nom Slow Fast Nom Slow Fast Ratio Ratio

1C-DME 1.00 1.00 1.00 1.00 1.00 1.00 1.000 1.000
MC-DME 1.00 0.98 1.02 0.99 0.98 1.01 1.001 1.001

RND MC-GRD 0.99 0.98 1.01 1.00 0.90 1.12 1.004 1.002
MC-DyP 1.00 0.98 1.01 0.82 0.80 0.83 1.002 1.001
1C-DME 1.00 1.00 1.00 0.98 0.98 0.98 0.998 0.998
MC-DME 1.01 1.00 1.03 0.98 0.96 0.99 0.999 0.999

QP MC-GRD 0.99 0.98 1.01 0.97 0.87 1.08 1.001 1.001
MC-DyP 1.01 0.99 1.03 0.78 0.77 0.80 1.001 1.002

Table 2: Summary of normalized results from Table 1.

7. CONCLUSION
We have proposed efficient algorithms for soft-IP clock-pin

assignment, multi-corner skew reduction and chip-level CTS
problems. Experimental results on several testcases show that
these algorithms are effective in simultaneous reduction of multi-
corner skew and clock divergence between critical IP pairs.

8. ACKNOWLEDGEMENTS
This work is supported in part by NSF, SRC, IBM Faculty

Award, Fujitsu, Qualcomm, Sun, and equipment donations
from Intel.

9. REFERENCES
[1] R. Rajsuman, “System-on-a-chip: Design and Test”, 2000 Artech

House Inc. Publishers.

[2] M. Keating, P. Bricaud “Reuse Methodology Manual for
System-on-a-Chip Designs”, Third Edition, 2002, Kluwer
Academic Publishers.

[3] S. Agarwala et. al “A 800 MHz System-on-Chip for Wireless
Infrastructure Applications,” in VLSI Design 2004.

[4] S. Agarwala et. al “A 65nm C64x+ Multi-Core DSP Platform for
Communications Infrastructure,” in IEEE ISSCC, 2007,
pp.262–264

[5] Masato. Edahiro, “A clustering-based optimization algorithm in
zero-skew routings,” in Proc. of DAC, 1993, pp. 612–616.

[6] R. Chaturvedi, and J. Hu, “An efficient merging scheme for
prescribed skew clock routing” in IEEE TVLSI, vol.13, no.6, pp.
750–754, Jun’05.

[7] “http://www.eas.asu.edu/p̃tm/”

723

