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Abstract—In this paper, we develop a multilevel global place-
ment algorithm (MGP) integrated with fast incremental global
routing for directly updating and optimizing congestion cost
during physical hierarchy generation. Fast global routing is
achieved using a fast two-bend routing and incremental A-tree
algorithm. The routing congestion is modeled by the wire usage
estimated by the fast global router. A hierarchical area density
control is developed for placing objects with significant size vari-
ations. Experimental results show that, compared to GORDIAN -L,
the wire length-driven MGP is 4–6.7 times faster and generates
slightly better wire length for test circuits larger than 100 000 cells.
Moreover, the congestion-drivenMGP improves wiring overflow
by 45%–74% with 5% larger bounding box wire length but
3%–7% shorter routing wire length measured by a graph-based
A-tree global router.

Index Terms—Congestion, deep submicrometer, interconnect,
physical hierarchy, placement, routing.

I. INTRODUCTION

I NTERCONNECT has become the dominating factor in
determining overall system performance and reliability.

Inevitably, it impactsall stages of the design flow. In [1], a
three-phase interconnect-centric design flow was proposed. It
includes: 1) interconnect planning; 2) interconnect synthesis;
and 3) interconnect layout in order to emphasize interconnect
planning and optimization throughout the entire design process.

The interconnect planning phase is particularly important in
the interconnect-centric design flow because it provides early
assessments on system performance, thereby enabling perfor-
mance optimization in the early design stages. In addition to
performance optimization, it is equally important to reduce de-
sign uncertainty and ensure that the planned results can be real-
ized in the later design stages without significant deviations.

Although the very large scale integration (VLSI) designs are
inevitably hierarchical given their high complexity, the hard-
ware description language (HDL) description provided by the
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architecture and/or circuit designers usually follows thelogical
hierarchyof the design which reflects the logical dependency
and relationship of various functions and components in the de-
sign. Such a logical hierarchy may not map well to a two-dimen-
sional layout solution, as it is usually conceived with little or no
consideration of the layout information [1]. Therefore, in our in-
terconnect planning stage, we first flatten the circuits in the log-
ical hierarchy to the extent that we are certain about the “phys-
ical locality” (i.e., we are certain that the circuits in a module
should physically stay together). We then generate aphysical
hierarchyto define the global, semiglobal, and local intercon-
nects (based on their levels in the physical hierarchy).

There are some recent studies on generating a good physical
hierarchy from the flattened function and logical hierarchy for
performance optimization [2], [3]. However, they have little or
no consideration for routing congestion, which may cause un-
certainty in later design stages because the planned global in-
terconnects in overly congested areas may be forced to make
detours or change layers. Table I shows the wire length distri-
bution of a high performance application specified integrated
circuit design from IBM after detailed routing. The chip dimen-
sion is about 10 mm 10 mm. It has more than 1.3 million
nets, with buffers inserted at an early phase for performance op-
timization. It shows that local interconnects will generally be
routed at lower metal layers and global interconnects will be
preferably routed at higher metal layers. However, due to timing
and congestion constraints, some long nets still have to be routed
at lower metal layers and some short nets are actually assigned
to higher metal layers.

The above data suggest that the performance estimation in the
interconnect planning stage must consider layer assignment and
congestion control of global interconnects.

In this paper, we shall discuss our multilevel global place-
ment (MGP) algorithm integrated with fast incremental global
routing for directly updating and optimizing the congestion cost
for physical hierarchy generation. In particular, we shall discuss
in detail our contributions on: 1) the use of multilevel framework
for scalability; 2) the use of the hierarchical area density control
for placing objects with significant size variations; and 3) use of
fast incremental routing for efficient routability estimation. The
preliminary results of this paper were published in [4] (where
we named our algorithm mPG).

II. PREVIOUS WORK

Once we have determined how much to flatten the logical hi-
erarchy, the physical hierarchy generation problem is quite
similar to the traditional global placement problem. There are
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TABLE I
WIRE LENGTH DISTRIBUTION ON ALL ROUTING LAYERS OF AN INDUSTRIAL ASIC DESIGN

several well-known global placement techniques: min-cut parti-
tion-based placement (e.g., [5]), analytical methods with recur-
sive partitioning (e.g., [6]), and simulated annealing (SA)-based
approaches (e.g., [7]). Many placement tools use hybrids of
these techniques to yield better results.

The most noticeable SA-based placement is the Timberwolf
placer [7] and its successors (e.g., [8], [9]). The SA-based place-
ment uses a temperature to control the amount of hill climbing.
The temperature is gradually reduced according to a cooling
schedule.

The placement based on analytical methods with recursive
partitioning was first proposed in [10]. In [10], starting from
the whole design as a single partition, it recursively applies
quadratic placement to each partition to give the optimal module
location without considering module area constraints. It then bi-
partitions the modules by selecting a cutline. In [11], the parti-
tion method was simplified by choosing the medium module
location as the cut line for the initial solution of a partition. In
[6], the placement was formulated as a sequence of quadratic
programming problems and the recursively refined partitions
were translated to the constraints in the quadratic placement
steps. Each quadratic programming sees the entire circuit to
avoid making local decisions for each partition. It was further
extended for linear wire length by a proper scaling using the
edge length from previous iterations [12]. In [13], the recursive
partition was done by quadripartition. Each quadripartition is
optimally solved to minimize the movements and to satisfy the
area constraint of each partition. In [14], extra forces are added
to the quadratic placement for overlapping removal.

Recently, a number of hybrid placement methods were
proposed targeting the efficient handling for high design
complexity and performance optimization. Reference [15] used
a recursive bipartition-based method to produce routable place-
ments. The “relaxation-based local search” is used for global
placement [16], which iteratively selects a set of modules and
solves the optimal locations for them. A placement based on
recursive min-cut quadripartition is proposed in [17]. It differs
from previous approaches by doing bin swapping placement on
each partition level using SA technique. A multilevel placement
is proposed in [18]. It recursively clusters circuits and solves
the coarsest level placement by nonlinear programming using
the interior-point method. The placement solution is then
recursively declustered and refined by a greedy algorithm to
obtain the global placement solution.

None of the aforementioned placement techniques directly
handle routing congestion.1 Several existing works consider

1Although [14] claimed that wire density can also be handled, it did not report
experimental results using wiring density.

the congestion during the placement or floorplanning stage. In
[15] and [19], it is shown that there is a mismatch between wire
length and congestion objectives. In [20], a simple LZ-shape
routing is incorporated into an SA-based floorplanning engine
to consider congestion. However, there may not be enough
global interconnects seen by a floorplanner. In [21], the wiring
demand of a net is modeled by a weighted bounding box
(BBOX) length. The wiring demand estimation can be fast,
though it may be inaccurate. In [22], precomputed Steiner
tree topologies on a few grid structures are used for wiring
demand estimations. This approach is tailored for recursive
partition-based placement and may not foresee congestion
problems within each partition. In [23]–[27], an indirect
cell padding or region growing/shrinking is applied to the
placement after congestion analysis. This type of approach
will not dynamically monitor the congestion changes and has
less control over reducing the congestion. Moreover, if the
congestion in a region is not caused by the connection to the
pins inside the region, cell padding or region shrinking may
not always help.2 In [28], a postprocessing of moving cells
with Steiner tree reconstructions is used. In this approach, the
cell movement is limited and reconstructing the Steiner trees
on each movement is too expensive. In [29], it is shown that a
postprocessing technique is effective in minimizing congestion
because routing congestion correlates with wire length in a
global view. In [30], a postprocessing placement is proposed
using a new congestion model. It estimates the congestion
using the method in [21] and expands certain congestion
regions (by solving an integer programming problem). This
approach improves the accuracy of congestion, though the
routing congestion is still not dynamically updated.

In general, the most accurate congestion estimation still
comes from the global router itself. However, due to the high
computational complexity, most previous works used a variety
of simplified approximations to estimate the congestion. Our
approach differs from the others by building a fast global
router and integrating it with an efficient multilevel placement
engine to provide dynamic routing congestion guidance to the
placement engine.

III. PROBLEM FORMULATION

The interconnects of a VLSI circuit are determined by: 1)
the locations and sizes of logic gates, flip-flops, and buffers

2For example, if two heavily connected partitions can only be connected with
horizontal passthroughs in a narrow channel with blockages on top and bottom
sides. The channel will be very congested. However, no matter how you pad
the cells inside the channel or grow the regions, the congestion caused by pass-
through wires cannot be eliminated.
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Fig. 1. Illustration of logical and physical hierarchies.

and 2) the interconnect geometry that includes wire locations,
layers, and widths. Although interconnect delay is the domi-
nating factor in system performance, only the delays of “long”
interconnects are sensitive to wiring geometry. The delays of
“short” interconnects are determined mainly by the driver/re-
ceiver sizes and are less sensitive to wiring geometry. It is im-
portant to identify and optimize global interconnects in early
design stages. This important problem of determining global in-
terconnects can be solved by physical hierarchy generation.

The physical hierarchy is represented by a bin structure and
cell location assignment. We can use the bin centers to roughly
specify cell locations. Global routing can be performed on
the bin structure to estimate net topologies. The finer the bin
structure becomes, the more accurate the cell locations and net
topologies are. We also call our physical hierarchy generation
process “coarse/global placement”3 because we only place
cells in coarse locations (bin centers).

The inputs of the physical hierarchy generation consist of the
logical hierarchy, design specification, and technology. The log-
ical hierarchy includes a hierarchical net list description con-
sisting of library cells, hard intellectual property (IP) blocks,
and soft IP blocks. The width, height, and delay information of
library cells and hard IPs are known. The soft IP blocks can be
further flattened into other hard IP blocks or library cells. Fig. 1
shows an example of a logical hierarchy and a physical hier-
archy generated from that logical hierarchy.

Given the above inputs, the physical hierarchy generation
places cells in a bin structure for optimizing the design objec-
tives (delay, area, etc.). The outputs include: 1) block locations
specified by bin centers; 2) global nets (inter-bin nets) routing
estimations (topology, wire sizing, and layer assignments); and
3) delay estimations, power estimations, etc.

In this paper, we assume that the necessary flattening of the
logical hierarchy is complete and focus only on the physical hi-
erarchy generation by global placement for wire length mini-
mization and routing congestion minimization.

IV. MGP ALGORITHM WITH CONGESTIONCONTROL

High computational complexity is the major challenge for
physical hierarchy generation. Inspired by the recent success of
the multilevel methods in efficiently handling high complexity

3Here, global placement and coarse placement refer to the same thing, there-
fore, we use these two terms interchangeably in this paper.

Fig. 2. V-shape multilevel SA coarse placement framework.

designs in the VLSI computer-aided design (CAD) area [18],
[31], [32], the backbone of our system is a multilevel SA en-
gine.

The multilevel (or multigrid) method was first developed for
solving partial differential equations [33]. The principle is based
on the interplay of smoothing and coarse grid correction which
complement each other. The multilevel method has been widely
used in various applications. A recent survey paper [34] has a
good introduction and links to other surveys and resources on
the multilevel method.

Applying the multilevel method to the global/coarse place-
ment problem results in aV-Shape multilevel global/coarse
placementalgorithm flow. We first give an overview of this
flow.

A. Algorithm Overview: V-ShapeMGP

Fig. 2 shows an overview of our multilevel global/coarse
placement framework. It includes a coarsening phase which
recursively builds coarsening levels, an initial placement step
on the coarsest level and a refinement phase which refines
each coarser level placement solution to obtain a finer level
placement solution.

The details of each phase are explained below.

• Coarsening by Clustering: Coarsening can be performed by
node clustering. A netlist is coarsened by grouping nodes (or
cells) together to form a new netlist with fewer nodes and
fewer nets. Sometimes area constraints are considered so that
the resulting cluster sizes are more or less balanced. This
clustering process is done recursively to generate a netlist
that is small enough to be efficiently placed.

Several clustering algorithms can be used for our purpose.
For example, we can apply the connectivity-driven clustering
(edge separability-based clustering [ESC] [35], modified hy-
peredge coarsening [MHEC] [31]), the performance-driven
clustering (two-level clustering [TLC] [36]), or even use the
original logical hierarchy for clustering. In our current imple-
mentation, we use theFirstChoice(FC) clustering algorithm
[37] because it experimentally gives us a better hierarchy for
global placement. (See results in Section V-A2.)
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• Initial Placement on the Coarsest Level: After the coarsening
phase is complete, at the coarsest level a netlist which is
much smaller and can be efficiently placed is obtained. Any
placement algorithm can be used to generate the initial place-
ment solution. In our system, an SA placement engine is used
to generate the initial placement on the coarsest level as in [7]
and [9] for its flexibility of integrating various design objec-
tives and handling constraints.

• Uncoarsening and Placement Refinement: The uncoarsening
phase starts from the coarsest level placement solution and
iteratively refines a coarser level solution to a finer level so-
lution. A coarser level placement solution is first declustered
to the original netlist in the finer level representation. The
subclusters at the finer level assume the locations of their
parent clusters in the coarser level. Any iterative placement
method can be used to refine the placement solution on the
finer level.

In our system, the refinement is performed by the same SA
engine to place clusters in the current level on a placement
bin structure. However, the SA process shall not start from
a very high temperature as a normal SA-based placement
does, because it would be roughly the same as starting from
a random solution. The SA engine only starts at a middle or
low temperature during the refinement phase. The details of
our SA engine are explained in Section IV-D.

There are several features in our multilevel coarse placement
that need further explanation. We shall first give an overview of
these features and explain the details in the subsequent sections.

• Placement Cost: Our coarse placement engine can perform
both wire length-driven placement and congestion-driven
placement. The congestion-driven placement is usually
turned on at the finest few clustering levels. The congestion
cost is estimated based on global routing solutions generated
by a fast global router. The details of the fast global router
are explained in Section IV-C. The placement cost functions
are explained in Section IV-D2.

• Static Placement Bin Structure: The sameplacement bin
structure is used at each level in the multilevel placement to
avoid unnecessary cost changes during declustering.4 (See
detailed explanation in Section IV-B.)

• Hierarchical Area Density Constraints: To ensure that the
coarse placement solution can be legalized to a detailed
(overlap-free) placement without significant cell move-
ments, the coarse placement result shall satisfy certain area
density constraints. In order to handle significant cluster
size variations, we develop a method to handle the area
constraints hierarchically. The details are explained in
Section IV-B.

B. Hierarchical Area Density Control

In order to legalize a global placement result to a detailed
(overlap-free) placement without much wire length increase,
each placement bin is usually imposed an area bound constraint,
that is, the total area of cells assigned to this bin shall not ex-
ceed this bound. It is difficult, however, to maintain a strict

4In [18], different placement bin structures are used at each level in the mul-
tilevel placement process.

area bound in each placement bin during the placement process.
The conventional wisdom is to allow some area overflow up
to a fixed percentage of the bin area bounds such that a de-
tailed placement solution can be obtained without significant
cell movement.

The fixed overflow percentage does not work well in a multi-
level coarse placement due to the significant variations in cluster
sizes. The clusters in coarser levels may even be larger than a
placement bin. One solution is to use coarser bin structures in
coarser levels; however, it loses the accuracy and creates un-
necessary cost jumps when switching from coarser to finer bin
structures. For example, in our early implementations of the
multilevel SA process, which are no longer used, we used dif-
ferent placement bin structures for different placement levels
in the multilevel placement scheme (coarser level placements
with coarser bin structures). For each level, we enforced the area
bound constraint by allowing a fixed percentage area balance vi-
olation in each bin. The percentage of area balance violation al-
lowed in coarser level placements is greater than or equal to the
ones in finer level placements. However, we encountered prob-
lems caused by significant cost changes when a coarser level
solution was declustered to a finer level solution. We also had
problems in move generation with strictly enforced area balance
constraints. When the constraints are too tight, it deteriorates
both the runtime and the solution quality as the move genera-
tion is too restrictive (even with cluster swapping moves).

A cost jump during the optimization means that the opti-
mization engine may not optimize the accurate cost function at
higher levels. It usually translates to a less efficient optimiza-
tion process. In the multilevel placement framework, it is hard
to eliminate the cost jump caused by declustering because there
are more nets involved in the wire length computation at a finer
level than that at a coarser level. However, the cost jump due
to switching the grids is unnecessary and can be eliminated by
using the same grid structure at each level.

We solve this problem by a hierarchical area density control
algorithm. Our density control imposes a density bin hierarchy
(DBH) on the target placement bin structure and enforces re-
laxed area constraints for all the bins in the DBH. Subsequently
we shall show that the area constraints are gradually tightened
in our multilevel framework while allowing more freedom for
cluster moves at coarse levels.

The DBH is formed by recursively grouping adjacent bins to
generate the bins in the next level. The bin structure at level 0 is
actually the placement bin structure. Fig. 3 shows an example
of a DBH where boundary lines of different levels of the bin
structure are drawn differently. In this figure, there are three bin
structures in the DBH: an 8 8 bin structure at level 0, a 44
bin structure at level 1, and a 22 bin structure at level 2.

Denote as the area bound for a bin in level in the
DBH, which is also the summation of all area bounds of bins
in level 0 which are contained in . Similarly, denote as
the current area usage for bin , which is also the summation
of all current area usages of bins in level 0 which are contained
in . The hierarchical area constraints are enforced on each
cluster move. For a cluster move that moves a clusterof area

to bin at level 0 in the DBH, ( also is a placement bin),
for any bin on level in the DBH that contains bin , the
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Fig. 3. DBH for area density control.

overflow of bin must be smaller than , where is a
user-specified parameter (that is, in DBH, for any contains

, we require ).
For example, if a cluster with area is moved to bin (2, 3)

in Fig. 3, the area constraints of the following bins are enforced:
bin (2, 3) on level 0, the level 1 bin covering the region marked
with 1 in Fig. 3, and the level 2 bin covering the region marked
with 2 in Fig. 3.

Under our hierarchical area density control, a placement bin
serves more like a coordinate than a bin. Assigning a cluster
to a bin (even if the cluster is larger than the bin) means posi-
tioning the cluster center to the bin center. Because of the hier-
archical area density control, an overflowed bin always implies
empty or less congested bins in its neighborhood. As the refine-
ment is performed from coarser to finer levels, the relaxed area
constraints will be gradually tightened due to the size decrease
of the clusters. Therefore, there should not be significant area
overflow when the refinement on the finest level is complete.
Macros will be legalized after a few levels from the coarsest
levels. Using this method, our annealing engine can efficiently
handle mixes of big and small modules/clusters and will not be
stuck due to area constraints.

If the area constraint is satisfied in a region, by applying the
pigeon hole principle, at least one of the subregions of the re-
gion satisfies the area constraint. We apply this property in the
SA move generation. If the SA engine generates a target loca-
tion bin in the DBH for a cluster and this move violates the
hierarchical area constraints, an alternative location can be effi-
ciently found as follows. In the DBH, we first find the smallest
bin (in level ) that contains bin and ensure that all of
the higher level bins that contain bin also satisfy the area
constraint. An alternative location can be found by recursively
applying the pigeon hole principle from bin in the DBH.

C. Global Interconnect Topology Generation and Layer
Assignment for Coarse Placement Guidance

Since most of the nets are two-pin nets and a multipin net
can be decomposed into two-pin nets, we first build a fast, con-
gestion avoidance two-bend router (LZ-router) for two-pin nets.
We use this fast two-pin net routing algorithm with an incre-
mental A-tree generation algorithm for multipin nets to build a
fast global router.

The fast global router also includes a fast layer assignment al-
gorithm which assigns nets according to the net criticality. The
more critical the nets are, the higher priority they have to choose

Fig. 4. Illustration of HVH and VHV routing selection of LZ-router.

better routing layers and routing topologies in order to meet the
performance constraints. In order to save the runtime, layer as-
signment is not performed on each SA move in our implemen-
tation. Instead, layer assignment is only performed at the begin-
ning of each SA phase on each level.

1) Routing for Two-Pin Nets:We use a fast two-bend
routing algorithm to route two-pin nets. We call the two-bend
routing “LZ-routing” and our two-bend router an “LZ-router.”
The possible number of configurations of connecting two pins
with coordinates ( ) and ( ) using the LZ-routing
is . However, the most apparent implementation
which needs to calculate wire usage queries on
bin boundaries does not require time, but

time.
Our LZ-router uses auxiliary data structures (similar to a seg-

ment-tree data structure, explained in the Appendix) to find
good quality routes by performing a binary search of the pos-
sible routes for a two-pin net.

Thewire densityof a bin/region is defined as the wire usage
of the bin/region divided by its area. For a net connecting two
pins and which are bounded by a rectangle BBOX
[Fig. 4(a)], if the maximum of the wire density of the vertical
(horizontal) boundary bins of on the vertical (horizontal)
layer is ( ), the wire density of region on the
horizontal (vertical) layer is ( ), then thepossible
maximum wire densityof VHV (HVH) routing is the maximum
of ( ) and ( ). The VHV routing
pattern [Fig. 4(b)] will be chosen if its possible maximum
wire density is smaller than that of HVH, otherwise, the HVH
routing pattern [Fig. 4(c)] is chosen.

Assuming the VHV routing is used, our algorithm recursively
makes a horizontal cut on and selects the one with a smaller
wire density to route. It stops when the choice narrows to a
single row.

If the complexity of a query on wire density in a region is
, the complexity of our LZ-router is

because it takes at most binary search
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Fig. 5. Illustration of the IncA-tree algorithm.

steps to find a route. Given a bin structure, if we do
not insist on finding the exact answer of a query used in our
LZ-router but use a larger region to answer it approximately
(refer to Appendix), it can be answered in using
segment-tree-like data structures. Therefore, the complexity for
our LZ-routing is . Thus, we
have

Theorem 1: Given a bin structure, the complexity
for the LZ-router to route two pins with coordinates () and
( ) is .

2) Incremental Hierarchical A-Tree Construction:For a
multipin net, a rectilinear Steiner arborescence tree (A-tree) is
constructed for the routing estimation. An A-tree is a shortest
path rectilinear Steiner tree. There are some heuristic algo-
rithms that construct an n-pin A-tree in time with a
solution no worse than 2x of the optimal A-tree solution, e.g.,
[38] and [39]. However, if an A-tree is reconstructed for any
pin location update, the complexity would be for
each -pin net in a pass of moving all clusters, which is too
expensive.

We develop an incremental A-tree (IncA-tree) algorithm that
can efficiently update the routing topology for each pin location
change. We only explain the construction in the first quadrant
because the construction of all quadrants is similar. Given a grid
structure consisting of grids on the first
quadrant, we can recursively quadripartition the grid structure
until reaching the unit grid. For example, the grid structure in
Fig. 5 is first quadripartitioned by the cut lines and
to form four partitions. If there are some pins located inside a
partition (including locations on the bottom and left boundaries,
but excluding the locations on the right and top boundaries), the
lower-left corner of the partition is the root for a subtree con-
necting all the pins inside this partition. For example, (4, 4) is
the root for any pin at location ( ) with and

. For a partition with some pins located inside, its root
has an edge connecting to the lower-left corner of the previous
level quadripartition. In the above example, (4, 4) has an edge
connecting to (0, 0). By recursively performing such quadripar-
tition, we can build an A-tree such that each pin at location ()
can connect to the origin (0, 0) with edges.
Any pin insertion (deletion) to location ( ) only incurs, at
most, edge insertions (deletions). Therefore, each

operation of moving a pin from ( ) to ( ) incurs, at
most, edge changes.

For example, in Fig. 5, assume that at the beginning, only
the root pin is inserted. If we insert a pin at (7, 5), it will first
connect to its parent, which is (6, 4). It then moves up one level
to connect to (4, 4) and then from (4, 4), moves up one level to
connect to (0, 0). If we insert a pin on (6, 5), it will connect to
(6, 4), sharing the connection from (6, 4) to the root. Similarly,
if we insert (5, 1), it goes to (4, 0), which will directly connect
to the root.

With the fast two-pin routing and incremental A-tree routing,
for an -pin net with BBOX length on a bin struc-
ture, the complexity of updating a nonroot pin move is
times the complexity of LZ-routes , which
is . For moving the root, the complexity
is . While providing superior guidance
for congestion optimization during the coarse placement, the
runtime overhead of our congestion cost updating grows slowly
due to the low logarithmic complexity.

It is obvious that the IncA-tree may generate routes with
longer wire lengths than the A-tree does and using it may
overestimate the congestion. However, it is never intended to
be used as the final measurement of the placement congestion.
Instead, it is used to guide the placement optimization.

D. Multilevel SA Global Placement

The details of the SA engine are described below.
1) Solution Space:A staticbin structure is used at each level

during the multilevel placement. Clusters are placed at bin cen-
ters subject to the hierarchical area density constraints, as ex-
plained in Section IV-B. The hierarchical area density control
makes it possible to place clusters that are much larger than a
bin.

2) Cost Function: The cost function for our SA engine has
two modes: wire length-driven mode and congestion-driven
mode. The cost function for the wire length-driven mode is the
simple summation of the BBOX wire lengths of all nets.

The fast global router described in Section IV-C is used to
estimate the wire usage in each bin. The cost function for the
congestion-driven mode is the quadratic sum of the wire usages
of all bins on all the routing layers. This cost is equivalent to
the sum of the weighted wire length as it weights all the wire
segments in each bin by its wire usage.

On a horizontal routing layer, if a global routing wire segment
of width is routed across a bin of width , it contributes

wire usage to the bin. If the wire segment starts from or
ends at this bin, it contributes 0.5 wire usage to this bin.
The wire usage on a vertical is similarly estimated.

If a bin has wire usage , its cost is . The total cost is the
summation of all the bins’ costs on all the layers. The intuition
of this cost function is from a linear weighted cost that was used
by many global routers. This cost function encourages the SA
moves that can route affected nets with shorter length and less
congestion.

For this cost function, if the wire usage of a bin is changed
from to , the cost change is . Therefore, if a
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wire usage is added to each bin with wire usage in a set
of bins , the cost update is .

This is useful as we can use a tree hierarchy to store the usage
data. The above formula shows that if a segment is routed from
column to column on row , the wire usage change of each
bin is and the total wire usage is in these bins, then the
cost change over the bins is . Therefore,
the congestion cost can be efficiently updated by decomposing
each global routing change to a set of wire segment insertions
and deletions.

Minimizing wire length is strongly related to congestion min-
imization. Therefore, wire length minimization is performed
on coarser levels. Congestion optimization is only turned on
at the last few finest levels of refinement. We provide a “re-
duced mode” where the congestion-driven mode is only turned
on at the finest level when the accepting ratio is lower than
a predefined threshold and the congestion-driven and wire
length-driven modes are alternatively run at a rate of .
Our experiments find that and give the
best tradeoff between the runtime and the solution quality.

3) Neighborhood Structure:Two moves are used—cluster
move and I/O pads swap (not used in the experiments shown
in this paper). A cluster move randomly selects a cluster and
moves it to another bin. The target location is either randomly
selected (within some range limit) or computed to minimize
the BBOX wire length. The experimental setting of the random
moves probability is . If the generated
move violates the hierarchical area density constraints, an al-
ternative target location is generated according to the method
described in Section IV-B.

4) Cooling Schedule:Let be the number of clusters in
level . The cooling schedule is shown below.

• Move accepting probability: The probability for accepting
a move with cost-change is when
and when .

• Starting temperature: The starting temperature for the
coarsest level (level ) is set to be 20 times the standard
deviation of the costs of random moves, as suggested by
[40]. For the remaining levels, the SA engine works more
like local refinement at lower temperatures. By starting from
a lower temperature, the SA engine permits less cost-in-
creasing random walks from the good solutions obtained
from the coarser levels, thus speeding up the optimization
process. The starting temperature is calculated by using
methods similar to [41] which assumes that the temperature
of the solution from the previous level is in an equilibrium
state such that the expected cost-change of random moves
is zero.5 For level ( ), this method first generates

random moves. A binary search is then performed to
find a temperature that makes the expected cost-change
close to zero. Given a temperature, the probability
of accepting each of the moves is first calculated. The
expected cost-change for is then calculated based on .

5In extreme cases, where all moves make cost increase or decrease (we never
encountered such cases), we can simply set the temperature to the freezing tem-
perature or 20 times the standard deviation of the costs ofn random moves.

A binary search is performed on the temperatures to find the
temperature that makes the expected cost-change close
to zero. The temperature is our starting temperature.6

• Next temperature calculation: The next temperature calcu-
lation is a function of accepting ratio. For a given tem-
perature , the next temperature is 0.5if ; 0.9
if ; 0.95 if ; 0.8 if

[42].
• Inner number: Two inner numbers and are

used. For each temperature on level, the SA process starts
with a pass of moves. If the current pass reduces
the total cost, the temperature is repeated with
moves until cost increase passes are encountered. If the
probing pass increases the total cost, the SA engine jumps to
the next temperature. By starting with a smaller inner number
for the probing pass, the SA engine can quickly skip some
temperatures without significantly increasing the total cost
if the calculated starting temperature is too high. The reason
for running the same temperature with several passes is that
our inner number is relatively small compared to the conven-
tional annealing schedule. Enough runs are needed in order
to let the SA engine do enough work at each temperature.
A pass with increased cost usually indicates that the cost re-
duction in the current temperature is becoming less effec-
tive and a lower temperature should be used. The SA engine
should tolerate a few cost increasing passes such that it does
not jump to a lower temperature too early. The values are ex-
perimentally set to , and .

• Freezing temperature: The freezing temperature is set to be
, where is the current cost; is a user-input param-

eter; is the net count of the current level [42]. The default
value for is 0.005.

V. EXPERIMENTAL RESULTS

Our multilevel global placement algorithm is implemented in
C++/STL. It can be run in three modes: wire length minimiza-
tion (MGP), congestion-driven at the finest level (MGP-cg), and
the “reduced congestion-driven mode” (MGP-cg.rd) described
in Section IV-D2. Our experiments are conducted on a Sun
Blade 1000 workstation running at 750-MHz frequency (except
the experiments in Section V-D).

Three sets of placement benchmarks are used for experiments
and comparisons in this section. The first set of benchmarks is
provided by the authors of [18] and is in thePROUD format
which can be taken by GORDIAN-L [12] and DOMINO [43]. It
contains two of the largest circuits (avqsmall, avqlarge) in 1993
Microelectronics Center of North Carolina layout benchmark
sets and someibmXX circuits derived from the International
Symposium on Physical Design (ISPD98) IBM benchmark
suite [44]. We call this set of benchmarks asBENCHP. The
second set of benchmarks is obtained from [45] in theGSRC
BookShelfformat and is referred asBENCHB. It is also derived
from the ISPD98 IBM benchmark suite [44]. The third set of

6Because the solution from the previous coarser level is not really in an equi-
librium state, we have added in other user-input engineering adjustments to fine
tune the starting temperature calculation.
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benchmarks is a set of industrial benchmarks from IBM and is
referred asBENCHI.

Though theibmXX placement benchmarks inBENCHP and
BENCHB are all derived from the ISPD98 IBM benchmark suite
[44], they are different in both cell library and netlist. As the
original ISPD98 IBM benchmark suite [44] was released as par-
titioning benchmarks, only netlist and cell area were provided.
No placement specifications, such as standard-cell row speci-
fications, were provided and most of the benchmarks contain
large macros. TheibmXX circuits in BENCHP have the same
netlist as [44], however, they assume that all the cells have a
uniform dimension in order to conform to a standard-cell place-
ment benchmark. InBENCHB, all the big macros are first taken
out of the circuits; second, the remaining cells are converted
to standard-cells of the same height using the area specified
in [44]; third, nets with a degree of less than two are removed
due to the removal of macros, thus most of the derived circuits
do not have connections to I/O pads.7 Therefore, the netlists in
BENCHB are different from that of [44]. But they share the cell
library except that there are no macros inBENCHB. In order to
avoid confusion, we rename the circuitsibmXX in BENCHP by
adding “ ” suffixes to indicate the difference. For both sets of
benchmarks, placement row specifications are added. However,
the PROUDformat only specifies the number of standard-cell
rows, while theGSRC BookShelfformat specifies not only the
number of rows but also the row locations and row spacing. This
makes these two formats incompatible in terms of row specifi-
cation. Even if we convertBENCHB into PROUDformat and run
GORDIAN-L and DOMINO, DOMINO cannot generate rows speci-
fied in BENCHB as the program itself automatically sets the row
locations and spacing. Therefore, we did not run GORDIAN-L
and DOMINO on the circuits inBENCHB and only compared our
placer with GORDIAN-L on BENCHP for wire length minimiza-
tion. We did not useBENCHP for congestion control experiments
because all of the cells inibmXXhave a uniform size, which is
not reasonable for routing.8 We usedBENCHB for congestion
control experiments instead.

The characteristics of these two sets of benchmarks,BENCHP
andBENCHB, are listed in Table II. Dangling cells are pruned
out in BENCHB. The characteristics ofBENCHI is included in
Table XII.

A. Wire Length Minimization Experiments

In this section, we study how the placement grids and dif-
ferent coarsening schemes can affect the placement result for
wire length minimization. We compareMGP with GORDIAN-L
[12], a well-known quadratic placer and Dragon [17], an ad-
vanced SA-based standard-cell placer, on wire length minimiza-
tion. We also show the effectiveness of the multilevel approach
for handling the large-scale placement problem by comparing
MGP with its flat version.

1) Placement Grids Impact on Final Wire Length:We
studied the impact of placement grid on the final wire length
using circuits inBENCHP. We ranMGP followed by DOMINO

7This is because all the I/O pads connect only with the macros which have
been taken out in these circuits.

8Cells with more pins tend to cause high routing congestion if all of the cells
have the same size.

TABLE II
CHARACTERISTICS OFCIRCUITS IN BENCHP AND BENCHB

TABLE III
PLACEMENT GRID IMPACT ON FINAL WIRE LENGTH

under different placement grids. Based on the results of mul-
tiple runs of MGP/DOMINO, we report the average detailed
placement BBOX wire length (DP. WL), the average total
runtime in seconds (tot. CPU) and the average percentage
of detailed placement runtime in total runtime ( ) in
Table III. Data in parentheses are normalized.

From the table, it can be seen that the placement grid should
be fine enough so that the wire length estimated in the coarse
placement stage is very close to the wire length estimated in
the detailed placement stage. If it is set to be too fine, however,
it will cause runtime overhead with little wire length improve-
ment. Another observation is that fine grid will lead to runtime
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TABLE IV
COARSENINGSCHEME IMPACT ON FINAL WIRE LENGTH

reduction in the detailed placement, though the total runtime
will increase. Through our experiments, we found that for small-
to medium-sized circuits, the number of y-partitions of the grid
structure should be equivalent to the number of rows to ensure
an accurate estimation in the global placement phase. For large
circuits, the grid can be set to a limit of no more than 20 cells in
each bin.

2) Coarsening Schemes Impact on Final Wire Length:We
compared different coarsening schemes to study their impact on
the final wire length using circuits inBENCHP. Three clustering
algorithms are compared: FC clustering algorithm [37], ESC al-
gorithm [35], and MHEC algorithm [31]. In the FC algorithm,
cells/clusters that have the strongest connection are clustered to-
gether. ESC exploits more global connectivity information,edge
separability, to guide the clustering process.Edge separability
is defined as the minimum cutsize among the cuts separating
two cells/clusters in the netlist. MHEC performs net coarsening
and tries to find as many groups of cells/clusters (that are net-
wise independent) as possible. ESC and MHEC algorithms re-
quire cluster size constraint so that the generated clusters will
not be larger than the given area constraint. We recursively call
the clustering algorithm to generate a multilevel hierarchy until
the number of clusters on the coarsest level is no less than a
user-specified number, such as 300. Due to the clustering size
constraints, ESC and MHEC tend to generate more levels than
the FC algorithm. Therefore, we skip refinement on some levels
generated by ESC and MHEC and call the derived clustering
schemes ESC-fast and MHEC-fast, respectively. We ranMGP
followed by DOMINO using each coarsening scheme. For each
scheme, we report the number of levels of refinement (#lev),
the final wire length (WL), and total runtime (CPU) in Table IV.
Final wire length and total runtime of ESC and MHEC are nor-
malized with respect to those of FC to one.

From this table, it can be seen that FC provides the best wire
length with the least runtime. In addition, it is shown that: 1) it
is not always good to have more levels of refinements and 2)
the clustering hierarchy matters somewhat. Although two hier-
archies may have the same or a similar number of levels for
refinement, the better hierarchy will bring better wire length
with less runtime (for example FC vs. ESC-fast onibm16-pand
ibm17-p). This would be due to the following: 1) the indepen-
dence requirement that MHEC pursues may destroy some clus-

TABLE V
WIRE LENGTH MINIMIZATION COMPARISONWITH GORDIAN-L ON BENCHP

ters of cells that naturally exist in the netlist [46], which brings
a poor hierarchy; 2) although ESC exploits global view on edge
separability, the cutsize may not correlate very well with optimal
wire length; and 3) FC tends to remove a large number of the
intercluster nets in successive coarse netlists and thus, makes it
easy to find high-quality initial placement results that require
little refinement during the uncoarsening phase.

3) Wire-Length Minimization Comparison With GORDIAN-L
on BENCHP: We compared our wire length-drivenMGP with
GORDIAN-L [12] on circuits inBENCHP in Table V. We report the
BBOX wire length of the detailed placement results generated
by running GORDIAN-L followed by DOMINO [43] in columns
titled “Gor+Dom.” Also we report the BBOX wire length of
the detailed placement results generated by runningMGP fol-
lowed by DOMINO in columns titled “MGP Dom.” We list the
ratio between the wire length and runtime ofMGP and those of
GORDIAN-L in parentheses.

Table V shows thatMGP provides a slightly shorter wire
length and significantly less runtime, especially for circuits
larger than 100K, whereMGP is 4 to 6.7 times faster.

4) Wire Length Minimization Comparison With DRAGON

on BENCHB: We compared the wire length-drivenMGP with
DRAGON (version 2.20) [17] on circuits inBENCHB. In order
to generate a detailed placement, we implemented a simple
detailed placer which can generate the specified standard-cell
rows based on the coarse placement results produced byMGP
and perform greedy cell swapping to reduce the wire length.9
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TABLE VI
WIRE LENGTH MINIMIZATION COMPARISONWITH DRAGON ON BENCHB

The placement grid forMGP is set to be the same as the final
partition grid DRAGON used. Based on the results of multiple
runs of DRAGONandMGP, we report the average detailed place-
ment BBOX wire length (avg-DP-WL), average total runtime
(avg-tot-CPU), average global wire length (avg-GP-WL), and
average global placement runtime (avg-GP-CPU) in Table VI.
The ratios between the wire length and runtime ofMGP and
those of DRAGON are listed in parentheses.

It can be seen thatMGP produces results with slightly longer
wire length (5%) and a 2 times reduction in runtime for large
designs when compared with DRAGON.

5) Impacts of the Multilevel Approach:This experiment is
designed to show the impact of the multilevel approach on the
placement problem. We ran our SA-based placement engine di-
rectly on the original netlist without doing any clustering on
some circuits inBENCHP. We call this version ofMGP flat-MGP.
The results are shown in Table VII. The wire length ratio ofMGP
to flat-MGP is shown in parentheses in column 4. The runtime
ratio is shown in parentheses in column 5.

The results show that the multilevel SA-based placement ap-
proach generates results with 11%–29% shorter wire length than
the approach of running the same SA engine on the flat netlists.
We can also see a 10%–52% runtime reduction in most of the
test cases. It demonstrates that the multilevel approach is very
effective in handling the large-scale placement problem in terms
of both runtime and quality.

B. Experimental Results of Incremental A-Tree Algorithm

In this section, we study the performance of the incremental
A-tree algorithm for both runtime efficiency and routing wire
length quality.

9This simple detailed placer is not as good as DOMINO for wire length mini-
mization, therefore, it is not used in the wire length minimization experiments
for circuits inBENCHP. As DOMINO can not generate rows specified by theGSRC
BookShelfformat (as mentioned at the beginning of this section), we can not use
it as a detailed placer for experiments onBENCHB.

TABLE VII
MULTILEVEL VERSUSFLAT PLACEMENT WIRE LENGTH COMPARISON

1) Speedup by Incremental A-Tree:The incremental A-tree
(IncA-tree) algorithm enables us to directly integrate a global
router into the placement engine without incurring an overly
long runtime. In this section, we compare the runtime of using
IncA-tree algorithm with that of using an implementation that
completely routes a net by an A-tree algorithm [38] whenever a
pin of this net is moved during the SA process.

We used some circuits fromBENCHB for this experiment. For
each circuit, we first eliminated all the two-pin nets and only
kept the multiterminal nets for testing.10 For a move generated
by the SA engine, we used the IncA-tree algorithm to incre-
mentally evaluate the congestion and recorded the runtime for a
predetermined number of moves. An identical set of moves was
also evaluated by the A-tree algorithm. Net characteristics and
comparison results are shown in Table VIII.

It can be seen in Table VIII that the IncA-tree algorithm can
speed up the evaluation process by a factor of five and even
more, when the nets with a higher degree become dominant.

2) Routing Wire Length Comparison Between IncA-Tree and
A-Tree: As shown in Section IV-C2, the incremental A-tree al-
gorithm tends to generate routes with longer length due to its

10We use suffixes “�r” in the circuit names to indicate that the two-pin nets
are removed from [45].
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TABLE VIII
CONGESTIONEVALUATION TIME COMPARISONBETWEEN INCA-TREE AND A-TREE. TWO-PIN NETS AREREMOVED

TABLE IX
ROUTING WIRE LENGTH COMPARISONBETWEEN INCA-TREE ALGORITHM AND A-TREE ALGORITHM

TABLE X
WIRE WIDTH AND SPACING SETTING FORCONGESTIONCONTROL EXPERIMENTS ON BENCHB

feature that supports incremental tree construction/update. We
compared the routing wire length generated by the incremental
A-tree algorithm and that generated by the A-tree algorithm [38]
using some of the circuits inBENCHB. For a placed circuit, we
used the incremental A-tree algorithm and A-tree algorithm to
route the nets and compared the total routing wire length pro-
duced by these two algorithms in Table IX. Two-pin nets are
included in the netlist.

From this table, it can be seen that in terms of total routing
wire length, the incremental A-tree algorithm produces routes
with about 50% more length than the A-tree algorithm. How-
ever, as explained in Section IV-C2, the incremental A-tree con-
struction is never intended to be used as the final measurement
of placement congestion. Rather, it is used to guide the place-
ment optimization.

C. Congestion Control Experiments on BENCHB

In order to evaluate the effects of the congestion optimiza-
tion, we implemented a global router based on the graph-based
A-tree (GA-tree) algorithm [39] to evaluate the congestion of a
placement solution. When constructing an A-tree topology for
a net, the GA-tree algorithm can consider both the congestion
and the obstacle information. This algorithm works on a routing
graph where nodes represent routing bins and edges correspond
to the shared boundaries of adjacent bins.

A global routing solution with congestion control is obtained
using a slope-based cost function for the edge weight to penalize
the overflowed/highly congested edges (similar to that used in
[47]) and by updating the weight after routing each net.

We useBENCHB for the comparison on congestion control
betweenMGP andMGP-cg andMGP-cg.rd.11 For each circuit,
we ranMGP to perform wire length-driven placement and ran
MGP-cg andMGP-cg.rd to perform a congestion-driven place-
ment. The GA-tree-based global router is used to evaluate the
congestion of the placement results. The wire width and spacing
for each layer used in each test case is listed in Table X.12

In Table XI, we report the congestion pictures in total
overflow (tot. ov), the maximal boundary congestion (max.
b.cg), the minimal boundary congestion (min. b.cg), the routing
wire length (routing WL) and total BBOX wire length forMGP,
MGP-cg andMGP-cg.rd.

It can be seen that although in terms of the BBOX wire length,
wire length-drivenMGP offers better results. In general, the
routing wire length actually becomes larger than that generated

11Because there is no timing information in this set of benchmarks, layer as-
signment based on timing criticality was not performed; instead, a simple layer
assignment based on the net length order is performed. However, our algorithm
can support timing criticality-driven layer assignment.

12As there is no unit for length in theGSRC BookShelfformat, the width and
spacing have no unit. For each circuit, we chose the wire width and spacing to
create a congested (or near congested) routing case.
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TABLE XI
CONGESTIONCONTROL COMPARISONBETWEEN MGP,MGP-CG.RD, AND MGP-CG ON BENCHB

TABLE XII
CONGESTIONCONTROL COMPARISONBETWEEN MGP,MGP-CG.RD, AND MGP-CG ON FIVE REAL INDUSTRIAL DESIGNSFROM IBM

by MGP-cg on average. This implies that the BBOX wire length
is no longer a good metric for routability. A similar conclusion
was also drawn in [30]. Meanwhile, theMGP-cg reduces any
existing total overflow by 45%–74% on average and reduces
either the routing wire length or the maximal boundary conges-
tion, demonstrating that the congestion control performed in the
placement phase can benefit the routing phase. It is also shown
that by properly placing the modules/blocks/cells in the place-
ment phase, good interconnect planning can be carried out in
the routing phase. The results ofMGP-cg with the reduced mode
demonstrate the tradeoff between the runtime and the solution
quality.

D. Congestion Control Experiments on Industrial Circuits

We also ran our program on five real industrial circuits from
IBM (named ind1 to ind5, to avoid name confusion with the
published IBM benchmark used in the previous section) on a
Sun workstation running at 400-MHz frequency, followed by
IBM’s in-house legalization and routing tools. These circuits
use IBM ASIC standard cell libraries, with feature size ranging
from 0.15 to 0.25 m. Some circuits have a number of preplaced
macros (not counted in the numbers of cells).

Table XII shows the number of placeable cells (#cells), the
number of nets (#nets), the grid size, the comparison of routed
wirelength (in mm), maximum congestion, the number of over-

flowed edges,13 and the number of nets that overflow. It confirms
that the placement results generated byMGP-cg have less con-
gestion than that byMGP, with fewer congested edges and nets,
though it runs much slower. The reduced-modeMGP-cg.rd pro-
vides a tradeoff between the runtime and the quality of result.

VI. SUMMARY

We present a multilevel SA-based global placement algo-
rithm (MGP) with congestion control integrated with an incre-
mental A-tree algorithm and fast LZ-routing for fast congestion
evaluation and optimization. Our placement engine also has a
hierarchical area density control, which allows us to place both
big and small clusters together. Our experiments show that our
MGP program is competitive in both wire length and runtime.
The congestion-drivenMGP (MGP-cg) can significantly reduce
routing congestion.

APPENDIX

DATA STRUCTURE FORSTORING WIRE USAGE

We only discuss the auxiliary data structure for storing seg-
ments on a horizontal routing layer because the data structure
for a vertical routing layer can be similarly built. To simplify

13IBM tool reports the number of overflowed edges, not the total overflow.
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Fig. 6. Wire usage storing hierarchy in a row.

Fig. 7. Wire usage storing hierarchy combining multiple rows.

the discussion, we assume that each wire has a unit width. We
first discuss how the wire usages in a given row are stored. In
Fig. 6, a tree is formed to store the wire usages. Each node
in the tree has a variable to store the number of segments
that start from bin and end at bin. For example, node has

to store all segments starting from bin 3 and ending at bin 4.
If a wire segment cannot be properly stored in one node, it will
be broken into a set of segments where each segment can fit into
a node. We always choose the set with minimum cardinality. For
example, a segment starting from bin 2 and ending at bin 8 will
be stored at nodes , , and . It is easy to see that
for a row of 2 bins, it takes less than nodes to store a
segment. For each node, we also have another variablethat
stores the summation of all wire usages of the nodes under it.
For example, for node , we will also store the summation
of wire usages of nodes , , , , , and
( ).
It also takes, at most, updates for inserting or deleting a
segment.

The above data structure only helps to efficiently answer a
query in a single row. For queries involving multiple rows, we
need another auxiliary data structure. If we have 2rows, we
also build a similar tree to store the sum of the usages of the
adjacent rows. We use to represent the node on row

. We will build a similar hierarchy on these nodes to represent
multiple-row usage. We define .

For example, in Fig. 7, we show the hierarchy generated from
each node in every row from rows 1 and 8. For each update
of a node, it requires updates on the second multiple-row
hierarchy. Therefore, the total updates for a segment is at most

.
Given the above data structure, we can efficiently answer

some usage queries. For a query asking for the usage of bins

between rows and and columns and , if is a node
stored in our data structure, it can be calculated by adding
and all the for all the ancestors of node

. For example, if we want to query the usage between
rows 1 and 4, columns 1 and column 4, we only need to add

, and . In general, given
bins, if a query has a corresponding node in our tree hierarchy, it
takes at most lookups to find all the values. For a query that
can be broken down to ,
it takes at most 2 lookups to find all the values. Finally, for
any query, it takes at most 4 node lookups to find all the
values.

Because the complexity of a query depends on whether the
row numbers can fit into the tree hierarchy, we always use the
minimum range that can cover our range to form the query in our
LZ-router and use its density as an approximation of the queried
density.
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