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Abstract— Sakurai-Newton (SN) delay metric [1] is a widely
used closed form delay metric for CMOS gates because of
simplicity and reasonable accuracy. Nevertheless it can be shown
that the SN metric fails to provide high accuracy and fidelity
when CMOS gates operate at low supply voltages. Thus it may
not be applicable in many low power applications with voltage
scaling. In this paper, we propose a new closed form delay metric
based on the centroid of power dissipation. This new metric is
inspired by our key observation and theoretic proof that the SN
delay is indeed Elmore delay, which can be viewed as the centroid
of current. Our proposed metric has a very high correlation
coefficient (≥ 0.98) compared with the HSPICE simulations.
Such high correlation is consistent across all major process
technologies. In comparison, the SN metric has a correlation
coefficient between (0.70, 0.90) depending upon the technology
and the CMOS gate, and it is less accurate for lower supply
voltages. Since our proposed metric has high fidelity across a
wide range of supply voltages yet a simple closed form, it will
be very useful to guide low voltage and low power designs.

I. INTRODUCTION

Accurate yet efficient delay modeling is important to guide
design optimization, such as transistor and gate sizing, in-
terconnect optimization, placement, and routing. Closed form
delay equations with high accuracy is desirable since they are
efficient and easy to implement. The alternative to the closed
form delay metrics are the lookup tables. The lookup tables
though accurate are less attractive since they are computation-
ally expensive to use within an optimization loop and provide
little insight [2]. The delay modeling consists of two distinct
components, the gate and the interconnect delay modeling.

In the literature, significant amount of work has been de-
voted to interconnect delay characterization. The interconnects
are often modeled as RC trees. The widely used Elmore delay
is the first moment of the impulse response of the RC tree [3].
To improve the accuracy of the Elmore delay, models based
on the higher order moment matching AWE [4] have been
proposed. But AWE is expensive to use in optimization since
it lacks closed-form expression. To improve the accuracy of
Elmore delay and retain its simplicity, several works have pro-
posed delay models that are functions of the higher moments
of the impulse response of the RC tree [2], [5], [6]. Another
fast approach is the matching the moments of the impulse
response to a Probability Density Function (PDF) [7]–[10].
In the literature, the gate delay characterization has received

lesser attention compared to the interconnect delay character-
ization. The Sakurai-Newton (SN) delay approximation [1] is
a widely used closed-form delay metric for the CMOS gates
because of simplicity and reasonable accuracy. Nevertheless
the SN metric lacks accuracy when the CMOS gates operate at
low supply voltages [11]. But for the nanometer SoC designs,
delay modeling needs to address the heterogeneous nature,
such as voltage scaling/voltage islands. Thus the delay model
needs to be robust across a wide range of operating scenarios.

In this paper, we propose a new, robust closed form gate
delay metric based on the centroid of power dissipation. This
new model is inspired by our key observation and theoretic
proof that the SN metric can be viewed as the centroid of
current dissipated by the gate. The proposed metric has a very
high correlation coefficient (≥ 0.98) when correlated with the
actual delays got from the HSPICE simulations. Such high
correlation is consistent across all major process technologies.
In comparison, the SN metric has a correlation coefficient
between (0.70, 0.90) depending upon the technology and the
CMOS gate, and it is less accurate for lower supply voltages.
Since our proposed metric has high fidelity across a wide range
of supply voltages yet a simple closed form, it will be very
useful to guide low voltage and low power designs.

To summarize, we make the following contributions:

• We show that the Elmore delay can be expressed as the
centroid of current dissipated.

• We prove that the SN delay approximation is the exact
Elmore delay of a CMOS gate.

• We propose a high fidelity closed form metric for the
delay of a CMOS gate based on the centroid of the power
dissipated by the gate.

The rest of the paper is organized as follows. Section II
presents the Sakurai and Newton approximation to the delay.
Section III provides the background for the Elmore delay
which leads to the proof that the SN delay approximation is
the exact Elmore delay of a CMOS gate. In Section IV, we
propose a new closed form formula inspired by our observation
that the SN delay can be viewed as the centroid of current.
The experimental results are presented in Section V, followed
by conclusion in Section VI.



II. SAKURAI-NEWTON DELAY APPROXIMATION

The Shockley model for MOSFET [12] fails in the short-
channel region because it neglects the velocity saturation
effects. Sakurai and Newton proposed a model that takes
into account the short-channel behavior while retaining the
simplicity of the Shockley model [1], [13]. They modified
the quadratic dependence of the drain current on the driving
voltage to a α-power dependence, where 1 ≤ α ≤ 2 is the
called the velocity saturation index.

The drain current iD according to [1] is,

iD =




k
2 (vGS − VT )α saturation,

k(vGS − VT )α vDS

VDSSAT
linear,

0 cutoff

(1)

where

• k =
(

W
L

)
µnCox, where µn is the mobility of electrons

and Cox is the oxide capacitance.
• VDSSAT determines the boundary between linear and

saturation regions when vGS = VDD .

For the delay approximation of the CMOS inverter, we assume
a step input to the inverter. Thus we are finding out the inherent
delay of the gate ignoring the finite rise time of the input.
The delay due to finite rise time can be incorporated using
techniques such as PERI [14].

Since we assume a step input, the drain current equation in
(1) simplifies to,

iD =

{
k
2 (VDD − VT )α VDD − VT < vDS ≤ VDD,

k(VDD − VT )α vDS

VDD−VT
vDS ≤ VDD − VT

(2)
where (VDD − VT ) is the boundary between linear and
saturation regions under step input.

The main assumption in the delay approximation is that a
constant saturation current ID0 discharges the output voltage
from vDS = VDD to VDD

2 .

tsn =
∆Q|“

vDS=VDD→VDD
2

”

ID0
=

CL
VDD

2
k
2 (VDD − VT )α

Thus the Sakurai-Newton (SN) delay metric is [1],

tsn ≈ CLVDD

k(VDD − VT )α
(3)

Note that this metric is an approximation to the delay since
the transistor is assumed to be in saturation from vDS = VDD

to VDD

2 . The assumption is weak, since under the step input
the transistor is in saturation region only from vDS = VDD to
(VDD−VT ). From vDS = (VDD−VT ) to 0, the transistor is in
linear region. In this paper, we model the transistor operating
in saturation and linear regions as a nonlinear resistor R [11].
Thus the inverter can be modeled as an RC circuit [15] as
shown in Figure 1. For an RC tree, the Elmore delay is an
upper bound on the actual delay for any input waveform [16].
The theory behind the Elmore delay is discussed in the next
section.

vGS

R

CL vDS

I(t)

Fig. 1. The RC model of an inverter. Note that R is a nonlinear resistor
modeling transistor and CL is the load capacitance seen by the inverter.

III. CENTROID OF CURRENT BASED DELAY

In this section, we first show that the Elmore delay of a
CMOS gate is the centroid of current dissipated by it. Then
we prove that the SN metric is the exact Elmore delay of the
CMOS gate. This key observation will inspire us to propose
a new delay metric in Section IV.

Lemma 1. The Elmore delay of a CMOS gate is the centroid
of the current dissipated by it when it is switching.

Proof. The Elmore delay is defined as the centroid of the
impulse response h(t) of the system [17]. The centroid xc

of the function f(x) is defined as,

xc =

∫
x x f(x) dx∫
x
f(x) dx

Thus the Elmore delay is given by,

telmore =

∫ ∞
0

t h(t) dt∫ ∞
0

h(t) dt
(4)

since
∫ ∞
0

h(t)dt = 1 for RC circuits with monotonic re-
sponse [17] we can write (4) as,

telmore =
∫ ∞

0

t h(t) dt (5)

Let H(s) denote the Laplace transform of h(t). The transfer
function H(s) is defined as the ratio of output to input
voltages [18]. Since we assume a step input, the transfer
function reduces to,

H(s) =
VDS(s)
VGS(s)

=
VDS(s)

1
s

= sVDS(s)

We apply the Inverse Laplace transform to get the impulse
response, h(t) = dvDS

dt . We know that the current discharged
through the capacitor,

I(t) = CL
dvDS

dt
= CLh(t)

Hence under the RC model with the assumption of step input,

I(t) ∝ h(t) (6)

telmore =

∫ ∞
0

t I(t) dt∫ ∞
0

I(t) dt
(7)

Thus the Elmore delay is shown as the centroid of the area
under the current discharged through the load capacitor.



We can now show the following result.

Theorem 1. The Sakurai-Newton delay approximation is the
exact Elmore delay of the CMOS gate under the following
conditions:
(i) A step input is applied;

(ii) The CMOS gate is modeled as an RC circuit.

Proof. We provide the proof when the gate is discharging. The
proof is similar when the gate is charging.

tsat

VDD

VDD − VT

0
t

vGS , vDS

vGS

vDS

s© l©

Fig. 2. Inverter waveforms when the output is discharging. The input vGS

is a step input. The output vDS decreases linearly in the saturation region
(till tsat) and decays exponentially in the linear region (after tsat).

The input and output voltage waveforms associated with
the discharging inverter are shown in Figure 2. When a rising
step input (vGS = VDD u(t)) is applied to the inverter, the
NMOS is on while the PMOS is off. The NMOS operates in
the saturation region when the output discharges from vDS =
VDD to (VDD −VT ) and it operates in the linear region when
the output discharges from vDS = (VDD −VT ) to 0. The time
taken by the output vDS to reach (VDD − VT ) is denoted as
tsat, the time at which the NMOS transistor switches from
saturation to linear region of operation.

The Elmore delay integral in (7) can be written as,

telmore =

∫ tsat

0
t iDSAT dt +

∫ ∞
tsat

t iDLIN dt∫ tsat

0
iDSAT dt +

∫ ∞
tsat

iDLIN dt
(8)

To evaluate (8), we need closed form expressions for iDSAT ,
iDLIN , and tsat.

When the NMOS is saturated, the output voltage vDS

decreases linearly from VDD to (VDD − VT ), shown as s©
in Figure 2. The decrease is linear because the current is a
constant during that period which is given by,

iDSAT =
k

2
(VDD − VT )α (9)

When the output voltage vDS goes below (VDD −VT ), the
NMOS enters the linear region of operation, shown as l© in
Figure 2. The current in the linear region can be written as,

iDLIN = k(VDD − VT )α vDS

VDD − VT

=
vDS

R

iD

R

CL vDS

I(t)

Fig. 3. RC model with discharging current as a controlled current source.

where 1
R = k(VDD −VT )α−1 is the resistance through which

we discharge the load capacitor CL as shown in Figure 3. We
need an closed form expression for vDS to evaluate iDLIN . The
output voltage vDS in the linear region is simply the voltage
seen at the capacitor of a first order RC circuit under the step
input. Thus the output voltage vDS in the linear region can be
written as,

vDS = (VDD − VT )e
−(t−tsat)

RCL u(t − tsat)

Thus the current during the linear region of operation can be
written as,

iDLIN = k(VDD − VT )αe
−(t−tsat)

RCL u(t − tsat) (10)

Finally we need tsat, the time at which the NMOS switches
from saturation to the linear region. Applying Kirchhoff cur-
rent law to the output in Figure 3,

−CL
dvDS

dt
=

k

2
(VDD − VT )α

−
∫ VDD−VT

VDD

dvDS =
k
2 (VDD − VT )α

CL

∫ tsat

0

dt

On integrating and simplifying we get,

tsat =
2CLVT

k(VDD − VT )α
(11)

Substituting the unknowns in (8), and evaluating the inte-
grals we get,

telmore =
C2

LV 2
T

k(VDD−VT )α + C2
L(V 2

DD−V 2
T )

k(VDD−VT )α

CLVT + CL(VDD − VT )

telmore =
CLVDD

k(VDD − VT )α
(12)

which is the same as (3). Thus the SN delay approximation is
the exact Elmore delay of the CMOS gate.

In the nanometer regimes, the velocity saturation constant
α ≈ 1. Thus (12) can be rewritten as,

telmore =
CL

k
(
1 − VT

VDD

) (13)

The SN metric (13) fails to track the delay when the supply
voltages are low [11]. Taur and Ning [11] presented a simple
curve fitting metric that works across a wide range of voltages.
The Taur-Ning (TN) delay metric is given by,

ttn ∝ CL(
0.7 − VT

VDD

) (14)



where 0.7 is a numerical fitting parameter. The TN metric
suffers from the drawback of having high absolute errors com-
pared to the actual HSPICE delays. This is further discussed
in Section V. Another drawback is that it is applicable only
when VT

VDD
≤ 0.5 [11]. This means it may not be applied to

very low VDD designs.

IV. CENTROID OF POWER BASED DELAY

In this section, we derive a new metric based on the centroid
of power (CP) which overcomes the drawbacks of the SN and
TN delay metrics.

The SN metric can roughly be thought of as a charge based
delay since we integrate over current. The centroid of power
can be thought of as an energy based delay since we integrate
over power. The delay obtained by taking the centroid of the
power at the output can be written as,

tcp =

∫ ∞
0

t vDS iD dt∫ ∞
0

vDS iD dt
(15)

Since the NMOS transistor is operating in two different regions
namely saturation and linear regions, (15) can be written as,

tcp =

∫ tsat

0
t vDSSAT iDSAT dt +

∫ ∞
tsat

t vDSLIN iDLIN dt∫ tsat

0 vDS iD dt +
∫ ∞

tsat
vDS iD dt

=
C2

L(3VDD−2VT )V 2
T

3k(VDD−VT )α + C2
L(VDD+3VT )(VDD−VT )2

4k(VDD−VT )α

1
2CL(2VDD − VT )VT + 1

2CL(VDD − VT )2

which can be simplified to,

tcp =
CL(3V 3

DD + 3V 2
DDVT − 3VDDV 2

T + V 3
T )

6kV 2
DD(VDD − VT )α

(16)

The correlation between the centroid of power (CP) de-
lay metric and the HSPICE delay values is better than the
correlation between the SN delay metric and the HSPICE
delay values. The correlation attains near perfection with a
modification in the Taur-Ning spirit.

We found out empirically that 1
(VDD−VT )2 tracks the delay

better than 1
V 2

DD
. Substituting (VDD − VT )2 for V 2

DD in the
denominator of (16), we get the modified centroid of power
(CPM) metric,

tcpm ∝ CL(3V 3
DD + 3V 2

DDVT − 3VDDV 2
T + V 3

T )
(VDD − VT )2(VDD − VT )α

(17)

The correlation between the CPM delay metric and the
HSPICE delay values is almost perfect. Also, the absolute
error between the CPM metric and the HSPICE delay values
reduces significantly compared to the other metrics discussed
in this paper. A possible reason for this near perfect tracking of
delay is that the gate overdrive is proportional to (VDD −VT )
and not to VDD. An alternative way to reason about this is
the fact that 1

(VDD−VT )2 has a faster rate of change compared
with 1

V 2
DD

when VDD varies.

V. EXPERIMENTAL RESULTS

We used the Berkeley Predictive Technology Model [19]
for our simulations. The simulations were run on the INV,
NAND2, NOR2, XOR2 gates for their worst case input. The
load capacitance CL was varied from 20fF to 50fF . The
supply voltage VDD was varied from 2×VT0 to 6×VT0. The
threshold voltage VT0 was varied within ±10% of its original
value. The simulations were run on 45nm, 65nm, and 100nm
technologies. Thus nearly 200 simulations were run on each
gate for a given technology under its worst case input.
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Fig. 4. HSPICE delay and the values predicted by the delay metrics for
INV in 65nm technology under nominal supply voltages. The solid line is
the HSPICE delay values and the dotted lines are the delays predicted by the
various metrics. The VDD was varied with load capacitance CL = 20fF
and threshold voltage VT0 = 0.22V . Note that all the delay metrics track
under nominal supply voltages.

100

200

300

400

500

600

700

800

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

t[
p
s]

VDD[V ]

spice
tsn

ttn
tcp

tcpm

Fig. 5. HSPICE delay and the values predicted by the delay metrics for INV
in 65nm technology. The solid line is the HSPICE delay values and the dotted
lines are the delays predicted by the various metrics. The VDD was varied
with load capacitance CL = 20fF and threshold voltage VT0 = 0.22V .
Note that only CPM can track the delay in the lower voltages while TN can
track to quite an extent, the other two metrics SN and CP cannot track it.

The delay values predicted by the metrics were scaled by
a constant value c. The constant c is obtained using linear
regression. Suppose di is the delay obtained from HSPICE
during the i th simulation and xi is the delay predicted by the
metric, c is obtained on minimizing

∑
i(di − cxi)2. Note that
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Fig. 6. Scatter plot of different delay metrics with the HSPICE delay for INV in 65nm technology. Since we have not multiplied by the constant of
proportionality, no units are provided for the y-axis.

TABLE I

THE CORRELATION OF HSPICE DELAY VALUES WITH THE DELAY METRICS ACROSS DIFFERENT TECHNOLOGIES AND GATES. THE HSPICE DELAY OF A

GATE IS MEASURED FOR ITS WORST CASE INPUT COMBINATION.

Gate 45nm 65nm 100nm
SN TN CP CPM SN TN CP CPM SN TN CP CPM

INV 0.76 0.97 0.81 0.99 0.76 0.95 0.82 0.99 0.90 0.99 0.94 0.98
NAND2 0.72 0.95 0.76 0.99 0.73 0.91 0.77 0.99 0.83 0.96 0.87 1.00
NOR2 0.73 0.96 0.78 0.99 0.75 0.92 0.80 0.99 0.90 0.99 0.93 0.99
XOR2 0.71 0.95 0.76 0.99 0.71 0.90 0.76 0.98 0.90 0.97 0.93 1.00

TABLE II

THE PERCENTAGE ERROR BETWEEN HSPICE DELAY VALUES AND THE DELAY METRICS ACROSS VARIOUS TECHNOLOGIES AND GATES. A line WAS

FITTED TO THE DATA POINTS PREDICTED BY THE DELAY METRIC. IN THIS TABLE THE AVERAGE min, max ESTIMATION ERROR PERCENTAGE IS SHOWN.

Gate 45nm (%) 65nm (%) 100nm (%)
SN TN CP CPM SN TN CP CPM SN TN CP CPM

INV −161, 97 −41, 26 −139, 76 −14, 10 −94, 68 −37, 27 −78, 54 −9, 7 −24, 22 −7, 5 −19, 16 −7, 9
NAND2 −275, 137 −82, 45 −240, 112 −32, 14 −153, 91 −69, 43 −130, 76 −22, 11 −59, 43 −26, 19 −51, 35 −3, 4
NOR2 −209, 111 −59, 35 −181, 92 −19, 11 −112, 73 −50, 34 −96, 61 −13, 8 −31, 20 −9, 6 −23, 16 −7, 10
XOR2 −271, 141 −80, 47 −236, 115 −31, 15 −151, 94 −68, 45 −129, 79 −22, 13 −57, 43 −24, 19 −49, 35 −3, 4



c changes as we take more samples of the parameters across
a wider range. Thus a metric might be able to track the delay
across small variations of supply voltage while it may not be
able to track delay under large variations of supply voltage.
This is illustrated in the Figures 4 and 5.

In Figure 4, the CMOS gates operate under nominal supply
voltages, VDD = 4 × VT0 to 6 × VT0 all the delay metrics
correlate to HSPICE reasonably well. However, when the
supply voltage drops below VDD = 4 × VT0, only the CPM
metric is able to track the delay well shown in Figure 5. The
data is taken for an inverter in 65nm technology by varying
the supply voltage VDD from 2 × VT0 to 6 × VT0 and fixing
the other circuit parameters.

The data obtained from other gates across various technolo-
gies and circuit parameters such VDD and VT have similar
results to Figure 5. There are two things to note in this figure:

1) The correlation measures the relative error. Intuitively,
the relative error gives an estimate of how close the
shape of the predicted delay curve is with the actual
delay obtained from HSPICE simulations.

2) The estimation error gives the absolute difference be-
tween the predicted delay and the actual delay obtained
from HSPICE simulations.

To visualize the performance of delay metrics with respect
to the above two characteristics we use the scatter plot. The
scatter plot of different delay metrics versus the actual delay
values for INV in 65nm technology is shown in Figure 6.

The data points are obtained by varying different circuit
parameters. We fitted a line through the data points to find
out the constant of proportionality in the delay metrics. Then
we find the estimation error between the fitted line and the
HSPICE delay values. The correlation is shown as corrcoef
and the estimation error is shown as ‘Average error’ in the
scatter plot. From the scatter plot it is clear that the CPM delay
metric has the highest correlation and the lowest estimation
error among all the delay metrics.

Table I summarizes the correlation coefficient of different
delay metrics for various gates across the technologies. The
correlation was taken between the actual HSPICE delays and
the delay metric. From the table, we observe that the correla-
tion coefficient of the CPM metric is consistently greater than
0.98, which is not exhibited by the other delay metrics. The
estimation errors are tabulated in Table II. The values listed
in the table are the average of the estimation errors.

VI. CONCLUSION

In this paper, we proposed a new closed form delay metric
based on the modified centroid of power dissipated. This new
metric is inspired by our key observation that the SN delay
can be viewed as the centroid of current. We also provide
a theoretic proof that the SN delay is the Elmore delay of
a CMOS gate when a gate is modeled as an RC circuit.
The delay due to finite rise time can be incorporated using
techniques such as PERI [14].

Our proposed metric has a very high correlation coefficient
(≥ 0.98) when correlated with the actual delays got from

the HSPICE simulations. Such high correlation is consistent
across all major process technologies. The new metric is both
simple and inexpensive to use as compared to the other metrics
proposed in the literature. We anticipate its use in low voltage
circuits and in the inner optimization of physical design tools
where it is necessary to obtain quick and relatively accurate
delay estimates.
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