
Diffusion-Based Placement Migration

Haoxing Ren
IBM Corp. &

Univ. of Texas at Austin
Austin, TX

haoxing@us.ibm.com

David Z. Pan
ECE Department

Univ. of Texas at Austin
Austin, TX

dpan@ece.utexas.edu

Charles J. Alpert
IBM Corp.
Austin, TX

alpert@us.ibm.com

Paul Villarrubia
IBM Corp.
Austin, TX

pgvillar@us.ibm.com

ABSTRACT
Placement migration is the movement of cells within an existing
placement to address a variety of post-placement design closure is-
sues, such as timing, routing congestion, signal integrity, and heat
distribution. To fix a design problem, one would like to perturb
the design as little as possible while preserving the integrity of
the original placement. This work presents a new diffusion-based
placement method based on a discrete approximation to a closed-
form solution of the continuous diffusion equation. It has the ad-
vantage of smooth spreading, which helps preserve neighborhood
characteristics of the original placement. Applying this technique
to placement legalization demonstrates significant improvements
in wire length and timing compared to other commonly used tech-
niques.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuit, Design Aids]: Placement
and Routing

General Terms
Algorithms, Design, Performance

Keywords
Placement Migration, Diffusion, Legalization

1. INTRODUCTION
During placement and physical synthesis of VLSI circuits, one

is commonly faced with tasks such as cell spreading, legalization
of overlapping cells, and manipulation of the placement to address
objectives like power and routing congestion. These tasks share a
common theme of starting with an initial placement that is “good”
and perturbing it so that it is improved in some way while still pre-
serving the essential characteristics (cell ordering, wirelength, etc.)
of the original placement. We call these sets of tasks “placement
migration”. Some specific examples of placement migration in-
clude the following.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

• During physical synthesis, one may insert buffers and re-
power gates, thereby creating overlapping cells. The new
instance needs to be legalized, but one wants to avoid mov-
ing any cell too far away from its original location.

• After placement, it may be necessary to make Engineering
Change Orders (ECO) or insert decoupling capacitors which
requires spreading to resolve induced overlaps.

• Post routing congestion analysis may identify several hot spots
of congestion or crosstalk noise. Placement migration can lo-
cally spread out cells in these congested or noisy regions [1].

• A global analytic or force-directed placer may use placement
migration to spread out the cells while attempting to preserve
the ordering induced by the overlapping analytic solution.

This work presents a new technique for placement migration
based on the physical process of diffusion. Diffusion is a well-
understood physical process that moves elements (such as dopants)
from a state with non-zero potential energy to a state of equilib-
rium. The process can be modeled by breaking down the move-
ments into several small finite time steps, then moving each ele-
ment the distance it would be expected to move during that time
step. Our approach to placement migration follows this model; it
moves each cell a small amount in a given time step according to
its local density gradient. The more time steps the process is run,
the closer the placement gets towards achieving equilibrium. The
primary advantage to this approach is that it spreads the placement
smoothly which is more likely to preserve the integrity of the orig-
inal placement.
Among the various placement migration applications, legaliza-

tion is perhaps the most straightforward. Therefore, the remainder
of the paper will discuss diffusion in this context. The paper is or-
ganized as follows. Section 2 formulates the legalization problem
and reviews previous techniques. Section 3 describes the mathe-
matical formulation for diffusion in the continuous space. Section 4
presents the numerical algorithm required to simulate the diffusion
process. Section 5 gives the diffusion-based legalization algorithm.
Experimental results are shown in section 6, followed by the con-
clusion in section 7.

2. LEGALIZATION FORMULATION AND
OVERVIEW

A placement is illegal if cells overlap or are not aligned with cir-
cuit rows. The term “legalization” describes the problem of taking
an illegal placement and perturbing the layout so that it is legal.
The objective of legalization is for this perturbation to be minimal
in order to preserve the desired characteristics of the given illegal
placement.

30.4

515

2.1 Formulation
A placement is close to legal if all that is required to legalize the

placement is to snap cells to rows or perhaps perform minor cell
sliding in order to fit the cells. Assume the chip layout is divided
into small, equal sized bins (which can fit around 5-15 cells). Let
dmax be the maximum allowed density of a bin, where commonly
dmax = 1. The placement is considered close to legal if the area
density of every bin is less than or equal to dmax. For all bins
with density greater than dmax, cells must be migrated out of those
bins into less dense ones. The goal of legalization is to reduce the
density of each bin to no more than dmax while avoiding moving
these cells far from their original locations and also to preserve the
ordering induced by the original placement.

2.2 Existing Legalization Techniques
Existing legalization techniques for legalization include network

flow [3], heuristic ripple cell movement [5], dynamic programming
[4], and single row optimization [6].
The network flow approach [3] models the bins as a minimum-

cost network flow graph and then flows cells out of high-density
bins into low-density bins. Its objective function is to minimize
a weighted sum of squared cell movements. Like network flow,
Mongrel [5] legalizes by moving cells out of bins that exceed their
capacity. Mongrel iteratively computes a low cost path of move-
ment from a source bin to a destination bin, then ripples cells from
the source to the destination by only allowing cells to move by at
most one bin. The approach used by [4] tries to legalize one row at
a time while preserving the original cell order. If not all the cells fit
in the row, it uses dynamic programming to decide which cells to
preserve in the row and which ones to push into the next row. Sim-
ilar to [4], the approach of [6] optimizes cell locations for a single
row to optimize wirelength and cell perturbation.
Although all these techniques can be used to perturb the place-

ment, the perturbation is rather discrete compared to the diffusion-
based method that is more continuous.

2.3 Force-Directed Techniques
One may view force-directed global placement (e.g., [2]) as a

legalization technique. The algorithm starts with an overlapping
global placement. It then adds forces based on the density of the
layout to spread out the placement, proceeding iteratively. At first
glance diffusion (DIFF) and force-directed spreading (FORCE) share
a common approach of using the existing density map to spread out
cells until bin density constraints are satisfied. However, there are
several key differences between these approaches.

• FORCE generates spreading forces from a global density
distribution, while DIFF generates cell velocities from local
densities.

• FORCEmodels the placement density as an electric field that
acts on the cells; each cell has some attraction or repulsion to
each region of the layout. On the other hand, DIFF physically
models the placement density as a diffusion process in which
cells move along their local density gradients.

• Because their abstract physical models are different, so are
the solution techniques. FORCE solves linear algebraic equa-
tions generated by cell connections and spreading forces, while
DIFF solves the partial differential equation generated by lo-
cal neighborhood densities.

• FORCE requires cell connection and density information for
spreading, while DIFF only needs density information. DIFF
does not consider the circuit connectivity.

3. THE DIFFUSION PROCESS
Algorithms which model the physical process of diffusion are

not common in the VLSI physical design area, though they do exist
elsewhere in the semiconductor industry. For example, the dopant
diffusion process on chip substrate is a well known diffusion pro-
cess [7]. Intuitively, materials from highly concentrated areas flow
into less concentrated areas. Diffusion is driven by the concentra-
tion gradient, which is the slope and steepness of the concentration
difference at a given point. The increase in concentration in a cross
section of unit area with time is simply the difference of the ma-
terial flow into the cross section and the material flow out of it.
Diffusion reaches equilibrium when the material concentration is
evenly distribution.
Mathematically, we can describe the relationship of material con-

centration with time and space using following partial differential
equation.

∂dx,y(t)

∂t
= D∇2dx,y(t) (1)

where dx,y(t) is the material concentration at position (x, y) at
time t and D is the diffusivity which determines the speed of dif-
fusion. For simplicity of presentation, assume D = 1 for the rest
of the paper. Equation (1) states that the speed of density change
is linear with respect to its second order gradient over the density
space. This implies that elements migrate with increased speed
when the local density gradient is higher. In the context of place-
ment, cells will move quicker when their local density neighbor-
hood has a steeper gradient.
When the region for diffusion is fixed (as in placement), the

boundary conditions are defined as ∇dxb,yb(t) = 0 for coordi-
nates (xb, yb) on the chip boundary. We also define coordinates
over fixed blocks in the same way in order to prevent cells from
diffusing on top of fixed blocks. This forces cells to diffuse around
the blocks.
In diffusion a cell migrates from an initial location to its final

equilibrium location via a non-direct route. This route can be cap-
tured by a velocity function that gives the velocity of a cell at ev-
ery location in the circuit for a given time t. This velocity at cer-
tain position and time is determined by the local density gradient
and the density itself. Intuitively, a sharp density gradient causes
cells to move faster. For every potential (x, y) location, define a 2-
dimensional velocity field vx,y = (vHx,y, v

V
x,y) of diffusion at time

t as follows:

vHx,y(t) = −∂dx,y(t)

∂x
/dx,y(t)

vVx,y(t) = −∂dx,y(t)

∂y
/dx,y(t) (2)

Given this equation, and a starting location (x(0), y(0)) for a
particular location, one can find the new location (x(t), y(t)) for
the element at time t by integrating the velocity field:

x(t) = x(0) +

Z t

0

vHx(t0),y(t0)(t
0)dt0

y(t) = y(0) +

Z t

0

vVx(t0),y(t0)(t
0)dt0 (3)

Equations (1), (2), (3) are sufficient to simulate the diffusion pro-
cess. Given any particular element, one can now find the new loca-
tion of the molecule at any point in time t. To apply this paradigm
to placement, one needs to migrate from this continuous space to
a discrete place since cells have various rectangular sizes and the
placement image itself is discrete. The next section presents a tech-
nique to simulate diffusion specifically for placement.

516

4. DIFFUSION BASED PLACEMENT
One can discretize continuous coordinates by dividing the place-

ment areas into equal sized bins indexed by (j, k). Assume the
coordinate system is scaled so that the width and height of each bin
is one. Then location (x, y) lies inside bin (j, k) = (bxc, byc). We
can also discretize continuous time t as n∆t, where ∆t is the size
of the discrete time step.

4.1 Computing Bin Density
Instead of the continuous density dx,y, we now can describe dif-

fusion in the context of the density dj,k of bin (j, k). The initial
density dj,k(0) of each bin (j, k) can be defined as dj,k(0) = ΣÂi

where Âi is the overlapping area of cell i and bin (j, k).
For simplicity, assume that if a fixed block overlaps a bin, it over-

laps the bin completely. In these cases, the bin density is defined
to be one, though boundary conditions prevent cells from diffusing
on top of fixed blocks.
Assume that the density dj,k(n) has already been computed for

time n. Now one needs to find how the density changes and cells
movements for the next time step n+ 1. We use the Forward Time
Centered Space (FTCS) [8] scheme to discretize Equation (1). The
new bin density is given by

dj,k(n+ 1) = dj,k(n) (4)

+
∆t

2
(dj+1,k(n) + dj−1,k(n)− 2dj,k(n))

+
∆t

2
(dj,k+1(n) + dj,k−1(n)− 2dj,k(n))

The new density of a bin at time n+ 1 depends only on its density
and the density of its four neighbor bins. Note that one does not
actually use the cell locations at time n+1 to compute the density.
The degree of migration out of (or into) the bin is proportional to
its local gradient. For example, consider a density distribution at a
given time n shown in Figure 1 and assume∆t = 0.2. The density
of bin (1, 1) at time n+ 1 is given by:

d1,1(n+ 1) = d1,1(n) +
0.2

2
(d2,1(n) + d0,1(n)− 2d1,1(n))

+
0.2

2
(d1,2(n) + d1,0(n)− 2d1,1(n)) = 0.98

4.2 Computing Cell Velocity
Just as Equation (1) can be discretized to compute placement bin

density, Equation (2) can be discretized to compute the velocity for
cells inside the bins. For now, assume that each cell in the bin is
assigned the same velocity, the velocity for the bin, given by:

vHj,k(n) = −dj+1,k(n)− dj−1,k(n)
2dj,k(n)

vVj,k(n) = −dj,k+1(n)− dj,k−1(n)
2dj,k(n)

(5)

The horizontal (vertical) velocity is proportional to the differences
in density of the two neighboring horizontal (vertical) bins. For
example, the velocity for bin (1, 1) in Figure 1 is given by:

vH1,1 = − d2,1 − d0,1
2d1,1

= −0.4− 1.4
2(1.0)

= 0.5

vV1,1 = − d1,2 − d1,0
2d1,1

= −0.4− 1.6
2(1.0)

= 0.6

Similarly, densities for other bins are given by v1,2 = (0.5, 0) ,
v2,1 = (0.25,−0.25) and v2,2 = (−0.125, 0.125). Note that bin

d0,2=1.2

d0,1=1.4

d1,2=0.4

d1,0=1.6 d2,0=0.6

d1,1=1.0 d2,1=0.4

d2,2=0.8

v1,1

d2,3=0.2

d3,2=0.6

d1,3=1.0

d3,1=0.8

v2,1

v2,2

v1,2

Figure 1: Density and velocity distribution at time n.

v2,1

v2,2 v1,2

v1,1

v1.6,1.8

Bin (1,1) Bin (2,1)

Bin (1,2) Bin (2,2)

3.0=β

1.0=α

Figure 2: Velocity Interpolation inside Bin.

(1, 2) has no vertical velocity component since the densities both
above and below are equal to 1.0. To make sure that fixed cells and
bins outside the boundary do not move, we enforce vV = 0 at a
horizontal boundary and vH = 0 at a vertical boundary.

4.3 Cell Velocity Interpolation
Assuming that each cell in a bin has the same velocity fails to

distinguish between the relative locations of cells within a bin. Fur-
ther, two cells that are right next to each other but in different bins
can be assigned very different velocities, which could change their
relative ordering. Since the goal of placement migration is to pre-
serve the integrity of the original placement, this behavior cannot
be permitted. To remedy this behavior, we apply velocity interpo-
lation to generate a velocity for any given (x, y).
Let bin (p, q) be such that the four closest bin centers to (x, y)

are (p, q), (p + 1, q), (p, q + 1) and (p + 1, q + 1). Let α =
x+ 0.5− bx+0.5c and β = y+ 0.5− by+ 0.5c. If α = β = 0,
then (x, y) is located at the center of bin (p, q) and its velocity is
given velocity vp,q . As shown in Figure 2, the bin velocity will be
marked at the center of each bin. The velocity for a point inside of
a bin is interpolated by the velocities at its four closest centers. The
velocity for cell (x, y) (denoted by (vHx,y, vYx,y)) is given by

vHx,y = vHp,q + α(vHp+1,q − vHp,q) + β(vHp,q+1 − vHp,q)

+αβ(vHp,q + vHp+1,q+1 − vHp+1,q − vHp,q+1)

vVx,y = vVp,q + α(vVp+1,q − vVp,q) + β(vVp,q+1 − vVp,q)

+αβ(vVp,q + vVp+1,q+1 − vVp+1,q − vVp,q+1) (6)

Consider the example shown in Figure 2, which is actually a
close-up of Figure 1. For an example location (x = 1.6, y = 1.8),
we have α = 0.1 and β = 0.3. The velocity for this point is given

517

x(0),y(0)

x(9),y(9)

Figure 3: An example cell movement from diffusion.

by:

vH1.6,1.8 = vH1,1 + 0.1(v
H
2,1 − vH1,1) + 0.3(v

H
1,2 − vH1,1)

+0.03(vH1,1 + vH2,2 − vH2,1 − vH1,2) = 0.45625

vV1.6,1.8 = vV1,1 + 0.1(v
V
2,1 − vV1,1) + 0.3(v

V
1,2 − vV1,1)

+0.03(vV1,1 + vV2,2 − vV2,1 − vV1,2) = 0.40175

4.4 Computing Cell Location
Since the velocity for each cell can be determined at time n =

t
∆t , one can compute its new placement via a discretized form of
Equation (3). It is easier to comprehend (and it is more useful) in its
recursive form. Suppose we have already computed (x(n), y(n)).
Using Taylor expansion gives compute x(n+ 1), y(n+ 1) as:

x(n+ 1) = x(n) + vHx(n),y(n) ·∆t

y(n+ 1) = y(n) + vVx(n),y(n) ·∆t (7)

An example is shown in Figure 3 in which a cell takes nine dis-
crete time steps. Observe how the cell never overlaps a blockage
and also how the magnitude of its movements becomes smaller to-
ward the tail end of its path.

5. DIFFUSION-BASED LEGALIZATION
ALGORITHM

Now that we have presented the general diffusion paradigm, we
show how to apply this technique to legalization. Recall that to
legalize the design, we require each bin to have density dj,k ≤
dmax. Once this is achieved, local slide and spiral methods can be
used to quickly and easily achieve a legal placement. Thus we are
given an existing placement with locations (xi, yi) for each cell i,
N placement bins, and a maximum bin density dmax.

5.1 Density Map Manipulation
Since the diffusion process reaches equilibrium when each bin

has the same density, we can expect the final density after diffusion
to be the same as the average density Σdj,k/N . This may cause
unnecessary spreading especially if the average density is well be-
low the maximum density constraint. For example, once every bin
is below the maximum density constraint, diffusion can cause addi-
tional spreading even though the requirements for legalization have
been met. This spreading will no doubt further perturb the place-
ment from its original state.
Therefore, before beginning diffusion we need to properly set

the initial density values of those bins under the maximum density.
To achieve this, we artificially increase the densities of those bins
less than dmax so that the average density equals dmax.

d1,0=1.3

d0,0=1

d1,1=0.6

d0,1=0.8

d1,0=1.3

d0,0=1

d1,1=0.8

d0,1=0.9

~ ~

~ ~

Figure 4: The initial density map is modified to a new density
map so that the average bin density is 1.0.

d2,5=1.2

d2,4=1.4

d3,5=0.4

d3,3=1.6 d4,3=1.0

d3,4=0.8 d4,4=1.0

d4,5=0.8

d4,6=0.2

d5,5=0.6

d3,6=1.0

d5,4=1.0

d5,3=1.0

Figure 5: Bins with fixed blocks are shaded to illustrate density
computations under boundary conditions.

One way to adjust dj,k is

d̃j,k =

½
dmax − (dmax − dj,k)

Ao
As

dj,k < dmax

dj,k dj,k ≥ dmax
(8)

where Ao is the total area over dmax and As is total area less than
dmax, which is the available space to hold the Ao after spreading.
We can validate that Σd̃j,kN = dmax.
Figure 4 shows an example of the density manipulation for a

2× 2 bins. In the left figure, there are one bin whose density 1.3 is
over the maximum allowed density 1, two bins whose densities are
lower than 1, and the other bin whose density is exactly 1. There-
foreAo = d1,0−1 = 0.3 andAs = (1−d1,1)+(1−d0,1) = 0.6.
If we adjust the density on those two bins under 1 with (8), we will
get the density map shown on the right, d̃0,0+d̃0,1+d̃1,0+d̃1,1

4
= 1.

d̃j,k will be used as the initial condition (t = 0) for the diffusion
equation (4),

dj,k(0) = d̃j,k. (9)

5.2 Macro and Chip Boundary Handling
At the boundary of the chip or a fixed macro, there is no diffusion

between either side of the boundary. Therefore, we need to make
the densities on both sides the same to assure the density gradient
is zero when computing (4). On a horizontal boundary, we make
dj,k+1(n) = dj,k−1(n) if bin (j, k) is on the lower side of the
boundary, or dj,k−1(n) = dj,k+1(n) if on the upper side; while on
a vertical boundary, dj+1,k(n) = dj−1,k(n) if on the left side, or
dj−1,k(n) = dj+1,k(n) if on the right side.
For example, suppose∆t = 0.2 and bin (4, 3) to (5, 4) are fixed,

the density value for time n is shown in Figure 5. Bin (3, 4) is on
the left vertical boundary of the fixed macro, while bin (4, 5) is on
the upper horizontal boundary. When computing d3,4(n + 1), we

518

make d4,4(n) = d2,4(n), thus (4) becomes:

d3,4(n+ 1) = d3,4(n) +
0.2

2
(d2,4(n) + d2,4(n)− 2d2,3(n))

+
0.2

2
(d3,5(n) + d3,3(n)− 2d3,4(n)) = 0.96.

Similarly, we make d4,4(n) = d4,6(n) to compute d4,5(n+ 1),

d4,5(n+ 1) = d4,5(n) +
0.2

2
(d3,5(n) + d5,5(n)− 2d4,5(n))

+
0.2

2
(d4,6(n) + d4,6(n)− 2d4,5(n)) = 0.62.

For bins inside of fixed macros, we do not update the density.

5.3 Algorithm
The algorithm begins by computing the initial bin density using

the given placement, then manipulates the density map to avoid
over spreading. Starting from time 0, it recursively compute bin
density, bin velocity and cell locations for each time step n. It stops
when the maximum bin density is less than dmax. The complete
diffusion algorithm is given in Algorithm 1.

Algorithm 1 Diffusion-based Legalization Algorithm
Inputs: cell locations (xi, yi), N bins, maximum density dmax

1: map cells onto bins and compute dj,k for each bin (j, k)
2: compute d̃j,k using (8), the average bin density is now dmax

3: dj,k(0)← d̃j,k
4: n← 0
5: repeat
6: compute vHj,k(n), vVj,k(n) for each bin (j, k) using (5)
7: compute xi(n), yi(n) for each cell i using (7) and velocity

interpolation (6)
8: compute dj,k(n+ 1) for each bin (j, k) using (4)
9: n← n+ 1
10: until max(dj,k(n)) ≤ dmax +∆

After diffusion, the placement should have a maximum density
of dmax and is roughly legal. We need to run a final legalization
step to put cells onto circuit rows without overlap. Any legalizer
can be used at this step. It will only take the legalizer a little effort
to remove those overlaps. Here we use the IBM CPlace internal
legalizer.
Figure 6 shows an example of diffusion-based legalization in a

small region surrounded by fixed blocks. The left figure shows the
initial illegal placement. The right figure is the placement out of
legalization. Cells are colored to represent their relative order. We
can see after diffusion, the relative orders are not changed.

6. EXPERIMENTAL RESULTS
This section reports experimental results for the diffusion-based

legalizer (DIFF) by comparing it to a greedy legalizer (GREED)
which uses slide-and-spiral techniques to place cells onto their near-
est legal locations and to a network flow legalizer (FLOW) which
uses min-cost flow algorithm to direct cell movements. FLOW is
similar to [3]; first, cells are roughly spread out by themin-cost flow
algorithm, then, they are moved to their final positions such that all
overlaps are removed. GREED sorts all the cells and place them
sequentially. It first tries to place a cell at the original location. If
that location is occupied, it performs a spiral search starting from
the original location. During a spiral search, it could slide other
placed cells a little bit in order to fit in. All three legalizers are im-
plemented in C and run on an IBM P690 server. The timing result
are reported by IBM Einstimer.

Figure 6: Diffusion-based Legalization Example.

Table 1: Design sizes and inflations
testcases number of cells size(mm) Inflation(%)
ckt1 64K 1.9 x 1.9 23.1
ckt2 72K 2.3 x 2.3 32.4
ckt3 159K 5.3 x 5.3 47.2
ckt4 216K 9.0 x 9.0 40.4
ckt5 307K 11.9 x 11.9 25.4
ckt6 440K 10.0 x 10.0 42.2
ckt7 1076K 13.0 x 13.0 18.9

We use seven industrial circuits for comparison. The sizes of cir-
cuits range from 64K cells to over a million cells. All the circuits
were legally placed initially. To simulate the behavior of repow-
ering in physical synthesis we inflate cells which creates overlaps
that need to be resolved. This technique can also be used to reduce
routing congestion using diffusion to resolve overlap removal from
inflating cells in congested regions. The circuit sizes and amount
of inflations generated are reported in Table 1 (the inflations are
reported as the percentage of inflation to the total moveable cell
areas) .

Table 2: TWL Comparison of Three Legalizers (m)
testcases Base GREED FLOW DIFF %improv
ckt1 11.48 13.23 13.40 12.46 44
ckt2 15.06 17.03 17.33 16.65 19
ckt3 47.10 52.47 52.65 51.76 13
ckt4 51.37 59.02 58.67 56.85 25
ckt5 150.8 159.0 159.2 158.7 3
ckt6 166.6 175.6 175.4 174.8 8
ckt7 367.7 382.7 382.5 381.7 5

Average 17

Table 2, 3, and 4 show the TWL, worst slack and FOM [9]
results of the three legalizers. Since we inflate cells, the new place-
ment have longer wire length, worse slack and FOM than those
of the original placements. The %improv column of each table
reports the improvement ofDIFF over the best result of FLOW
andGREED. We can see thatDIFF achieves significantly smaller
TWL than FLOW or GREED. The average improvement of
TWL over seven circuits are 17%. The average improvement on
wiring congestion is 27% (detailed number not shown due to space
limit). The slack and FOM degradation of DIFF is also sig-
nificantly less than those of FLOW and GREED. The average
improvement of DIFF over the best of FLOW and GREED
is 45% for slack and 36% for FOM . These results are actually

519

Table 3: Worst Slack Comparison of Three Legalizers (ns)
testcases Base GREED FLOW DIFF %improv
ckt1 -0.571 -1.266 -1.497 -0.921 50
ckt2 0.275 -0.287 -0.789 -0.065 40
ckt3 -0.265 -1.155 -1.121 -0.265 100
ckt4 -1.592 -3.569 -3.447 -2.373 58
ckt5 -0.623 -6.072 -3.640 -2.047 52
ckt6 -0.387 -3.450 -3.562 -3.305 5
ckt7 -0.796 -1.601 -1.274 -0.796 100

Average 45

conservative because in ckt5, ckt6 and ckt7, the inflation did not
cause a larger amount of overlaps due to sparse initial placements.
We have also compared the three legalizers on industry circuits gen-
erated by physical synthesis with overlapping mode, the results still
consistently show thatDIFF gives much better timing, TWL and
congestion for those circuits. Due to page limit, those detailed re-
sults are not reported here.

Table 4: FOM Comparison of Three Legalizers (ns)
testcases Base GREED FLOW DIFF %improv
ckt1 -3188 -4942 -8441 -3883 60
ckt2 0 -247 -620 -319 -29
ckt3 -446 -1073 -1054 -524 87
ckt4 -557 -1321 -1068 -862 40
ckt5 -144 -4827 -4871 -3069 38
ckt6 -15286 -24694 -24154 -22936 14
ckt7 -2583 -5391 -7631 -4157 44

Average 36

Table 5 reports the runtimes for three legalizers. The runtime
of DIFF is about 2X of FLOW . It takes a little more than an
hour to legalize a 1M cells circuit, which is still acceptable. We
can easily reduce the runtime by tuning our C/C++ implementation
(GREED and FLOW are heavily tuned codes).

Table 5: CPU Time Comparison of Three Legalizers (s)
testcases GREED FLOW DIFF
ckt1 161 55 107
ckt2 41 24 74
ckt3 228 197 290
ckt4 320 313 581
ckt5 414 584 841
ckt6 619 626 1231
ckt7 2102 1768 4681

We also test FLOW and DIFF with different inflation distri-
butions to see whether DIFF is better on distributed inflations or
concentrated inflations. Table 6 shows the results of DIFF and
FLOW on the same circuit ckt1 but with different inflation dis-
tributions. The inflations are centralized (C), or distributed almost
evenly (D). The amounts of inflations are 23% and 18% for cen-
tralized and distributed cases, respectively. The centralized infla-
tion mimics a hot-spot that need to be spread out. The distributed
inflation is more like legalization after physical synthesis. ∆ col-
umn reports the difference of C andD. BothDIFF and FLOW
get worse results on concentrated inflation distribution than those
on distributed inflation distribution, although the amount of infla-
tions are actually smaller for concentrated case. However, we can

see that DIFF is less sensitive to the inflation distribution than
FLOW . The TWL degradation of DIFF is only 0.16m com-
pared to 1.06m of the FLOW . The slack and FOM degradation
of DIFF is also significantly lower than those of FLOW . This
indicates that diffusion-based legalization can handle hot-spot situ-
ation better than the network flow based method.

Table 6: Inflation Distribution Effect on Legalization
TWL (m) Slack (s) FOM (s)

type(%) FLOW DIFF FLOW DIFF FLOW DIFF
D(23) 13.40 12.46 -1.497 -0.921 -8441 -3883
C(18) 14.46 12.62 -1.976 -1.253 -11822 -4361
∆ 1.06 0.16 -0.479 -0.332 -3381 -478

7. CONCLUSIONS
The incremental nature of design optimization demands smooth

placement mitigation techniques. They must be capable of spread-
ing cells to satisfy design constrains such as image space, rout-
ing congestion, signal integrity and heat distribution, while keeping
the original relative order. To address these tasks, we proposed a
diffusion-based placement method. This method inherits the char-
acteristics of local movement and incrementality of a physical dif-
fusion process. The similarities between the physical process of
diffusion and the placement migrations make the diffusion method
very attractive. The experimental results on legalization problem
have demonstrated very significant improvements on timing and
wire length over conventional methods.

8. REFERENCES
[1] H. Ren, D. Z. Pan, and P. Villarrubia, “True crosstalk aware

incremental placement with noise map,” in Proc. Int. Conf.
on Computer Aided Design, pp. 402–409, 2004.

[2] H. Eisenmann and F. M. Johannes, “Generic global
placement and floorplanning,” in Proc. Design Automation
Conf., pp. 269–274, 1998.

[3] U. Brenner, A. Pauli, and J. Vygen, “Almost optimum
placement legalization by minimum cost flow and dynamic
programming,” in Proc. Int. Symp. on Physical Design,
pp. 2–9, 2004.

[4] A. Agnihotri, M. C. Yildiz, A. Khatkhate, A. Mathur,
S. Ono, and P. H. Madden, “Fractional cut: improved
recursive bisection placement,” in Proc. Int. Conf. on
Computer Aided Design, pp. 307–310, 2003.

[5] S. W. Hur and J. Lilis, “Mongrel: hybrid techniques for
standard cell placement,” in Proc. Int. Conf. on Computer
Aided Design, pp. 165–170, 2000.

[6] A. B. Kahng, P. Tucker, and A. Zelikovsky, “Optimization of
linear placements for wirelength minimization with free
sites,” in Proc. Asia and South Pacific Design Automation
Conf., pp. 18–21, 1999.

[7] J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI
Technology: Fundamentals, Practice, and Modeling.
Prentice Hall, 2003.

[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in C++. Cambridge University
Press, 2002.

[9] H. Ren, D. Z. Pan, and D. Kung, “Sensitivity guided net
weighting for placement driven synthesis,” in Proc. Int.
Symp. on Physical Design, pp. 10–17, 2004.

520

