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ABSTRACT
In this paper, we develop a multi-level physical hierarchy genera-
tion (mPG) algorithm integrated with fast incremental global rout-
ing for directly updating and optimizing congestion cost during
placement. The fast global routing is achieved by using a fast two-
bend routing and incremental A-tree algorithm. The routing con-
gestion is modeled by the wire usage estimated by the fast global
router. A hierarchical area density control is also developed for
placing objects with significant size variations. Experimental re-
sults show that, compared to GORDIAN-L , the wire length driven
mPG is 3−6.5 times faster and generates slightly better wire length
for test circuits larger than 100K cells. Moreover, the congestion
driven mPG improves 50% wiring overflow with 5% larger bound-
ing box wire length but 3 − 6% shorter routing wire length mea-
sured by graph based A-tree.

Categories and Subject Descriptors
B.7.2 [Hardware]: INTEGRATED CIRCUITS—Design Aids

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Placement, routing, congestion, interconnect, physical hierarchy,
deep sub-micron

1. INTRODUCTION
Interconnect has become the dominating factor in determining

overall system performance and reliability. Inevitably, it impacts
all stages of the design flow. In [1], Cong proposed a three phase
interconnect-centric design flow, including (1) interconnect plan-
ning, (2) interconnect synthesis, and (3) interconnect layout in or-
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Total Wire Length (meter) all net
layers M1 M2 M3 M4 M5 M6 layers count
nets <0.5mm 0.04 1.36 2.08 1.41 0.17 0.00 4.1% 43.2%
nets [0.5-5mm] 0.22 4.51 11.81 20.57 12.22 6.83 45.7% 48.7%
nets >5mm 0.01 0.26 2.93 14.43 20.87 23.11 50.2% 8.1%
all nets 0.2% 5.0% 13.7% 29.6% 27.1% 24.4% 100% 100%

Table 1: Wire length distribution on all routing layers of the
block level net list of a micro-processor design

der to emphasize interconnect planning and optimization through-
out the entire design process.

The interconnect planning phase is particularly important be-
cause it provides early assessments on the system performance
thereby enabling performance optimization in the early design
stages. In addition to performance optimization, it is equally im-
portant to reduce design uncertainty and ensure that the planned
results can be realized in the later design stages without significant
deviations.

An important step in interconnect planning is physical hierar-
chy generation. There are some recent studies on generating good
physical hierarchy from the flattened function and logic hierarchy
for performance optimization [2, 3]. However, they have little or no
consideration of routing congestion, which may cause uncertainty
in later design stages because the planned global interconnects in
overly congested areas may be forced to make detours or change
layers.

The fact that more routing layers are added in the VLSI design
suggests that the global interconnect congestion problem is worsen-
ing. Table 1 shows the wire length distribution based on the block
level net list of a leading high performance microprocessor de-
sign from Intel [4], which demonstrates the congestion problem in
global interconnects. The data show that over 95% of the wires are
from wires longer than 0.5mm and over 80% of the wires are on
the top three layers. It shows that there is high resource competition
among long global interconnects on those top layers (which pro-
vide faster connections). Since long wires are usually sized wider
for better performance, the top layers are much more congested.

The above data suggest that the performance estimation in the
interconnect planning must consider layer assignment and conges-
tion in global interconnects.

Several existing works consider the congestion during placement
or floorplan. In [5, 6], it is shown that there is a mismatch between
wire length and congestion objectives. In [7], a simple LZ-shape
routing is incorporated into a simulated annealing based floorplan-
ning engine to consider congestion. However, there may not be
enough global interconnects seen by a floorplanner. In [8], the
wiring demand of a net is modeled by a weighted bounding box
length. The wiring demand estimation can be fast, though it may



be inaccurate. In [9], pre-computed Steiner tree topologies on a
few grid structures are used for wiring demand estimations. This
approach is tailored for recursive partition placement and may not
foresee congestion problems within each partition. In [10, 11, 12],
an indirect cell padding or region growing/shrinking is applied to
the placement after congestion analysis. This type of approach will
not dynamically monitor the congestion changes and has less con-
trol on reducing congestion. In [13], a post-processing of moving
cells with Steiner tree reconstructions is used. In this approach,
the cell movement is limited and reconstructing the Steiner trees on
each movement is too expensive. In [14], it is shown that a post-
processing technique is effective in minimizing congestion because
routing congestion correlates with wire length in a global view. In
[15], a post-processing with a new congestion model is proposed.
The congestion is first estimated by the method in [8] and revised
by expanding certain congestion regions (by solving an integer pro-
gramming problem). This approach improves the accuracy of con-
gestion but the routing congestion is still not dynamically updated.

In general, the most accurate congestion estimation still comes
from the global router itself. However, due to the high computa-
tional complexity, most previous works used a variety of simplified
approximations to estimate the congestion. Our approach differs
from the others by building a fast global router and integrating it
with an efficient multi-level placement engine to provide dynamic
routing congestion guidance to the placement engine.

2. PROBLEM FORMULATION
The interconnects of a VLSI circuit are determined by (1) the lo-

cations and sizes of logic gates, flip-flops, and buffers; (2) the inter-
connect geometry that includes wire locations, layers, and widths.
Although interconnect delay is the dominating factor in system per-
formance, only the delays of “long” interconnects are sensitive to
wiring geometry. The delays of “short” interconnects are deter-
mined mainly by the driver/receiver sizes and are less sensitive to
wiring geometry. It is an important problem of identifying and op-
timizing global interconnects in early design stages. This impor-
tant problem of determining global interconnects can be solved by
physical hierarchy generation.

The physical hierarchy is represented by a bin structure and cell
location assignment. We can use the bin centers to roughly specify
cell locations. Global routing can be performed to estimate net
topologies. The finer the bin structure becomes, the more accurate
the cell locations and net topologies. We also call our physical
hierarchy generation process “coarse placement” because we only
place cells in coarse locations (bin centers).

The inputs of the physical hierarchy generation consist of logic
hierarchy, design specification, and technology. The logic hierar-
chy includes a hierarchical net list description consisting of library
cells, hard intellectual property (IP) blocks, and soft IP blocks. The
width, height, and delay information of library cells and hard IPs
are known. The soft IP blocks can be further flattened into other
hard IP blocks or library cells.

Given the above inputs, the physical hierarchy generation places
cells in a bin structure for optimizing the design objectives (de-
lay, area, etc.). The outputs include: (1) block locations, specified
by bin centers; (2) global nets (inter-bin nets) routing estimations
(topology, wire sizing, and layer assignments); (3) delay estima-
tions, power estimations, etc.

In this paper, we will only focus on the wire length minimization
and routing congestion minimization.
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Figure 1: V-shape multi-level simulated annealing coarse place-
ment framework

3. PHYSICAL HIERARCHY GENERA-
TION

High computational complexity is the major challenge for phys-
ical hierarchy generation. Inspired by the recent success of the
multi-level methods in efficiently handling high complexity designs
in the VLSI CAD area [16, 17, 18], the backbone of our system is
a multi-level simulated annealing (SA) engine.

3.1 Overview
Figure 1 shows an overview of our multi-level coarse place-

ment framework. It includes a coarsening phase which recur-
sively builds coarsening levels and a refinement phase which refines
each coarser level representation to obtain a finer level representa-
tion. Our coarsening is done by iterative clustering. We select the
FirstChoice (FC) clustering algorithm [19] because it experimen-
tally gives us better clustering for coarse placement.

Our refinement is done by a simulated annealing (SA) based
placement engine which places each cluster in the current level in
a placement bin. We choose to use an SA based placement as in
[20, 21] for the flexibility of integrating various design objectives
and constraints. We use the same placement bin structure for each
level.

For each refinement of a coarser level solution, the SA engine
moves clusters of the current level (after declustering from the
coarser level solution) to optimize bounding box wire length or
routing congestion cost, both under area density constraints. The
area density constraints are enforced by a hierarchical area density
control algorithm. The routing congestion is evaluated by using a
fast global router. The details of our algorithms shall be discussed
in subsequent sections.

3.2 Hierarchical Area Density Control
Each placement bin has an area bound which is the area that

can be used for cells placed in this bin. If the total area of the
cells placed in a bin exceeds its area bound, some cells need to be
moved to other locations. If the area bound in each placement bin
is strictly enforced, a coarse placement solution can be legalized
to an overlap-free detailed placement solution without moving any
cell out of the placement bin assigned by the coarse placement.

It is difficult, however, to maintain strict area bound in each
placement bin during the placement process. The conventional wis-
dom is to allow some area overflow up to a fixed percentage of the
bin area bounds such that a detailed placement solution can be ob-
tained without significant cell movement.

The fixed overflow percentage does not work well in a multi-
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Figure 2: Bin hierarchy for area density control

level coarse placement due to the significant variances in cluster
sizes. The clusters in coarser levels may even be larger than a place-
ment bin. One solution is to use coarser bin structures in coarser
levels, however, it looses the accuracy and creates cost jumps when
switching to finer bin structures.

We solve this problem by a hierarchical area density control al-
gorithm. Our density control imposes a hierarchy of bin structures
on the target bin structure and enforces relaxed area constraints for
all the bins in the hierarchy. Subsequently we shall show that the
area constraints are gradually tighten in our multi-level framework
while allowing more freedom for cluster moves.

The bin hierarchy is formed by recursively grouping adjacent
bins to generate the bins in next level. Figure 2 shows an example
of a bin hierarchy where boundary lines of different levels of the
bin structure are drawn differently. In this figure, there are three
bin structures: an 8×8 bin structure at level 0, a 4×4 bin structure
at level 1, and a 2 × 2 bin structure at level 2.

Denote Ai
b as the area bound for a bin Bi

b in level i, which is also
the summation of all area bounds of the level 0 bins contained in
Bi

b. Similarly, denote U i
b as the current area usage U i

b for bin Bi
b,

which is also the summation of all current area usages of the level 0
bins contained in Bi

b. The hierarchical area constraints are enforced
on each cluster move. For a cluster move that moves a cluster c of
area ac to a bin B0

b , for any bin Bi
xi

on level i that contains the
bin B0

b , the overflow of bin Bi
xi

must be smaller than kac, where
k ≥ 1 is a user specified parameter (∀i(U i

xi
+ ac − Ai

xi
) ≤ kac).

For example, if a cluster with area ac is moved to bin (2, 3) in
Figure 2, the area constraints of the following bins are enforced:
bin (2, 3) on level 0, the level 1 bin covering the region marked
with 1 in Figure 2, and the level 2 bin marked with 2 in Figure 2.

Using the hierarchical area density control, our placement en-
gine can place clusters with mixed sizes. We will legalize macro
cell locations after a few levels from the coarsest levels. As the
refinement processes continue, the area constraints will be gradu-
ally tightened because the clusters become smaller. By using this
method, our annealing engine can efficiently handle mixes of big
and small modules and will not be stuck due to area constraints.

If the area constraint is satisfied in a region, by applying the pi-
geon hole principle, at least one of the sub-regions of the region
satisfies the area constraint. We apply this property in our move
selection. If the SA engine generates a target location that moves
a cell to a location that violates the hierarchical area constraints,
we can efficiently find an alternative location. We can first find
the smallest bin B in our hierarchy that contains the target location
and all the higher level bins that contain this bin also satisfies the
area constraint. An alternative location can be found by recursively
applies the pigeon hole principle from this bin B.

3.3 Global Interconnect Topology Generation
and Layer Assignment

Since most of the nets are two-pin nets and a multi-pin net can

be decomposed into two-pins nets, we first build a fast, congestion
avoidance two-bend router (LZ-router) for two-pin nets. We will
use this fast two-pin net routing algorithm with an incremental A-
tree generation algorithm for multi-pin nets to build a fast global
router.

The fast global router also includes a fast layer assignment algo-
rithm which assigns nets according to net criticality. More critical
nets have higher priority to choose better routing layers and routing
topologies satisfying the performance constraints.

The layer assignment is not performed on each SA move in order
to save the run time. In our implementation, we only perform layer
assignment at the beginning of each SA phase that refines a place-
ment solution from a coarser level to obtain a finer level placement
solution.

3.3.1 Routing for Two-pin Nets
We use a fast two-bend routing algorithm to route two-pin nets,

with at most two bends. We call the two-bend routing “LZ-routing”
and our two-bend router an “LZ-router.”

The possible number of configurations of LZ-routing that con-
nects two pins with coordinates (i, j) and (i + x, i + y) is
| x | + | y |. However, with a simple minded implementation, find-
ing an LZ-route requires to calculate | x | × | y | wire usage
queries on bin boundaries, which is still quite expensive.

Our LZ-router uses auxiliary data structures (similar to a
segment-tree data structure) to find good quality routes by perform-
ing a binary search of the possible routes for a two-pin net. For
two pins bounded by a rectangle bounding box B, our LZ-router
first measures congestion of B and its boundaries on both the hor-
izontal and vertical layer to determine whether horizontal-vertical-
horizontal (HVH) routing or vertical-horizontal-vertical (VHV)
routing is less congested and should be used.

Assuming we are using VHV routing, our algorithm recursively
makes a horizontal cut on B and selects the one with a smaller
average density to route. It stops when the choice narrows to a
single row.

If the complexity for a region query is R, the complexity of our
LZ-router is O(log(| x | + | y |)R) because it takes at most
O(log(| x | + | y |)) binary search steps to find a route. Given a
gx×gy bin structure, any region query used in our LZ-router can be
(approximately) answered in O(log(gx + gy)) using segment-tree-
like data structures. Therefore, the complexity for our LZ-routing
is O(log(| x | + | y |)log(gx + gy)).

THEOREM 1. Given a gx × gy bin structure, the complexity for
the LZ-router to route two pins with coordinates (i, j) and (i +
x, j + y) is O(log(| x | + | y |)log(gx + gy)).

Due to page limitations, the details of the auxiliary data struc-
tures, the complexity analysis, and the proof are omitted. They can
be found in the technical report [22].

3.3.2 Incremental Hierarchical A-tree Construction
For a multi-pin net, we would like to construct a rectilinear

Steiner arborescence tree (A-tree) for our routing estimation. A
rectilinear Steiner arborescence tree (A-tree) is a shortest path rec-
tilinear Steiner tree. There are some heuristics that can construct
an n-pin A-tree in O(n log n) time with a solution no worse than
2x the optimal A-tree solution, e.g., [23, 24]. However, if we re-
construct each A-tree for any of the pin location updates, we may
spend O(n2 log n) for each n-pin net on a pass of moving all clus-
ters, which is too expensive.

We propose an incremental A-tree (IncA-tree) algorithm that can
be efficiently updated. We only explain the construction in the first
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Figure 3: An example of IncA-tree

quadrant because the construction in all quadrants is similar. Given
a grid structure consisting of (2m +1)× (2m +1) grids on the first
quadrant, we can recursively perform quad-partitioning on the grid
structure until it reaches the unit grid.

The lower-left corner of the partition is the root for a subtree
connecting all the pins inside this partition. By recursively per-
forming such quad-partitioning, we can build an A-tree such that
each pin at location (x, y) can connect to the origin (0, 0) with
max(log x, log y) edges. Therefore, any pin insertion (deletion)
to location (x, y) only incurs at the most log(x + y) edge inser-
tions (deletions). Therefore, each operation of moving a pin from
(x1, y1) to (x2, y2) incurs at the most log(x1 +y1)+log(x2 +y2)
edge changes. An example of an IncA-tree is shown in Figure 3.

With the fast two-pin routing and incremental A-tree routing, for
an n-pin net with bounding box length L on a gx × gy bin struc-
ture, the complexity for updating a non-root pin move is O(log L)
times the complexity of LZ-routes O(log L log(gx + gy)), which
is O(log L2 log(gx + gy)). For moving the root, the complexity
is O(n log2 L log(gx + gy)). While providing superior guidance
for congestion optimization during coarse placement, the run time
overhead of our congestion cost updating grows slowly due to the
low logarithmic complexity.

3.4 Multi-level Simulated Annealing Coarse
Placement

The details of the SA engine is described below.

3.4.1 Solution Space:
The same bin structure is used for placement on each level. Clus-

ters are placed at bin centers subject to hierarchical area constraints,
which is explained in Section 3.2.

3.4.2 Cost Function:
The cost function for our SA engine has two modes: wire length

driven and congestion driven. The cost function for the wire length
driven mode is the simple summation of all the bounding box wire
lengths of all nets.

The fast global router described in Section 3.3 is used to estimate
the wire usage in each bin. The cost function for the congestion
driven mode is the quadratic sum of the wire usages of all routing
layers of all bins. This cost is equivalent to the sum of weighted
wire length by weighting all the wire segments in each bin by the
wire usage of that bin.

This cost function encourages the SA moves that result in shorter
wire length and less congestion. This cost function can also be
efficiently updated if the wire usage is stored by a segment-tree-
like data structure.

Because minimizing wire length is strongly related to conges-
tion minimization, we will run our multi-level SA coarse placement
with wire length minimization on coarser levels. We only turn on
the congestion optimization at the last few finest levels of optimiza-

tion. We have a “reduced mode” that only turns on the congestion
driven at the finest level when the accepting ratio is lower than a
predefined threshold tr and alternatively runs the congestion driven
and wire length driven modes with a fraction of congestion driven
runs, denoted as fc. Our experiments find that tr = 0.075 and
fc = 80% gives best tradeoff of run time and solution quality.

3.4.3 Neighborhood Structure:
Two moves are used (1) cluster move; (2) I/O pads swap (not

used in the experiments of this paper). A cluster move randomly
selects a cluster and moves it to another bin. The target location is
either randomly generated (within some range limit) or computed
to optimize bounding box wire length. The experimental setting of
random moves probability is max(accept ratio, 0.6). If the gen-
erated move violates area constraints, an alternative target location
is generated according to the method described in Section 3.2.

3.4.4 Cooling Schedule:
Let ni be the number of clusters of level i. The cooling schedule

is shown below.

• starting temperature: The starting temperature for the
coarsest level (level k) is calculated by 20 times of the stan-
dard deviation of the costs of nk random moves as suggested
by [25]. For level i (i < k), it is calculated by binary search-
ing to find the temperature with the expected cost-change of
ni moves close to zero [26].

• next temperature calculation: The next temperature calcu-
lation is a function of accepting ratio α. For a given tem-
perature T , the next temperature is 0.5T if α > 0.96; 0.9T
if 0.8 < α ≤ 0.96; 0.95T if 0.15 < α ≤ 0.8; 0.8T if
α ≤ 0.15.

• inner number: We use two inner numbers inner0 and
inner1. For each temperature on level i, we first start a pass
with inner0×ni moves. If the current pass reduces the total
cost, the temperature is repeated with inner1 × ni moves
until m cost increase passes are encountered. The values set
experimentally are: inner0 = 1, inner1 = 5, and m = 2.

• freezing temperature: The freezing temperature is com-
puted by λC/ec, where C is the current cost; λ is a user
input parameter; ec is the net count of the current level. The
default value for λ is 0.005.

4. EXPERIMENTAL RESULTS
Our physical hierarchy generation algorithm is implemented in

C++/STL. It can be run with three modes: wire length minimization
(mPG), congestion cost driven at the finest level (mPG-cg), and the
“reduced mode” described in Section 3.4.2 (mPG-cg.rd). Our ex-
periments are conducted on a Sun Blade 1000 workstation running
at 750MHz frequency (except the experiments done in Section 4.4).

We obtained our benchmark circuits from different sources: [17],
[27], and industrial benchmarks from IBM. 1

For the wire length comparisons, we use circuits in [17] such
that we can compare to [17] and GORDIAN-L [29]. We do not use
circuits from [27] because GORDIAN-L can not produce results for
some circuits probably due to no connections to I/O pads caused by
1Please note that although both [17] and [27] have circuits derived from ISPD98 IBM
benchmark suit [28], they are not the same. We rename the circuits in [17] by adding
“-p” suffixes to indicate the differences. The circuits in [17] have the same net lists as
in [28], however, all the cells have the same size. The circuits in [27] use the cell sizes
specified in [28], however, all the big macro cells together with all the nets connecting
to them are removed, thus most of the circuits do not have connections to I/O pads.



circuit #cells #nets Gor+Dom mPG+Dom
WL CPU WL CPU

(106) (s) (106) (s)
avqsmall 21854 22124 11.3 857 11.5 (1.02) 694 (0.81)
avqlarge 25114 25384 12.6 925 12.0 (0.95) 764 (0.83)
ibm04-p 27220 31970 6.86 1577 6.59 (0.96) 1397 (0.89)
ibm07-p 45639 48117 10.9 4385 10.3 (0.94) 3434 (0.78)
ibm09-p 53110 60902 11.8 6767 11.6 (0.98) 3364 (0.50)
ibm10-p 68685 75196 18.8 14133 18.9 (1.01) 5526 (0.39)
ibm14-p 147088 152772 40.8 39657 38.8 (0.95) 13131 (0.33)
ibm15-p 161187 186608 52.1 63876 51.7 (0.99) 16091 (0.25)
ibm16-p 182980 190048 55.0 81868 51.5 (0.94) 19979 (0.24)
ibm17-p 184752 189581 67.9 98440 66.2 (0.97) 22281 (0.23)
ibm18-p 210341 201917 53.7 129065 50.0 (0.93) 19944 (0.15)

Table 2: Wirelength comparison with GORDIAN-L

circuit nets characteristics #moves eva. time (s) speed
#nets 3pin 4pin 5pin 6+pin IncA A-tree up

ibm01-r 5681 36% 18% 14% 32% 12028 15.35 80.24 5.2X
ibm02-r 8506 20% 22% 23% 35% 19062 26.36 170.74 6.47X
ibm03-r 8137 38% 16% 11% 35% 21879 24.18 174.79 7.20X
ibm04-r 10580 37% 16% 13% 34% 26332 37.83 462.69 12.23X
ibm05-r 10433 11% 0% 23% 66% 28146 60.84 586.87 9.65X
ibm06-r 13968 28% 23% 14% 35% 32018 55.48 623.26 11.23X

Table 3: Congestion evaluation time comparison. Two-pin nets are
removed.

big modules removals. For the congestion driven experiments, we
use circuits in [27]. We do not use circuits in [17] because all the
cells have the same area is not reasonable for routing.

4.1 Wirelength Comparison with GORDIAN-L

We compared our wirelength-driven mPG with GORDIAN-L [29]
followed by DOMINO [30] on two of the largest circuits (avqs-
mall, avqlarge) in 1993 MCNC layout benchmark sets and the
ISPD98 IBM benchmark suit offered by the authors of [17] in Ta-
ble 2. We ran GORDIAN-L followed by DOMINO and reported the
BBOX wirelength of the detailed placement results and total run-
time in columns titled “Gor+Dom.” Also we ran mPG followed by
DOMINO and reported the wirelength and total runtime in columns
titled “mPG+Dom” and listed the ratio between the wirelength and
runtime of mPG and that of GORDIAN-L in parentheses.

It shows that mPG provides a slightly shorter wirelength and sig-
nificant less run time, especially in circuits larger than 100K.

4.2 Speed-up by Incremental A-tree
The incremental A-tree algorithm enables us to directly integrate

a global router into the placement engine without suffering from an
overly-long runtime.

In this section, we shall provide the run time comparison be-
tween IncA-tree and an implementation that completely routes a
net by an A-tree algorithm [23] whenever a pin of this net is moved
during the simulated annealing process.

We used some circuits from IBM-PLACE benchmarks suite[27]
for this experiment. For each circuit, we first eliminated all the
two-pin nets and only kept the multi-terminal nets for testing.2 For
a move generated by SA engine, we used the IncA-tree algorithm
to incrementally evaluate the congestion and recorded the runtime
for a pre-determined number of moves. The identical set of moves
were also evaluated by the A-tree algorithm.

It can be seen in Table 3 that the IncA-tree algorithm can speed
up the evaluation process by a factor of at least 5 and even more
when the nets with a higher degree become dominant.

2We use suffixes “-r” in the circuit names to indicate the two-pin nets are removed
from [27].

4.3 Congestion Control Comparison
In order to evaluate effects of the congestion optimization, we

implemented a global router based on the GA-tree algorithm [24] to
evaluate the congestion of a placement solution. When construct-
ing an A-tree topology for a net, the GA-tree algorithm can con-
sider both the congestion and the obstacle information. It works
on a routing graph where nodes represent routing bins and edges
correspond to the shared boundaries of adjacent bins.

We can obtain a global routing solution with congestion control
by using a slope-based cost function for edge weight to penalize
the overflowed/highly congested edges (similar to that used in [31])
and updating the weight after routing each net.

The benchmarks for testing congestion control are chosen from
the IBM-PLACE benchmarks suite [27].3 For each test case, we
ran GORDIAN-L followed by DOMINO to get a wirelength-driven
placement result and then used our GA-tree based global router
to evaluate the congestion. Meanwhile we ran mPG to perform
wirelength-driven placement and ran mPG-cg and mPG-cg.rd to
perform a congestion-driven placement. All mPG runs used the
GA-tree based global router to evaluate the results. For all the test
cases, we used two routing layers for global routing evaluation.

In Table 4, we reported the congestion pictures in total overflow
(tot. ov), the maximal boundary congestion (max. b.cg), the rout-
ing wirelength (routing WL) and total bounding box wirelength for
GORDIAN-L/DOMINO (G/D), mPG, mPG-cg, and mPG-cg.rd.

It can be seen that although in terms of bounding box wirelength,
wirelength-driven placers (mPG and GORDIAN-L ) offer better re-
sults in general, their routed wirelength actually becomes larger
than that generated by mPG-cg on average. This implies that the
bounding box wirelength is no longer a good metric for routabil-
ity. A similar conclusion was also drawn in [15]. Meanwhile, the
mPG-cg reduces any existing total overflow by 53–79% on average
and reduces either the routed wirelength or the maximal boundary
congestion, demonstrating that the congestion control done in the
placement phase can benefit the routing phase. It is also shown
that by properly placing the modules/blocks/cells in the placement
phase, good interconnect planning can be carried out in the routing
phase. The results of mPG-cg with the reduced mode demonstrate
the tradeoff between runtime and solution-quality.

4.4 Experiments on Industrial Circuits
We also ran our program on 5 IBM test circuits (named ind1

to ind5, to avoid name confusion with the published IBM bench-
mark used in the previous section) on a Sun workstation running at
400MHz frequency, followed by IBM’s in-house legalization and
routing tools. These circuits use IBM ASIC standard cell libraries,
with feature size from 0.15µm to 0.25µm, and some circuits have
a number of pre-placed macros (not counted in the cell number).

Table 5 shows the number of placeable cells (#cell), the num-
ber of nets (#nets), the grid size, the comparison of routed wire-
length, maximum congestion, the number of overflowed edges and
the number of nets that overflow.4 It confirms that the placement re-
sults generated by mPG-cg have less congestion than that by mPG,
with fewer congested edges and nets, though running much slower.
The reduced mode mPG-cg.rd provides a tradeoff between run time
and quality of result.

5. CONCLUSIONS
We presented a multi-level simulated annealing physical hier-

archy generation algorithm (mPG-cg) integrated with incremental

3We removed the dangling cells in the circuits.
4The IBM tool reports the number of overflowed edges, not the total overflow.



circuit #cells #nets grid BBOX WL routing WL max. b.cg tot. ov CPU (s)
name size G/D mPG mPG mPG G/D mPG mPG mPG G/D mPG mPG mPG G/D mPG mPG mPG G/D mPG mPG mPG

-cg.rd -cg -cg.rd -cg -cg.rd -cg -cg.rd -cg -cg.rd -cg
ibm01 12028 11507 32×64 4.95e6 4.37e6 4.66e6 4.77e6 6.19e6 5.37e6 5.26e6 5.14e6 1.36 1.27 1.10 1.06 2284 950 319 114 1363 578 3133 8295
ibm04 26332 26163 64×64 1.70e7 1.66e7 1.74e7 1.73e7 1.96e7 1.97e7 1.96e7 1.87e7 1.20 1.26 1.22 1.06 1949 1266 639 77 3173 1228 9709 27922
ibm07 44811 44394 64×64 4.25e7 3.18e7 3.31e7 3.33e7 6.47e7 4.57e7 4.48e7 4.33e7 2.40 1.78 1.78 1.69 2.97e5 7.51e4 6.39e4 4.74e4 65027 2410 14683 43618
ibm11 68046 67016 64×64 - 4.19e7 4.37e7 4.36e7 - 4.85e7 4.78e7 4.59e7 - 1.25 1.10 1.02 - 3014 811 271 - 3440 17923 72010
ibm13 83806 80906 64×128 - 5.14e7 5.36e7 5.41e7 - 7.31e7 6.82e7 6.40e7 - 1.51 1.39 1.31 - 7.43e4 3.62e4 2.10e4 - 4393 27312 76768
ibm15 161196 157806 128×128 - 1.47e8 1.52e8 1.52e8 - 1.82e8 1.77e8 1.67e8 - 1.14 1.10 1.07 - 3971 1596 288 - 13285 74458 263706

avg. - 1 1.05 1.05 - 1 0.97 0.94 - 1 0.93 0.87 - 1 0.47 0.21 - 1 6.1 18.9

Table 4: Congestion control comparison between wirelength-driven placement and mPG-cg.

circuit #cell #net grid routed WL max. cg #edge-ov #nets-ov cpu(s)
size mPG mPG mPG mPG mPG mPG mPG mPG mPG mPG mPG mPG mPG mPG mPG

-cg.rd -cg -cg.rd -cg -cg.rd -cg -cg.rd -cg -cg.rd -cg
ind1 1099 1179 8×8 113 112 101 1.0 1.0 1.0 0 0 0 0 0 0 57 147 739
ind2 30997 32027 64×32 5520 5494 5369 1.1 1.1 1.1 1014 754 426 3608 3096 2566 1927 10247 40642
ind3 72940 73386 64×64 11601 11940 11863 1.3 1.1 1.03 9 3 1 133 57 24 5722 18527 59340
ind4 141862 153708 128×128 180094 180998 179473 2.53 2.53 2.53 5255 4783 4315 2809 2798 2634 58929 128036 361480
ind5 216111 221133 128×128 69545 69362 69188 1.7 1.7 1.7 1396 1310 1145 724 652 629 38773 92109 288096

Table 5: IBM circuit results.

A-tree algorithm and fast LZ-routing for fast congestion evaluation
and optimization. Our placement engine also has a hierarchical area
density control which allows us to place both mixed big and small
clusters. Our experiments show that our mPG program is both com-
petitive in wire length and run time. The congestion driven mPG
(mPG-cg) can significantly reduce routing congestion.
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