
Variation Tolerant Buffered Clock Network Synthesis with
Cross Links

Anand Rajaram
Dept. of ECE, University of Texas,

Austin, Tx 78712
Texas Instruments Inc., Dallas, Tx 75243

anandr@mail.utexas.edu

David Z. Pan
∗

Dept. of ECE, University of Texas,
Austin, Tx 78712

dpan@ece.utexas.edu

ABSTRACT
Clock network synthesis is a key step in the ultra deep sub-
micron (UDSM) VLSI Designs. Most existing clock net-
work synthesis algorithms are designed for nominal operat-
ing condition, which are insufficient to address the growing
problem of process, voltage and temperature (PVT) fluc-
tuations. Link based clock networks have been suggested
as a possible way of reducing skew variability [1–3]. How-
ever, [1,2] deal with only unbuffered clock networks, making
them impractical. In [3], the problem of constructing a link
based buffered clock network has been addressed . But [3]
requires special kind of tunable buffers, which might con-
sume more area/power and might not be available for all
designs. Also, [3] uses SPICE for tuning the locations of in-
ternal nodes and buffer delays, thereby making it slow even
for clock networks with a few hundred sinks. In this paper,
we propose a unified algorithm for synthesizing a variation
tolerant, balanced buffered clock network with cross links.
Our approach can make use of ordinary buffers and does not
require SPICE for clock network synthesis. SPICE based
Monte Carlo simulations show that our methodology results
in a buffered clock network with 50% reduction in skew vari-
ability with minimal increase in wire-length, buffer area and
CPU time.

Categories and Subject Descriptors
B.7.2 [INTEGRATED CIRCUITS]: Design Aids

General Terms
Algorithms, Performance

Keywords
VLSI CAD, Physical Design, Clock Network, Non-tree Clocks.

∗This work is partially supported by SRC and IBM Faculty
Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’06, April 9–12, 2006, San Jose, California, USA.
Copyright 2006 ACM 1-59593-299-2/06/0004 ...$5.00.

1. INTRODUCTION
Clock distribution networks (CDNs) are of great impor-

tance in any synchronous VLSI chip because the pace of
almost every data transfer is determined by the clock sig-
nal. As one of the largest and fastest switching nets in any
design, the CDN has tremendous influence on the over all
performance of the chip [4]. Realizing its importance, nu-
merous works have focused on the problem of clock network
synthesis [7–18]. In the majority of these works, only tra-
ditional parameters like skew, wire/buffer area and power
are considered. However, in the sub-100 nm technologies,
variation effects like manufacturing variations [5, 20], tem-
perature changes and power supply noise [6] are becoming
very significant. Hence, it is vital to address the variation
effects during clock network synthesis. Most of the existing
algorithms, including recent ones like [15–17] do not con-
sider variation effects and use only the nominal values of
device/interconnect parameters to achieve the target skews.
The main drawback of such an approach is that even if clock
skew constraints are met at design time (for nominal values
of device/interconnect parameters), PVT variations can in-
troduce unwanted clock skew during the chip fabrication,
thereby affecting performance and timing yield.

Link-based clock network [1–3] has been proposed as a
possible method to reduce skew variability. However, [1,
2] address only unbuffered clock networks, making them
impractical. The work of [3] attempts to solve the prob-
lem of constructing a link based buffered clock network in
which special tunable buffers are used to obtain a low-skew
(in SPICE) buffered clock network. Once a good low-skew
buffered clock network is obtained, [3] uses the algorithms
of [2] to select the links to be inserted. Finally, SPICE
simulations are used to tune the buffers and internal node
locations. However, the use of tunable buffers might result
in increased area and power consumption. Moreover, the
tunable buffers might not be available in all design libraries.
Also, because of the use of SPICE for tuning, [3] is slow for
even clock network of a few hundred sinks.

In this work, we propose an efficient algorithm for syn-
thesizing a link-based clock network in which we have at-
tempted to overcome the above mentioned drawbacks of [3].
The important contributions of this work are:

• Our methodology uses ordinary buffer cells and does
not require any special tunable buffer cells unlike [3].

• We adapt and modify the efficient & accurate delay
evaluation method of [19] to consider the slew and re-
sistive shielding effects during clock network synthesis,

157

thereby avoiding the use of SPICE for constructing the
clock network. This also helps us to overcome the in-
accuracy of the simple Elmore delay model, which is
used by most clock tree synthesis algorithms including
the recent ones like [15–17]. Thus, our algorithm is
both fast and accurate.

• We propose a new merging scheme for clock tree syn-
thesis to obtain a link insertion friendly balanced clock
tree.

Monte Carlo simulations in SPICE show that our algorithm
can reduce skew variability by 50% on an average with no
penalty in resources or runtime.

2. BACKGROUND AND MOTIVATION
In this section, we briefly review concept of link insertion

for the sake of completeness. Then we discuss the reasons
as to why link insertion in a buffered clock network is a non-
trivial problem under accurate delay model. We also review
existing buffered clock tree synthesis algorithms and point
out the reasons that motivate us to propose a new clock
tree synthesis algorithm to obtain a link insertion friendly
buffered clock tree.

2.1 Link Insertion Overview
The key idea of the link-based clock network [1,2] is to ob-

tain a non-tree by inserting links in a given clock tree such
that redundant source to sink paths are established. The
links introduce a strong correlation between the different
sink delays, thereby reducing the skew variability. An ex-
ample of link insertion in an unbuffered clock tree is shown
in Figure (1) (a). In this tree, the sinks 4 and 5 are lo-
cated physically very close to each other but still they share
no common path other than the clock source S. As demon-
strated in [1, 2], adding a link (shown in dotted lines) be-
tween nodes such as 4 and 5 result in reducing the effect of
variation factors on the clock skew.

S

1 2 3 4 5 876

(b)

N1 N2

A B

N4N3

1 2 3 4 55 6 7 8

S

A B

N1
N4N2 N3

(a)

Figure 1: An example of link-based non-tree. (a)
Unbuffered case. (b) Buffered case.

2.2 Challenges in Buffered Clock Tree Link
Insertion

The algorithms used in [1, 2] is applicable only to un-
buffered clock networks and cannot be applied to buffered
case because of the reasons discussed below.
Chicken-egg problem: Inserting a link in a buffered

clock tree introduces a chicken-egg problem between the lo-
cation of buffer driving the linked nodes, the input slew of
the buffers and the downstream delays. For example, in
Figure (1) (b), the link between nodes 4 and 5 increases the

loads driven by the buffers A and B, which affects the lo-
cations and input slews to the buffers, which in-turn affects
the delays from buffer A(B) to sink node 4(5). But, the skew
between sink nodes 4 and 5 needs to be evaluated in order
to select them for link insertion, thus completing the cyclic
dependency. This fact has also been noted in [3].
Accuracy of delay model: Accurate delay models must

be considered while inserting links in a buffered clock tree
because of the following reasons:
• As shown in [1], a link will be beneficial only when it

is inserted between two sink nodes with zero or near-
zero skew . While Elmore delay has been shown to
have good fidelity for the unbuffered clock trees w.r.t
SPICE in [1,2], the fidelity is poor for a buffered clock
tree as demonstrated in [18].
• Adding links between two sinks driven by different

buffers introduces the problem of multi-driver nets.
For example, in Figure (1) (b), the link between nodes
4 and 5 has two drivers, namely buffers A and B. If
the links are not selected considering accurate delays,
then it is possible to insert links between nodes whose
delay values are quite different. This might increase
the nominal short circuit power of the clock network
because of the virtual shorting of Vdd and Vss (Source
and Ground) that might occur when one of the drivers
gets turned much ahead of others or vice versa.

Thus, it is clear from the above points that link insertion
for buffered clock tree is a non-trivial problem. In order to
insert links in a buffered clock tree, we required the buffered
clock tree to have a good nominal skew in an accurate delay
model. By making sure that the nodes have very similar
accurate delay values, we not only make the skew variabil-
ity better, but also reduce the nominal short-circuit power
consumption.

2.3 Existing clock tree synthesis algorithms
One of the pioneering algorithms for clock routing was

proposed in [7], in which a zero skew clock routing was ob-
tained by recursively merging a pair of zero skew subtrees
until a single clock tree is obtained. The zero-skew principle
in [7] was extended in the DME algorithm [8] for wire length
minimization. However, [7,8] addressed only the problem of
an unbuffered clock tree. The problem of constructing a
zero skew buffered clock tree under Elmore delay model was
solved in [9, 10]. The optimal clock buffering for a given
topology and buffer library was solved in [11]. A heuristic
for synthesizing a low-power buffered clock tree using the
Elmore delay model was proposed in [12]. Buffer and wire
sizing were done so as to reduce power and maintain the zero
skew property under Elmore delay. None of the above clock
tree synthesis algorithms consider clock signal slew during
the synthesis of the clock tree.

To our best knowledge, [13] was the first work that explic-
itly considered slew during buffer insertion. But it assumes
a given unbuffered clock tree, which may result in very sub-
optimal solution compared to simultaneous buffering and
clock routing as shown in [9]. In [18], a SPICE based, time
domain based buffer/wire sizing has been proposed which
results in greatly reduced skew in SPICE. To the best of
our knowledge, [18] is the only work that aims to reduce the
actual clock skew in SPICE. However, since it directly uses
SPICE for tuning the clock network, the runtime may be
prohibitively high. In [14], the important problem of clock

158

buffer load imbalance is addressed. In the previous algo-
rithms like [9], different clock buffers at a given level from
the clock source may drive different loads. The methodology
in [14] attempts to solve this problem by using a clustering
approach. But such a clustering and load balancing ap-
proach usually results in excessive wire length due to wire
snaking when the two clusters to be merged do not have
similar target delays.

In the recent works of [15, 16], the problem for optimal
buffer/wire sizing in clock network has been studied under
the Elmore delay model. In [17], a new merging scheme
has been proposed for prescribed skews which usually re-
sults in considerably less wire-length compared to the other
algorithms. However, this algorithm results in highly unbal-
anced clock structure. The balanced clock structure issue
has been addressed in [9, 14] at the cost of excessive total
wire lengths compared to [17].

2.4 Requirements of a Link Insertion Friendly
Buffered Clock Tree Synthesis

Based on our discussions in section 2.2, the requirements
of a link insertion friendly clock tree synthesis algorithm are:
Accurate and fast delay model during synthesis:

This requirement implies that the effect of slew and resistive
shielding are to be considered, which will ensure that the
sink node pairs are selected based on accurate skew values.
It also implies that SPICE should not be used for the clock
tree synthesis as it may increase the runtime considerably.
However, as discussed in section 2.3, most of the existing
buffered CTS algorithms, including the recent ones like [15–
17], use Elmore delay or use SPICE for synthesis like [18].
Balanced clock tree without excessive wire snaking:

We define a balanced clock tree as one in which identical
buffers are inserted at a given level from the clock source.
Also, a balanced buffered clock tree will have the same num-
ber of buffer levels from the source to each clock sink. Fig-
ure (2) (a) and (b) shows an example of unbalanced and
balanced buffered clock tree respectively.

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
���
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

DA B C A B C D

S S

B1
B1 B2

(a) (b)

Figure 2: (a) An example of an unbalanced buffered
clock tree; (b) An example of a balanced buffered
clock tree.

A key advantage in having a balanced clock structure is
that it will be much more tolerant to variation. For ex-
ample, if the nominal delays from source to sinks in both
Figure (2) (a) and (b) is 100 ps and if the nominal gate
delay is 20ps. Under nominal conditions, both Figure (2)
(a) and (b) will have identical skews. However, when vari-
ation effects become more and more severe, the scaling of
the device delays and interconnect delays need not match.

For example, due to certain change in operating tempera-
ture or voltage, the device delay doubles and interconnect
delay becomes one half of the nominal values. Then the bal-
anced structure is much more tolerant to the variation. In
the UDSM technologies, it is becoming increasingly difficult
to capture all the different variation effects. This further
motivates us to use the balanced clock structure to improve
tolerance to variations. Many recent clock tree synthesis
algorithms like [15, 16, 18] use buffers of different sizes and
tune them in such a way that the skew and delay targets are
met at the nominal values of device and interconnect param-
eters. However, due to the PVT variations, significant skew
can be generated in such clock trees.

Also, the total wire-length of the clock network should be
as less as possible in spite of maintaining a balanced struc-
ture. The reason for this requirement is that most of the
existing algorithms that obtain a balanced clock structure
like [9, 14] achieve load balancing by clustering methods,
which often result in excessive wire snaking. This is un-
desirable because excessive wire-length increases the total
power and resource consumption. It may be emphasized
here that, even thought the idea of a balanced clock tree is
well known, to the best of our knowledge, there is no work
that guarantees the balanced nature of the resulting clock
tree without performing clustering.

A fact to be noted here is that none of the existing clock
tree synthesis algorithms satisfy all the above requirements.
Though each of the above requirements have been addressed
in bits and pieces, to the best of our knowledge, there is no
unified clock tree synthesis algorithm that addresses all the
above issues in a systematic way. In this work, we propose
such a unified clock tree synthesis methodology, which will
result in a link insertion friendly buffered clock tree.

3. ITERATIVE DELAY EVALUATION AND
BACKWARD SLEW PROPAGATION

The work of [19] introduces a fast, accurate and iterative
delay evaluation procedure which has the elegance and sim-
plicity of Elmore delay with much improved accuracy. The
method of [19] is mainly for delay analysis and cannot be
directly applied for clock tree synthesis. This is because [19]
uses a technique called slew propagation in which the slew
is propagated from the signal source to the sinks. But, dur-
ing bottom-up clock tree synthesis, the slew at the source in
unknown and hence the method of [19] cannot be used. To
overcome this, we solve the inverse of the slew propagation
called backward slew propagation in which we propagate the
slew targets in a bottom-up fashion, which can be applied
during clock tree synthesis. In this section, we briefly re-
view the iterative delay evaluation of [19] followed by the
explanation of our backward slew propagation method.

3.1 Iterative delay and slew evaluation
Ideally, we would like to have a delay evaluation proce-

dure that is as efficient and elegant as Elmore delay while
accounting for resistive shielding and signal slew effects. The
iterative delay estimation procedure of [19] is such a delay
model, used in IBM’s physical design closure tool. The pro-
cedure explicitly considers the signal slew in delay evaluation
and accounts for the interdependence between the input sig-
nal slew of a node and the effective load seen by the node.
However, the procedure is mainly for delay evaluation. In

159

this paper, we extend it for the purpose of clock tree syn-
thesis by introducing the notion of required slew similar to
the concept of required skew.

Consider the Figure (3) of a simple RC network connect-
ing nodes v and a. An input ramp voltage with a signal
transition time of tv is applied at the node v. The transi-
tion time at the output node of the RC segment, namely
node a is given by ta. According to Elmore delay, the total
down stream capacitance seen by the node v is C. However,
because of the resistive shielding effect of the resistance R,
only a fraction of the capacitance C is actually seen by the
node v, which is usually referred to by the name effective ca-
pacitance [19]. According to [19], the value of this effective
capacitance is give as:

Ceff = K ∗ C (1)

where K is the scaling factor defined as:

K = 1− 2x(1− e−
1
2x), where x =

RC

tv
(2)

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

����

������

(a) (b)

t v

t a

V
ol

ta
ge

time

R

C

v aVv(t)

Va(t)

Vdd

Figure 3: (a) Definitions of transition times for
nodes v and a. (b) A simple example of RC net-
work.

It should noted that the value of the effective capacitance
seen by node v and the slew rate at v are interdependent.
The output slew rate of the CMOS buffer depends on both
the input slew and the load capacitance [19]. From Equa-
tions (1) and (2), the effective load capacitance seen by the
buffer output depends on the slew at the buffer output. This
factor introduces a chicken-egg problem which is addressed
in [19] using an iterative delay evaluation technique.

3.2 Backward propagation of slew
In order to consider the node slews during the clock tree

synthesis, we need to calculate the signal slew rate during
the bottom-up topology generation phase of the DME [8,
17] algorithm. However, by definition, the slew rate at a
child node can be calculated only when the slew rate at
the parent node is known. For example, in Figure (3), the
slew rate at node a can be obtained only when the slew
rate at node v is known. An efficient method for obtaining
the transition times at the nodes of the clock tree for a given
transition time at the source node has been proposed in [19].
Considering the Figure (3), the transition time at node v is
given as tv. Given tv and the R, C values, the transition time
time at node a can be obtained using the method of [19] as:

ta =
tv

1− x(1− e−
1
x)

, where x =
RC

tv
(3)

In order to consider the slew during clock tree synthesis,
we would like to get an inverse of Equation (3). That is, we

would like to get the value of tv for a given value of ta. Such
an inverse expression will enable us to consider slew during
the bottom up phase of clock tree synthesis. Such an inverse
expression can be obtained as follows: define a new variable
called y and using 3, we have:

y =
RC

ta
=

RC(1− x(1− e−
1
x))

tv

which can be simplified to

y = x(1− x(1− e−
1
x)) (4)

The plot of Equation (4) is shown in Figure (4). As it can
be seen from the plot, the value of y reaches a saturation
point after the value of x reaches a value of roughly 20. The
saturation value of y is 0.5, which can also be verified by

applying the Taylor series approximation for the term e−
1
x

as 1 − 1
x

+ 1
2x2 . Using this approximation in Equation (4)

will reduce the value of y to 0.5. A key use of the above
observation is that for a given value of x, there is an unique
value of y and vice versa. Thus, when we are given the
required slew value at output node, we can obtain the value
of y, which can be used to uniquely determine the value of
x, which in turn can be used to obtain the required input
slew. In other words, if we have a slew requirement at the
child node a in Figure (3), using that we can uniquely obtain
the required slew value at the parent node v. This technique
can be used to build a buffered clock tree with simultaneous
slew considerations in a bottom-up fashion.

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 4: Plot of x (ratio of RC and input slew) ver-
sus y (ratio of RC and output slew) of Equation (4).

4. LINK INSERTION FRIENDLY CLOCK
TREE SYNTHESIS

In this section, we introduce our link insertion friendly
clock tree synthesis algorithm in which we have attempted
to simultaneously consider all the requirements outlined in
section 2.4. To the best of our knowledge, this is the first
work in which all these factors are considered in a unified
and systematic way. First, we will consider the problem of
merging two subtrees using the backward slew propagation
algorithm of the previous section. Then we introduce our
novel merging scheme which guarantees the construction of
a perfectly balanced buffered clock tree while simultaneously
reducing the wire-length and maintaining load balance.

The high level framework of our algorithm is similar to
the DME based algorithms like [9,17] in which the first step
is the topology generation phase in which different subtrees

160

are merged recursively based on a merging cost. After all the
subtrees are merged into a single tree, a top down embedding
is done to finalize the locations of the clock tree nodes.

4.1 Subtree merging with backward slew
propagation

Consider Figure (5) in which two subtrees Ti and Tj (rooted
at nodes i and j respectively) are to be merged to form a
new subtree Tp with node p as the root. In the traditional
merging, the lengths of segments lp,i and lp,j are determined
in such a way that the Elmore delay from v to the sinks of
both Ti and Tj are identical. During this step, the entire
downstream capacitance at nodes i and j are considered.
However, the delay evaluation method of [19] considers only
the effective capacitance at the subtrees Ti and Tj while de-
termining the edge lengths. The delay from node p to nodes
i and j are given as [19]:

D(p, i) =
1

2
rcl2p,i + rlp,iCeff1 (5)

D(p, j) =
1

2
rcl2p,j + rlp,jCeff2

where, r and c are the unit length resistance and capaci-
tance, respectively. Ceff1 and Ceff2 are the effective down-
stream capacitances of nodes i and j respectively. It may be
noted that for clock sinks, the value of effective capacitance
is equal to the load capacitance.

jT i T

eff1C C eff2
i j

p

ll p,i p,j

Figure 5: An example of subtree merger using ef-
fective downstream capacitance

In order to balance the effective delays of the two sub-
trees, the following equation must be satisfied:

Di + D(p, i) = Dj + D(p, j) (6)

where Di and Dj are the delays from nodes i and j to their
respective sink nodes. The edge lengths lp,i and lp,j can be
obtained by solving Equation (6) with the condition that
lp,i + lp,j = L, where L is the Manhattan distance between
the nodes (or the merging segment of the nodes) i and j.
Wire snaking can be used to match the delays if wire-lengths
greater than L is required [17]. Once the appropriate seg-
ment lengths have determined, the required slew at the par-
ent node p can be calculated using Equations (3) to (4).

Figure (6) explains this step in detail. A point to be noted
regarding bottom-up transition time limit propagation is
that, during merging of two subtrees with different transi-
tion time limits, two independent transition limits (one for
each child node) can be obtained for the new root p, denoted
by tip and tjp in the Figure (6). Since the transition time lim-
its are defined as the maximum signal rise time acceptable
at a particular node, we pick only the tighter requirement
of the two. Also, selecting the lesser transition time might
impact the zero skew property within the subtree that has

Procedure: FindSlew(Tp)
Input: A subtree rooted at node p
Output: The signal transition time limit at p.
1. If p is a sink

tp = Transition time limit set by user.
return.

2. i = LeftChild(p); j = RightChild(p).
3. ti, tj ← Transition time limit at nodes i and j.
4. R1 = rlp,i;R2 = rlp,j .
5. C1 = Ceff1 + 0.5clp,i;C2 = Ceff2 + 0.5clp,j .
6. y1 = R1C1

ti
; y2 = R2C2

tj
(Similar to eqn.2)

7. For y1 and y2, obtain the corresponding unique
values of x1 and x2 using eqn.(4).

8. Using x1 and x2, obtain transition time limits
at node p w.r.t nodes i and j as:
tip = R1C1

x1
; tjp = R2C2

x2

9. return min(tip, t
j
p)

Figure 6: Procedure to evaluate the signal transition
values of a node given the transition values of the
child nodes.

Procedure: FindEffectiveCapacitance(Tp)
Input: A subtree rooted at node p
Output: The effective downstream capacitance at node p.

1. If p is a sink
Ceff = Sink load capacitance
return.

2. i = LeftChild(p); j = RightChild(p)
3. Ceff1, Ceff2 ← Effective downstream capacitance of i, j
4. R1 = rlp,i;R2 = rlp,j .
5. C1 = Ceff1 + 0.5clp,i;C2 = Ceff2 + 0.5clp,j .
6. tp = transition time limit of node p
7. K1 = R1C1

tp
;K2 = R2C2

tp
;

8. Ceff = K1C1 + K2C2 + 0.5c(lp,i + lp,j); return.

Figure 7: The procedure to evaluate the effective
downstream capacitance recursively.

bigger transition time. However the effect of this is minimal
based on our experimental experience.

Once the required slew information at the root node p is
available, the effective downstream capacitance at node p
can also be calculated as demonstrated in Figure (7).

Thus, using the algorithms of Figures (6) and (7), we can
merge a give pair of subtrees and obtain the values of slew
and effective downstream capacitance of the new subtree. In
order for this method to be applied in a recursive fashion, the
slew requirements at the clock sink nodes must be predefined
by the user. This can be used during the bottom-up clock
tree construction as shown in the next section.

4.2 Balanced CTS algorithm
As discussed in section 2.4, one of the key disadvantages of

several existing algorithms is the difficulty in getting a bal-
anced clock tree without a wire-length penalty. We propose
to address this key problem using a novel merging scheme,
which is explained below.

In any merging scheme, node pairs to be merged are se-
lected as per a cost function. In most of the traditional merg-
ing schemes like [8], node pairs that are physically closest are
merged together with the intention of reducing the total wire
length. But, as noted in [17], this might result in excessive

161

wire snaking when the nodes to be merged do not have sim-
ilar delays. The algorithm in [9] selects the node pairs that
result in the smallest delay after the merger. This generally
results in a more balanced tree. However, the wire-length
consumed is generally more. In [17], the pair that results in
the minimal merging wire-length are merged. Since this is in
some ways similar to the minimum spanning tree algorithm
(which at each step selects the new edge with minimal cost),
it results in much a lower wire-length when compared to the
approaches of [8] and [9]. However, as noted in [17], it might
result in an highly unbalanced clock tree. In our work, we
modify the cost function of [17] such that a balanced struc-
ture is obtained while wire-length is also reduced.
Top level algorithm: The top-level steps involved in

our buffer insertion flow are given below:

1. Initialize a list F as an empty list. This list will con-
tain all the flagged, unmerged nodes. A flagged node
is one that cannot be merged with any of the other
unmerged nodes without violating the limit on effec-
tive downstream capacitance (which is the maximum
driving capability of the buffer used).

2. Initialize a list U with the set of all the sink nodes.
This list will store all the unmerged, unflagged nodes.

3. While (Sizeof(U) + Sizeof(F) > 1) Do

(a) (Ti, Tj) = GetSubTreesToBeMerged(U) using steps
in Figure (8).

(b) If (Ti, Tj) �= NULL

i. Merge the subtrees to get a new subtree Tk.
Obtain the values of required slew and Ceffk

for node k using Figures (6) and (7).
ii. Remove Ti, Tj from U .

iii. Add Tk to list U .

(c) else if ((Ti, Tj) = NULL) AND (Sizeof(U) +
Sizeof(F) > 1)

i. Insert buffers at all the nodes of F .
ii. Update the values of delay, slew and effective

downstream capacitance for all nodes ∈ F us-
ing the delay characteristics of the buffer.

iii. Move all the nodes in list F to list U and
empty list F .

4. Perform top down embedding.

The key step in the above procedure is the step 3(a) which
selects the node pairs to be merged. This step is explained
in Figure (8). For node-pair selection, we use similar cost
function as in [17] with an important change. In [17], a buffer
will be inserted in a node as and when the node downstream
capacitance exceeds a certain limit. But such an approach
will result in an highly unbalanced clock tree.

In our algorithm, we insert buffers only when there is no
node pair that can be merged without violating the effective
downstream capacitance limit. To enforce this requirement,
we maintain two separate lists - one called F which will have
a list of flagged nodes and another list called U in which
we will store the list of unflagged nodes. For node pair
selection, we consider only the list U . If, for a particular
node i ∈ U , we are not able to identify a suitable node pair
for merger without exceeding the capacitance limit, we add
that node to the list of flagged nodes F and remove i from
U . We repeat the node-pair selection process until the list U
becomes empty or contains a single element that cannot be

Procedure: GetSubTreesToBeMerged(U)
Input: Set of all unmerged subtrees
Output: The two subtrees to be merged
1. PairsFound = 0
2. While (PairsFound �= 1) AND (Sizeof(U) > 1) Do

(a) Ti = subtree with min root-sink delay in U
(b) MergingCost =∞
(c) For each subtree Tk ∈ U and Tk �= Ti

i. cost = MergingCost(Ti, Tk) defined in Fig. 9
ii. if cost < MergingCost

MergingCost = cost;Tj = Tk.
(d) if MergingCost �=∞

PairsFound = 1
else

Remove Ti from U ; Add Ti to F .
3. if MergingCost �=∞

return (Ti, Tj)
else

Transfer the possible single node ∈ U to list F .
return NULL.

Figure 8: The algorithm for selecting the subtrees
to be merged.

merged with any other node. At that stage, we add buffers
to all the unmerged nodes of F , update their delays, slews
and effective downstream capacitances and transfer all the
nodes to the list U . This cycle continues till there is only a
single clock tree.

Procedure: MergingCost(Ti, Tj)
Input: A pair of subtrees
Output: The merging cost of the subtree pair
1. Cost = Total wire length required to merge Ti and Tj

2. EDSC = Effective downstream capacitance of the
parent node assuming the merging of subtrees
Ti and Tj using steps of Figure (7)

3. If EDSC < Capacitance Limit
return Cost

else
return ∞

Figure 9: The Merging cost for two subtrees.

A point that may be noted here is that the MergingCost
algorithm of Figure (9) returns a value of ∞ when a pos-
sible merger of two node pairs i and j causes the effective
capacitance limit to be violated. Thus, only node pairs that
result in a node with lesser effective capacitance than the
preset limit are merged.

Merits of our algorithm: An obvious advantage of the
above procedure is that it will, by construction, result in
a perfectly balanced clock tree. This is because buffers are
added only in the step 3(c) of the top-leve algorithm in which
all the unmerged nodes are buffered. As a result, the num-
ber of buffers from the clock source to every sink will be the
same, thus satisfying one of the important objectives of our
work.

A less obvious advantage of the proposed merging scheme
is that, on the average, all the nodes to be flagged are mostly
in the same ballpark as 1/2 times the effective capacitance
limit used in the Figure (9). This results in similar equiv-
alent capacitance loads for all the buffers at a given level.
This helps to a great extent in reducing the actual SPICE
skew. It may be noted here that works of [9,14] also target
the objective of balancing the loads for buffers at a given

162

level. However, they obtain the balancing by adding exces-
sive wire capacitance, which results in a big increase in total
wire-length. In our scheme, since we merge nodes consider-
ing the wire length cost, our algorithm generally results in
considerably lesser wire-length that [9, 14]. Our top-down
embedding after obtaining the topology is identical to the
DME algorithm [8].

5. LINK INSERTION FLOW
We adopt the following approach to address the challenges

discussed in section 2.2:

• The problem of inaccurate delay model and the chicken-
egg relationship between link and buffer slew is ad-
dressed by using the iterative delay evaluation proce-
dure of [19] and the bottom-up clock tree synthesis
flow described in section 4.2.

• The problem of excessive nominal short-circuit power
is addressed by considering both the spatial proxim-
ity of the nodes and the proximity in terms of delays
during link node pair selection. This approach also
makes sure that link addition does not affect the skew
between other sink pairs adversely. More specifically,
we use a modified cost function for the MST algorithm
of [2] by making the link insertion cost as a weighted
function of both link length and accurate delays (ob-
tained using the algorithm of [19]) of the clock tree end
points before link insertion.

The top-level algorithm of our link insertion for buffered
clock tree is similar to the top-level algorithm for the un-
buffered case with certain important differences like the use
of accurate delay models and the use of link insertion friendly
clock tree synthesis methodology. The major steps in con-
structing a linked buffered clock tree are:

1. Construct a balanced buffered clock tree using the flow
described in Section 4.

2. Select the sink node pairs for link insertion using a
modified form of algorithm in [2] with the cost function
as weighted function of link length and proximity of
accurate delays for the node pairs. The accurate end-
point delays are obtained using the algorithm of [19]
for delay evaluation.

3. Since the endpoint locations are fixed, the capacitance
value of each link can be calculated once the node pairs
have been selected. Using the link capacitance val-
ues as extra load capacitance at the selected sinks,
construct another buffered clock tree with the same
topology as the one constructed in step(1). This new
buffered clock tree will be equivalent to the first buffered
clock tree plus the link capacitance.

4. Add the link resistances to the new clock tree built
in step (3). The final result will be equivalent to the
buffered clock tree constructed in the first step plus
the link capacitance and link resistances. This is our
final buffered, linked clock network.

It may be noted here that, even though the work of [3]
has a similar objective of obtaining a link based buffered
clock network, our approach differs from that of [3] in the
following aspects:

• We use ordinary buffer cells unlike [3] which requires
special tunable buffer cells.

• We use the iterative delay evaluation procedure of [19]
during clock tree synthesis instead of SPICE. This
makes our algorithm both fast and accurate.

• We propose a new merging scheme that results in a bal-
anced buffered clock network that is inherently friendly
for link insertion.

6. EXPERIMENTAL RESULTS
In order to verify the variation tolerance of our new buffered

clock tree and the linked buffered clock tree approaches, we
run SPICE based Monte Carlo simulations (500 trials) con-
sidering both interconnect and device variations. We assume
that interconnect width, load capacitance, device channel
lenght and oxide thickness vary with a Gaussian distribu-
tion with σ = 5%. We implemented our algorithms in C++
and experiments were run with a 3.25GHz, 2Gb memory
Linux system. We use the same benckmarks as in [7].

It will be apt to compare our results with the results of [3]
because of near-identical objective of our work and the work
of [3]. However, the exact details of the tunable buffers in [3]
were unavailable to us for direct comparison. As a result,
we compare our results with the algorithms in [9] and [17].
We chose these two algorithms for comparison because the
algorithm in [17] will result in a clock tree with greatly re-
duced wire length consumption because it is very similar to
minimum spanning tree construction. So it can be a good
benchmark to do the wire-length comparisons. The algo-
rithm in [9], due to its balanced nature, is likely to yield a
good and balanced clock tree with reduced skew variability.
Thus, comparing our results with these two algorithms will
give us appropriate benchmarks for both wire-length and
skew. It may be noted that, for the major part, the code
for our algorithms and our implementation for [9, 17] are
identical except the merging schemes used. So the differ-
ence in runtime and results can be directly attributed to the
different merging schemes and delay model.

Since the results of [17] are expected to yield the minimum
wire length and worst skew (because of its unbalanced clock
trees), we use [17] as the baseline for comparing our results.
The skew variation and resource consumption for [17] are
shown in table 1. While selecting the clock trees for different
algorithms, we made sure that all of them meet the slew
requirement of 100ps on the clock tree points. As a result,
the skew across benchmarks of different sizes are comparable
for a given algorithm. We also made sure that the clock
tree with minimal resources that met the slew criterion was
selected for each algorithm so as to ensure a fair comparison
between the different algorithms.

Table 2 shows the results of our new algorithms and the
algorithm in [9] scaled in terms of the results of [17] (All
the columns except the # Buf and CPU have been scaled).
The Method column specifies the method for which results
have been given. We have identified the algorithm of [9]
and [17] as CTS- [9] and CTS- [17] respectively. We iden-
tify our algorithms as CTS and Link+CTS. The wire length
consumption is shown under the column titled WL. The ‘#
Buf’ column gives the number of buffers for the particu-
lar clock tree. The NS, WCS and AS denote the ‘Nominal
Skew’, ‘Worst Case Skew’ and ‘Average Skew’ in SPICE, the
last two values obtained for 500 trials of Monte Carlo sim-
ulations in SPICE. The important observations from table
(2) are as follows:
• From column 2 of table 2, it can be observed that our

163

buffered clock tree results in comparable wire-length
to that of [17] and much less wire-length than [9].

• As expected, the skew values for [17] is the worst among
all the algorithms. Also, it can be observed that our
buffer insertion algorithm produces consistently better
results than [9] in terms of skew variability reduction.

• The linked, buffered clock network has the best skew
variability reduction among all the algorithms. Also,
the percentage of extra wire-length consumed for link
insertion is small and drops heavily as the size of the
clock tree increases. This proves the effectiveness of
link insertion for buffered clock trees.

• The CPU time consumed for the algorithm [17] is the
lowest while our algorithms yields comparable CPU
times. When compared to the run times of [9], the run
times of our buffer insertion algorithm and the linked
buffered clock network algorithm are much faster. Most
notably, our runtimes are much lower compared to
those reported in [3] because [3] uses SPICE.

TC WL # Buf NS WCS AS CPU(s)
r1 25937 16 100 190 76 0.06
r2 34110 28 96 222 60 0.36
r3 34353 36 101 196 52 0.71
r4 55115 78 176 362 76 3.46
r5 109722 163 110 226 56 9.4

Table 1: Skew variation and resource consumption
results for the algorithm in [17]

TC Method WL # Buf NS WCS AS CPU
r1 CTS-[17] 1.0 16 1.0 1.0 1.0 0.06

CTS-[9] 5.2 18 0.57 0.72 0.46 1.1
Our CTS 0.8 18 0.37 0.49 0.23 0.08

Link+CTS 1.1 18 0.41 0.45 0.16 0.18
r2 CTS-[17] 1.0 28 1.0 1.0 1.0 0.36

CTS-[9] 7.5 36 0.91 0.95 0.91 14
Our CTS 1.8 40 0.62 0.60 0.59 0.42

Link+CTS 1.8 40 0.65 0.39 0.37 0.52
r3 CTS-[17] 1.0 36 1.0 1.0 1.0 0.71

CTS-[9] 9.6 41 0.59 0.57 0.61 44
Our CTS 1.1 45 0.49 0.54 0.51 0.78

Link+CTS 1.3 45 0.51 0.40 0.32 0.88
r4 CTS-[17] 1.0 78 1.0 1.0 1.0 3.46

CTS-[9] 12.4 85 0.56 0.55 0.47 509
Our CTS 2.1 83 0.34 0.42 0.36 3.94

Link+CTS 2.1 83 0.41 0.33 0.25 4.41
r5 CTS-[17] 1.0 163 1.0 1.0 1.0 9.4

CTS-[9] 9.1 174 0.79 0.55 0.49 2009
Our CTS 1.5 183 0.46 0.38 0.35 10.12

Link+CTS 1.5 183 0.48 0.30 0.28 11.62

Table 2: Skew variation and resource consumption
results for our new algorithms and algorithms in [9]
w.r.t. results of [17] in Table 1

7. CONCLUSIONS
A complete link based buffered clock network synthesis

methodology using accurate and efficient delay model has
been proposed. When compared to existing algorithms,
there is 50% reduction in skew variability on average. The
buffer/wire length cost and CPU time is also significantly
less than most of the previous algorithms. Moreover, our
methodology does not require any special tunable buffered
cells and does not require SPICE simulation for clock tree

synthesis, unlike [3], making our method general, fast and
efficient.

8. REFERENCES
[1] A. Rajaram, J. Hu, and R. Mahapatra, “Reducing clock skew

variability via cross links,” in Proceedings of the ACM/IEEE
DAC, San Diego, CA, June 2004, pages 18–23.

[2] A. Rajaram, D. Z. Pan, and J. Hu, “Improved Algorithms for
Link-Based Non-Tree Clock Networks for Skew Variability
Reduction,” in Proceedings of the ISPD, San Francisco, CA,
April 2005, pages 55–62.

[3] G. Venkataraman, N. Jayakumar, J. Hu, P. Li, S. Khatri,
A. Rajaram, P. McGuinness, and C. Alpert, “Practical
Techniques for Minimizing Skew and Its Variation in Buffered
Clock Networks,” in Proc. of the ICCAD, San Jose, CA, pages
592-596, November 2005.

[4] E. G. Friedman, “Clock distribution networks in synchronous
digital integrated circuits,” in Proceedings of the IEEE, vol.
89, no.5, pp.665–692, May 2001.

[5] R. Saleh, S. Z. Hussain, S. Rochel, and D. Overhauser, “Clock
skew verification in the presence of IR-drop in the power
distribution network,” in IEEE Transactions on CAD, vol.19,
no.6, pp.635–644, June 2000.

[6] W.-C. D. Lam, C.-K. Koh, and C.-W. A. Tsao, “Power supply
noise suppression via clock skew scheduling,” in Proceedings of
the IEEE ISQED, San Jose, CA, March 2002, pp. 355–360.

[7] R.-S. Tsay, “Exact zero skew,” in Proceedings of the
IEEE/ACM ICCAD, Santa Clara, CA, November 1991, pp.
336–339.

[8] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, K. D. Boese, and A. B.
Kahng, “Zero skew clock routing with minimum wire-length,”
in IEEE Transactions on CS-ADSP, vol.39, no.11,
pp.799–814, November 1992.

[9] Y. P. Chen, and D.F. Wong, “An algorithm for zero-skew clock
tree routing with buffer insertion,” in Proceedings of the ED &
TC, Pairs, France, March 1996, pp. 230–236.

[10] S. Pullela, N. Menezes, and L. T. Pillage, “Low power IC clock
tree design,” in Proceedings of the CICC, May 1995,
pp.263–266.

[11] J. Chung and C.K. Cheng, “Optimal Buffered Clock Tree
Synthesis,” in IEEE ASIC conference, Austin, TX, Sept. 1994,
pp. 130–133.

[12] A. Vittal, and M. Marek-Sadowska, “Low-power buffered clock
tree design,” in IEEE Transactions on CAD, vol. 16, no. 9,
pp. 965 - 975 , Sept. 1997.

[13] G. E. Tellez, and M. Sarrafzadeh, “Minimal buffer insertion in
clock trees with skew and slew rate constraints” in IEEE
Transactions of CAD, vol. 16, no.4, pp.333–342, April 1997.

[14] A. D. Mehta, Y. P. Chen, N. Menezes, D. F. Wong, and
L. T. Pilegg, “Clustering and load balancing for buffered clock
tree synthesis” in Proceedings of the ICCD, Austin, Tx,
October 1997, pp. 217–223.

[15] J. Tai. Yan, C. W. Wu, K. P. Lin, Y. C. Lee, and
T. Y. Wang, “Iterative convergence of optimal wire sizing and
available buffer insertion for zero-skew clock tree optimization”
in Proceedings of Asia-Pacific Conference, December 2004,
pp.529–532.

[16] J. L. Tsai, T. H. Chen, and C. C. P. Chen, “Zero skew
clock-tree optimization with buffer insertion/sizing and wire
sizing” in IEEE Transactions of CAD, vol. 23, no. 4, pp.565 -
572, April 2004.

[17] R. Chaturvedi, and J. Hu, “Buffered clock tree for high quality
IC design” in Proceedings of the ISQED, March 2004. pp.
381–386.

[18] K. Wang, and M. Marek-Sadowska, “Clock network sizing via
sequential linear programming with time-domain analysis” in
Proceedings of the ISPD, Monterey, CA, April 2003, pp.
182–189.

[19] R. Puri , D. S. Kung, and A. D. Drumm, “Fast and accurate
wire delay estimation for physical synthesis of large ASICs” in
Proceedings of the GLSVLSI, New York, NY, April 2002, pp.
30-36.

[20] S. R. Nassif, “Modeling and analysis of manufacturing
variations,” in Proceedings of the IEEE CICC, San Diego, CA,
May 2001, pp. 223–228.

164

