Accurate Thermal Analysis Considering Nonlinear Thermal Conductivity

Anand Ramalingam1 Frank Liu2 Sani R. Nassif2
David Z. Pan1

1Department of Electrical and Computer Engineering, The University of Texas, Austin, TX 78712

2Austin Research Laboratory, IBM Research Division, Austin, TX 78758

ISQED 2006
Outline

1. Introduction & Motivation
2. Background
3. Steady State v RMS
4. Nonlinear thermal conductivity
5. Conclusion
Why thermal analysis?
- Temperature affects performance
- Temperature and power are tightly coupled
- Reliability issues

Is *Electrothermal* analysis any different in *digital* domain compared to *analog* domain?
- Essentially involves solving $A(x)x = b$
- The **size** of A is the biggest challenge
Difference in temperature on ignoring thermal conductivity
A partial differential equation of the form,

$$\rho C_p \frac{\partial T(x, y, z, t)}{\partial t} = \kappa(T(x, y, z, t)) \nabla^2 T(x, y, z, t) + h(x, y, z, t)$$

where

- $\kappa(T(x, y, z, t))$ is the thermal conductivity
- $h(x, y, z, t)$ is a heat source at (x, y, z, t).
- ρC_p is the heat capacity

Since we are interested in steady state, the above equation reduces to,

$$\kappa(T(x, y, z)) \nabla^2 T(x, y, z) + h(x, y, z) = 0$$
Let us consider the problem in one dimension and in one layer (silicon) to simplify things. The heat conduction equation reduces to,

\[\kappa_{si}(T) \frac{\partial^2 T(x)}{\partial x^2} + h(x) = 0 \]

Applying finite difference to the heat conduction equation,

\[\kappa_{si}(T_i) \left(\frac{T_{i+1} - T_i}{\Delta x} \right) - \left(\frac{T_i - T_{i-1}}{\Delta x} \right) \frac{\Delta x}{\Delta x} + h(x) = 0 \]

\[\kappa_{si}(T_i) \left(\frac{2T_i - T_{i-1} - T_{i+1}}{(\Delta x)^2} \right) = h(x) \]

Can be written in matrix form as \(K(T)T = h \).
Background

Electrical Interpretation in 2-dimension

\[
\begin{align*}
\kappa_{si}(T_{i,j}) \Delta x & \quad \frac{\Delta y}{\Delta x} \\
\kappa_{si}(T_{i,j}) \Delta x & \quad \frac{\Delta y}{\Delta x} \\
(i, j - 1) & \quad (i, j) \\
(i, j) & \quad (i, j + 1)
\end{align*}
\]

\[
(\Delta x \Delta y) \times h_{\text{power}}
\]

\[
(i + 1, j)
\]
In literature, $K(T)T = h$ is solved as $KT = h$ [Cheng 1998, Wang 2003]

- Linear system of equations
- Still difficult to solve due to sheer size
- Consider a $8000\mu m \times 8000\mu m$ chip with grid size of $\Delta x \times \Delta y = 10\mu m \times 10\mu m$
 - The size of the matrix K is $\mathbb{R}^{640,000\times640,000}$
 - Fortunately, the matrix is sparse

To get an accurate solution need to solve the nonlinear system of equations $K(T)T = h$

- Very hard since there are no black box methods to solve a nonlinear system of equations
Steady state thermal circuit

- We study if steady state (SS) heat sources can be modeled as a DC source having the RMS value of SS.
- The steady state problem is studied in z direction, assume uniformity in x, y directions.
- Picture of chip layers from [Su, ISLPED 2003].
Steady State Response

- The RMS analysis is done by setting the DC sources to zero and setting the ac source to the RMS value.
- The temperature rise at the substrate calculated using the RMS values for the ac sources is 2.65°C.
- The steady state response turns out to be zero!
- Thus, the approximation is good.
The thermal time constant is dominated by the substrate which is around K_{Hz} and the operating frequency is G_{Hz}.
Nonlinear thermal conductivity

- Thermal conductivity is a nonlinear function of temperature
 - There is a 22% change in thermal conductivity of Silicon over the range of $[27, 80] \degree C$
 - Thermal gradients calculated assuming constant thermal conductivity is not very accurate
- Challenge is designing efficient algorithms to solve system of m nonlinear equations simultaneously
Nonlinear thermal conductivity

Algorithms to solve nonlinear equations

- **Newton-Raphson**

\[
x^{(k)} = x^{(k-1)} - [J(x^{(k-1)})]^{-1} f(x^{(k-1)})
\]

- Simple and fast convergence
- Need to factorize the Jacobian matrix during every iteration

Ramalingam, Liu, Nassif, Pan
Nonlinear thermal conductivity

Algorithms to solve nonlinear equations

- **Constant Jacobian**

\[x^{(k)} = x^{(k-1)} - [J(x^{(0)})]^{-1} f(x^{(k-1)}) \]

- Only *one* factorization
- But slow convergence

Ramalingam, Liu, Nassif, Pan
Thermal Analysis
ISQED 2006
14 / 18
Nonlinear thermal conductivity

Sketch of Proposed Algorithm

- Accelerate **Constant Jacobian**

\[f(x) \]

\[x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 \rightarrow x_6 \]

\[x_{roj} \rightarrow x_{cj} \rightarrow x_{cj} \rightarrow x_{cj} \rightarrow x_{cj} \rightarrow x_{cj} \]

Ramalingam, Liu, Nassif, Pan

Thermal Analysis

ISQED 2006
Proposed Algorithm

Input: $F(x) = A(x)x - b$: m nonlinear equations in m unknowns

Input: p, the number of partitions $A(x)$ is divided into

1: $k \leftarrow 0$
2: **repeat**
3: // Use reduced Jacobian every qth iteration
4: // after the first $k = p + 1$ iterations
5: **if** ($(k > p) \text{ and } !(k \% q))$ **then**
6: Use reduced Jacobian
7: **else**
8: Use constant Jacobian
9: **end if**
10: $k \leftarrow k + 1$
11: **until** Convergence
Difference in temperature on ignoring thermal conductivity

- Difference in temperature in a silicon layer between having a constant thermal conductivity (27°C) and incorporating nonlinearity.
- The chip dimension is 8mm × 8mm and it dissipates 100 W uniformly.

![Graph showing temperature difference](image-url)
Conclusion

- RMS response is an upper bound on the steady state response when thermal analysis is done at transistor level.
- Accurate thermal analysis needs to consider nonlinear thermal conductivity.
- An efficient algorithm to solve the system of nonlinear equations has been proposed.