Interconnect Delay and Area Estimation for Multiple-Pin Nets

Jason Cong and David Z. Pan

UCLA Computer Science Department Los Angeles, CA 90095

Sponsored by SRC and Avant! under CA-MICRO

Presentation Outline

 Introduction
 Problem Formulation
 Interconnect Delay and Area Estimation Models for Multiple-Pin Nets
 Application and Conclusion

Interconnect Optimization

- UCLA TRIO (Tree-Repeater-Interconnect-Optimization) package [Cong et al, ICCAD'97] (as an example)
 - Topology construction
 - Optimal buffer insertion
 - Cell (driver/buffer/repeater) sizing
 - Wire sizing and spacing

leee 🔶

- Timing can be improved significantly (e.g., a factor of 10x)!
- The earlier, the better => timing convergence

Complexity of Existing Interconnect Optimization Algorithms

Mainly iterative based

- Dynamic Programming (DP): [van Ginneken, ISCAS'90], [Lillis et al., JSSC'96] ...
- Local Refinement (LR)

[Cong-Leung, TCAD'94], [Cong-He, ICCAD'96] ...

 Mathematical Programming (MP): [Fishburn-Dunlop, ICCAD'85], [Sapatnekar et al, TCAD'93], [Menezes et al., ICCAD'95] ...

Although in polynomial time complexity, they are not suitable for high-level planning/synthesis:

- too expensive
- Iack of details at high levels

CPU Matters

- Interconnect optimization for one net takes about 0.1 to 10+ seconds [Cong et al., ICCAD'97]
- [Keutzer, TAU'99]
 - 80,000 to 200,000 global nets
 - 100 to 100,000 iterations between synthesis and PD => hopefully timing convergence
- **Take a typical scenario:**
 - 100,000 global nets
 - 1,000 iterations
 - I second to optimize each net
- => 100,000,000 second = 3 years !

Needs for Efficient Interconnect Estimation Models

Efficiency

Abstraction to hide detailed design information

 granularity of wire segmentation
 number of wire widths, buffer sizes, ...

 Explicit relation (such as closed-form formula) to enable optimal design decision at high levels
 Ease of interaction with high level tools

Previous Work on Interconnect Delay Estimation

Simple RC model with uniform (min.) wire width:

- Wire delay μ l²: [Ramachandran et al., ICCAD-92]
- With buffer insertion: [Bakoglu-90] [Alpert-Devgan DAC'97] [Brayton-Otten, DAC'98]
- Distributed RC model with optimal wire sizing: [Cong-Pan, IWLS'98, ASP-DAC'99] => a set of delay estimation models (DEM) with interconnect optimization
 - Optimal Wire Sizing (OWS): sub-quadratic function of length
 - Simultaneous Driver and Wire Sizing (SDWS)
 - Simultaneous Buffer Insertion and Wire Sizing (BIWS)
 - Simultaneous Buffer Insertion/Sizing and Wire Sizing (BISWS)
- Limitations: 2-pin nets only; no area estimation

Main Contribution of This Work

- Develop delay and area estimation models for multiple-pin nets with consideration of various interconnect optimizations
- Consider different optimization objectives
 - Single critical sink (SCS)
 - Multiple critical sinks (MCS)
- Apply various optimization alternatives:
 > OWS

•

♦ BISWS

Problem Formulation

Different targets:

- **1.** Minimize the delay to a single critical sink (SCS)
- 2. Minimize the maximum delay (defined as the tree delay) for multiple critical sinks (MCS)
- What is the optimized delay/area? Do not run TRIO or other optimization tools !

Parameters and Notations

Based on 1997 National Technology Roadmap for **Semiconductors (NTRS'97)**

Interconnect

 $\bullet c_a$ area capacitance coefficient fringing capacitance coefficient sheet resistance

Device

◆ C_f

◆ r

 $t_g \\ c_g$ >r_g

intrinsic gate delay input capacitance of the minimum gate output resistance of the minimum gate

Presentation Outline

- Introduction
- Problem Formulation
- Interconnect Delay and Area Estimation Models for Multiple-Pin Nets
 - **1. Single Critical Sink (SCS)**
 - SCS/OWS
 - SCS/BISWS
 - **2.** Multiple Critical Sink (MCS)
 - MCS/OWS
 - MCS/BISWS
- Application and Conclusion

Challenges for Multiple-Pin Net Estimation

No closed-form wire shaping function available
 Current optimization algorithms

 Iterative based method
 Local refinement
 Dynamic Programming
 Lagrangian relaxation
 Mathematical programming

 Not suitable for estimation

Key idea: transform to 2-pin net !

Single-Line-Multiple-Load

OWS for SCS

Transform SLML to SLSL (i.e., 2-pin net)

OWS for SCS

Transform SLML to SLSL (i.e., 2-pin net)

Delay/Area Estimation for SCS/OWS

Closed-form delay estimation for the critical sink

$$T_{ows}(R_d, l, C_L) = R_d C_0 + \left[\frac{a_1l}{W^2(a_2l)} + \frac{2a_1l}{W(a_2l)} + R_d C_f + \sqrt{R_d r C_a C_f l}\right] \cdot l$$

where

$$a_1 = \frac{1}{4} r c_a, \quad a_2 = \frac{1}{2} \sqrt{\frac{r c_a}{R_d C_L}}$$

W(x) is Lambert's W function defined as $we^w = x$

$$A_{ows}(R_d, l, C_L) = \sqrt{\frac{r(c_f l + 2C_L)}{2R_d c_a}} \cdot l$$

Experimental Setting for OWS/SCS

- One internal load C₁
- Change $l_1 = 0.1$ to 0.9 x l
- $R_d = 180 ohm, C_1 = 100 fF, C_2 = 10 fF$

Delay Comparison with TRIO

• $R_d = 180 ohm, C_1 = 100 fF, C_2 = 10 fF$

• Max. allowable wire width is 20x min. width; wire is segmented in every 10um.

Avg. Width Comparison with TRIO

• $R_d = 180 ohm, C_1 = 100 fF, C_2 = 10 fF$

• Max. allowable wire width is 20x min. width; wire is segmented in every 10um.

Run Time Comparison with TRIO

SUN, Ultra-SPARC 1, with 256M memory
 TRIO: one net takes about 0.9 second, using 20 discrete wire widths, and wire segmentation of 10um (total wire length 1cm-2cm)
 Our model: 10,000 nets take 0.8 second
 Therefore, our model is an order of >10,000

times faster!

3 years => 3 hours

Single Critical Sink-BISWS

Insert min. buffer to shield non-critical sinks
Transform into a simple SLML problem

$\blacksquare SLML \Longrightarrow SLSL$

Use previous 2-pin net results to estimate delay and area on the critical path

BISWS for SCS

Linear delay model for the critical path $T_{bisws} = t_{bisws} \cdot l + t_g$ where $t_{bisws} = \min_{bisws} t_{bisws}$, *B* is the buffer set $b \in B$

- Essentially the best BIWS from available buffer types
- Complexity O(|*B*|). Since the set *B* is normally less than 20, constant time in practice.

BIWS for 2-Pin Nets [Cong-Pan, ASP-DAC'99]

$$T_{biws} = t_{biws} \cdot l + t_g$$

 t_{biws} is the slope, and can be obtained from $T_{ows}(R_b, l_c, C_b)$

SCS/BISWS: Comparison with TRIO

• 0.18um, $R_{d0} = r_g/10$, $C_L = c_g \ge 10$,

• TRIO uses max. buffer size of 400x min, wire width of 20x min. width; wire is segmented in every 500um.

Presentation Outline

- Introduction
- Problem Formulation
- Interconnect Delay and Area Estimation Models for Multiple-Pin Nets
 - **1. Single Critical Sink (SCS)**
 - SCS/OWS
 - **2.** Multiple Critical Sink (MCS)
 - + MCS/OWS
 - MCS/BISWS
- Application and Conclusion

Multiple Critical Sinks (MCS)

- Optimization objective: the maximum delay to all critical sinks, i.e. the tree delay
- **Key idea:** transform MCS to a sequence of SCS
- Theorem: The most critical sink with max delay must be a leaf critical sink.
- Theorem: The optimal delay to any critical sink under SCS formulation is a lower bound for the optimal tree delay.

Multiple Critical Sinks/OWS

- Key observation: take the maximum delay of all leaf critical sinks under SCS formulation => accurately estimate the optimal tree delay
- Justification: we shall keep wire load from less critical sinks as small as possible. To the most critical sink, the main difference is
 - (A) 'minimum width' under SCS formulation
 - (B) 'as small as possible width' under MCS formulation
 - In DSM, area capacitance is relatively small (cf. fringing + coupling cap.) => Two wire loads (A) and (B) differ not much.

Multiple Critical Sinks/OWS

• Random 4-pin nets, 0.18um tech, $R_d = 180$ ohm, $C_s = 10 fF$

• TRIO uses max. allowable wire width of 20x min; wire is segmented in every 500um.

• Length is the distance from source to 'most critical' sink

MCS/BISWS

Similar to OWS, take the max of SCS/BISWS

• Random 4-pin nets , 0.18*um*, $R_{d0} = r_g / 10$, $C_s = c_g \ge 10$

• TRIO uses max. buffer size of 400x min, wire width of 20x min. width; wire is segmented in every 500um.

Some Applications of Our Models

Layout-driven physical and RTL level floorplanning

 Predict accurate interconnect delay and routing resource without really going into layout details;

- Use accurate interconnect delay/area to guide floorplanning/placement
- Interconnect Architecture Planning [Cong-Pan, DAC'99]
- Note: TRIO or other interconnect optimization engines will still be needed to generate the final layout!

Conclusion

Interconnect delay and area estimation model with closed-form formula or simple characteristic equations for multiple-pin nets under various interconnect optimizations

- Very accurate
- Extremely fast
- High level abstraction
- Very easy to interact with synthesis/planning tools

Future work:

- Crosstalk noise estimation
- Buffer planning
- Interconnect-driven floorplanning