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Sensitivity Guided Net Weighting for
Placement Driven Synthesis

Haoxing Ren, David Z. Pan, and David S. Kung

Abstract— Net weighting is a key technique in timing driven
placement (TDP), which plays a crucial role for deep submiron
VLSI physical synthesis and timing closure. A popular way to
assign net weight is based on its slack, such that the worst
negative slack (WNS) of the entire circuit may be minimized.
While WNS is an important optimization metric, another figure
of merit (FOM), defined as the total slack difference compared to
a certain slack threshold for all timing end points, is of equivalent
importance to measure the overall timing closure result for highly
complex modern ASIC and microprocessor designs. Moreover,
to optimally assign net weight for timing closure, the effect of
net weighting on timing should be carefully studied. In this
paper, we perform a comprehensive analysis of the wire length,
slack and FOM sensitivities to the net weight, and propose a
new net weighting scheme based on those sensitivities. Such
sensitivity analysis implicitly takes potential physical synthesis
effect into consideration. The experiments on a set of industrial
circuits show promising results for both stand-alone timing driven
placement and physical synthesis afterwards.

Index Terms— Timing Driven Placement, Physical Synthesis,
Net Weighting, Interconnect, Sensitivity Analysis.

I. I NTRODUCTION

It has been widely recognized that interconnect becomes a
dominant factor in determining the overall performance and
complexity for deep submicron VLSI circuits. The global
wiring delay can easily be a factor of ten or hundred times
of a logic gate delay, even with repeater insertion [1]. Since
interconnect length is roughly determined by the placement
step, which decides where the logic and memory elements
shall be located while satisfying the layout constraints (e.g.,
non-overlapping), many timing driven placement techniques
have been developed to minimize the wire length that are on
the critical paths so that interconnect delays on timing critical
paths are under control.

Existing timing driven placement algorithms can be di-
vided into two groups: path-based and net-based. Path-based
algorithms [2][3][4] consider every path simultaneously in
their placement models. Path-based approaches in general
have higher complexity, especially for high end ASIC designs
with millions of placeable objects. For net-based approaches,
one way is to assign wire length bounds to critical nets
[5][6]. However, placement algorithms are usually not well
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suited to honor these bounds. Another popular net-based
placement approach is to assign higher net weights to the
more timing critical nets [7][5][6][8][9][10]. Although net
weights can be iteratively updated during multiple placement
runs [7][9][11][12], for acceptable turn around time, the global
placement for a modern ASIC design with millions of place-
able instances is usually performed only two or three times.
Therefore, an effective net weight assignment is extremely
important.

It shall also be noted that timing driven placement isnot
the end point of a physical synthesis flow. After placement,
physical synthesis tools, such as buffer insertion/sizing and
gate sizing, will be used extensively to further improve timing
on the critical paths [17][18][19][16]. Thus, timing driven
placement should provide a good starting point for the physical
synthesis engine, and the net weighting should consider the
potential effect of it. A popular way to assign net weight is
based on its slack, which aims to minimize the worst negative
slack (WNS) for the entire circuit [8][14][10][15]. WhileWNS
is an important optimization metric, modern physical synthesis
also uses another metric, so calledfigure of merit(FOM) to
measure the quality of results for timing driven placement
and physical synthesis. TheFOM is defined as the total slack
difference compared to a certain slack threshold for alltiming
end points(see section II for its formal definition). It can
be interpreted as the amount of work left for the physical
synthesis engine or to the designers for manual fix if the
optimization engine alone cannot close the timing. A special
case ofFOM with zero slack target is the total negative slack
(TNS), which was used to measure the quality of timing driven
placement [12], but not explicitly used to guide TDP. In this
paper, we explicitly useFOM metric to guide the placement.

Higher net weights for timing critical nets ideally lead to
shorter wire lengths and less delays for critical nets, and better
FOM for the overall design as well. However, it was not
clear how much weight change a critical net shall have and
what its potential impact on the slack andFOM is. Blindly
assigning net weights without predicting their impact on the
final wire length and timing characteristic such asWNSand
FOM could lead to inferior results. In this paper, we present a
comprehensive sensitivity analysis on the impact of net weight
to wire length, slack andFOM. Although our analysis is by no
means perfect, this is the first analytical study on net weighting
impact on timing, i.e. slack andFOM, to our best knowledge.
Based on these sensitivities, we propose a new net weighting
algorithm with consideration of bothFOM and slack sen-
sitivities. In our experiment flow, to be efficient for large
circuits, instead of iteratively updating net weights during TDP,
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we apply our algorithm once to obtain net weights for TDP
from an initial wire length driven placement. Experimental
results on a set of industrial circuits show that by adding slack
and FOM sensitivities, we are able to obtain better results
for not just timing-driven placement, but also the physical
synthesis optimization after it. In particular, considering the
FOM sensitivity to explicitly guide the net weight generation,
we can further improve the finalFOM measurement without
deteriorating the worst slack and wire length.

The rest of the paper is organized as follows. Section II
describes background information on the quadratic placement,
static timing analysis and delay models used to illustrate the
sensitivity analysis. Section III derives the wire length, slack
and FOM sensitivities to net weight. Section IV presents a
new net weighting algorithm based on the sensitivity analysis
in section III. The experimental placement flow and results are
shown in section V, followed by the conclusion in section VI.
A preliminary version of this paper was presented in ISPD
2004 [13].

II. PRELIMINARIES

In this section, we give the preliminaries for timing driven
placement and use a hybrid quadratic programming and
partitioning approach [14][9] to illustrate the net weighting
process. Letxi and yi be the x- and y-coordinates of the
center of celli, respectively. The weighted cost of an edge
(i, j) is its quadratic wire length multiplied by its weight, i.e.,
wi j ((xi−x j)2+(yi−y j)2). The overall objective function sums
up the weighted cost of all edges, as shown in the following
equation.

Min ∑
(i, j)∈E

wi j [(xi −x j)2 +(yi −y j)2] (1)

whereE is the edge set of the entire circuit. Sincex andy are
decoupled, we can write the objective function separately for
each direction as follows.

Min ∑
(i, j)∈E

wi j (xi −x j)2 (2)

Min ∑
(i, j)∈E

wi j (yi −y j)2 (3)

Equations (2) (3) can be solved by various quadratic
programming techniques. Following each quadratic solution,
cells may be partitioned and assigned into smaller bins, with
an optional repartitioning step to further improve the result.
The quadratic programming, partitioning and repartitioning
process may be run iteratively until the bin size is small
enough. After the global placement, detailed placement (also
called legalization) is done to move cells locally and remove
overlaps.

To guide timing driven placement, higher net weights can be
assigned to timing critical nets based on static timing analysis.
For each timing pointt, its arrival timeArr(t), required arrival
time Req(t), and slackSlk(t) can be computed as follows:

Arr(t) =
{

Ti(t) t ∈ Pi

max(s,t)∈E{Arr(s)+d(s, t)} otherwise
(4)

where E is the set of timing arcs,d(s, t) is the delay from
timing point s to t, Pi is the set of timing begin points, i.e.,
primary inputs (PIs) and output pins of memory elements, and
Ti(t) is the asserted arrival time at the timing begin pointt.

Req(t) =
{

To(t) t ∈ Po

min(t,t ′)∈E{Req(t ′)−d(t, t ′)} otherwise (5)

wherePo is the set of timing end points, i.e., primary outputs
(POs) and input pins of memory elements, andTo(t) is the
asserted required arrival time at timing end pointt.

Slk(t) = Req(t)−Arr(t) (6)

The slack of a net is the slack at its source pin. To achieve
timing closure, all nets should have non-negative slacks. For
nanometer designs with growing variability, one may even
set the slack target to be a positive value to safe guard the
process variations. Thefigure of merit(FOM) can be defined
accordingly as follows.

FOM =
t∈Po

∑
Slk(t)<Slkt

(Slk(t)−Slkt) (7)

whereSlkt is the slack target for the entire design. IfSlkt = 0,
the FOM is reduced to theTNS metric as used to measure
the quality of results in [12].

To perform sensitivity analysis of slack andFOM (to be
explained in the next section), the switch level RC device
model and the Elmore delay model [20] are used to illustrate
the concept since analytical formulae with intuitive expla-
nation can be obtained. To guide placement, these models
shall be adequate since there are many other uncertainties
like the routing topology during the placement evaluation
step. Our sensitivity analysis, however, can be extended to
handle more general delay models [21] if necessary. For an
interconnect with wire resistanceRw and capacitanceCw, let
Rd be the effective output resistance of its driver,Cl be the
load capacitance for its receiver, then the Elmore delayT from
the driver to the receiver (through the interconnect) is

T = Rd(Cw +Cl )+Cl Rw +CwRw/2 (8)

Let the unit length wire resistance and capacitance ber andc
respectively. ThenRw = rL, Cw = cL, and (8) can be rewritten
as:

T =
rc
2

L2 +(cRd + rCl )L+RdCl (9)

For nets with multiple sinks, since the interconnect topology
is unknown during the placement stage, we can estimate the
delay from source to sink using the Elmore delay approxima-
tion.

Tj = RdCtotal + rCl L j +
rc
2

L2
j (10)

whereTj is the source to sink delay for sinkj, L j is the source
to sink distance for sinkj, andCtotal is the total capacitive
load to the source. The capacitive load to the source can
be estimated through the half-perimeter bounding box or the
sum of total source-to-sink direct connections since the actual
wiring topology is unknown at the global placement stage. For
example of a net with two sinks, the delay from the source to
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Fig. 1. Sample circuit for wire length to net weight sensitivity.

sink 1 can be estimated as follows under direct source-to-sink
assumption:

T1 = Rd(Cw1 +Cl1 +Cw2 +Cl2)+Cl1Rw1 +Cw1Rw1/2 (11)

whereCw1, Rw1, Cl1 and Cw2, Rw2, Cl2 are the capacitance,
resistance and load of wire segment to sinks1 and2, respec-
tively. Similar to (9), we can rewrite (11) as follows:

T1 =
rc
2

L2
1 +(cRd + rCl1)L1 +cRdL2 +Rd(Cl1 +Cl2) (12)

where L1 and L2 are the lengths of wire segment1 and 2,
respectively.

III. N ET WEIGHT SENSITIVITY ANALYSIS

In this section, we will derive the relationship of slack and
FOM sensitivities to net weight. The question that we want
to answer is that given an initial placement from an initial net
weighting scheme, if we increase the net weight of neti by
a nominal amount, how much improvement neti will get for
its slack and the overallFOM.

We first derive and validate the wire length sensitivity to net
weight. Then we analyze the slack sensitivity to net weight,
and derive theFOM sensitivity to net weight.

A. Wire Length Sensitivity to Net Weight

We define the wire length sensitivity to net weightSL
W(i)

as:

SL
W(i) =

∆L(i)
∆W(i)

(13)

where L(i) is the wire length for neti, andW(i) is the net
weight of neti. SL

W(i) implicates how much wire length would
change when there is a small amount of net weight change.

As shown in Fig. 1, suppose neti j is the net with∆w
change. It connects celli and j. Cell 1 to i−1 are the cells
connected toi, and cell j + 1 to n are the cells connected
to j. Assuming only the net weight of neti j change and the
locations of cell1 to i−1 and cell j +1 to n remain constant1 ,

1Cells 1 to i−1 and j +1 to n might move aswi j is changed. Since the
sensitivity analysis tries to catch the first order effect of net weighting, we
consider each net separately and assume others do not change. The experiment
results show that the estimation errors are quite small.

we can obtain the following two equations for the x-dimension
from (2).

i−1

∑
k=1

wki(xk−xi)+w ji (x j −xi) = 0 (14)

n

∑
k= j+1

wk j(xk−x j)+w ji (xi −x j) = 0 (15)

where wki is the net weight of net connecting cellk and
i. Similar results can be obtained for y-dimension. These
equations show that celli shall be placed at the weighted center
of cells1 to i−1 and cell j; meanwhile, cellj shall be placed
at the center of cellsj + 1 to n and cell i. Multiplying (14)
with ∑n

k= j+1wk j, then subtracting it by (15) multiplied with

∑i−1
k=1wki, we can get the wire lengthx j −xi to net weightwi j

relationship as:

x j −xi =
∑i−1

k=1wki ∑n
k= j+1wk jxk−∑n

k= j+1wk j ∑i−1
k=1wkixk

(∑i−1
k=1wki +∑n

k= j+1wk j)wi j +∑n
k= j+1wk j ∑i−1

k=1wki
(16)

To simplify the notation, we can rewrite (16) as:

x j −xi =
A

B·wi j +C
(17)

where

A =
i−1

∑
k=1

wki

n

∑
k= j+1

wk jxk−
n

∑
k= j+1

wk j

i−1

∑
k=1

wkixk

B =
i−1

∑
k=1

wki +
n

∑
k= j+1

wk j

C =
n

∑
k= j+1

wk j

i−1

∑
k=1

wki

Since we assume the locations of cells1 to i−1 and j + 1
to n do not change,A, B andC are constants. Thus we can
obtain the partial derivative ofx j −xi to wi j as:

∂(x j −xi)
∂wi j

= − A·B
(B·wi j +C)2

= − (x j −xi)(B·wi j +C) ·B
(B·wi j +C)2

= − (x j −xi) ·B
B·wi j +C

(18)

Without loss of generality, let cellsi and j be the driver
(source) and receiver (sink) cells of neti j , respectively. We
can use theWsrc(i j ) andWsink(i j ) to substitute∑i−1

k=1wki +wi j

and ∑n
k= j+1wk j +wi j . That is,Wsrc(i j ) is the total weight on

the driver celli (simply the summation of net weights of those
nets that intersect with the driver), andWsink(i j ) is the total
weight on the receiver cellj. Then we can rewriteB andC
as:

B = Wsrc(i j )+Wsink(i j )−2wi j

C = Wsrc(i j )Wsink(i j )− (Wsrc(i j )+Wsink(i j ))wi j +w2
i j

SubstitutingB andC in (18), we have

∂(x j −xi)
∂wi j

=−(x j −xi)
(Wsrc(i j )+Wsink(i j )−2wi j )

Wsrc(i j )Wsink(i j )−w2
i j

(19)
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To simplify the notation, we just use neti to denote neti j
as cell i is the driver of this net. Therefore, for any neti, we
have the following important wire length versus net weight
relationship.

SL
W(i) =

∆L(i)
∆W(i)

=−L(i)
Wsrc(i)+Wsink(i)−2W(i)

Wsrc(i)Wsink(i)−W(i)2 (20)

where L(i) = x j − xi . Intuitively, (20) implies that if the
initial wire length L(i) is longer, for the same amount of
nominal net weight change, it expects to see bigger wire
length change. Meanwhile, if the initial net weightW(i) is
bigger, for the same amount of nominal net weight change, it
expects to see a smaller amount of wire length change, since
Wsrc(i)+Wsink(i)−2W(i) is constant whileWsrc(i)Wsink(i) is
bigger for a largerW(i).

In [6], a similar relationship of weight and wire length was
presented by computing wire length with matrix approxima-
tion, also assuming that weighting increase of a particular net
has minor effects on other nets. It is written in the following
equation:

∆W(i) =
−∆L(i)/[L(i)+∆L(i)]

1
Wsrc(i)

+ 1
Wsink(i)

− 2W(i)
Wsrc(i)Wsink(i)

(21)

When ∆L(i) is relatively small thanL(i), SL
W(i) can be esti-

mated as:

SL
W(i) =−L(i)

Wsrc(i)+Wsink(i)−2W(i)
Wsrc(i)Wsink(i)

(22)

The main difference between (22) and our model (20) is
the denominator. This is mainly due to the different approx-
imations used while deriving (20) and (22). Equation (22) is
derived with the inverse coefficient matrix approximation of
the quadratic objective function using two iterations of the
Jacobi method [6], while our model (20) is derived directly
from the necessary condition of the optimal solution, which
is more intuitive than [6]. In fact, [6] did not show in detail
how they obtained (22).

It can be shown that our model is also slightly more accurate
than the one from [6]. We run several experiments on a circuit
with 72K cells (ckt2 in Table II) to verify the accuracy of wire
length sensitivity to net weight. Since the sensitivity is directly
derived from the wire length estimation (17), we only need to
compare the wire length estimation with the actual wire length.

Fig. 2 shows the wire length of a net in ckt2 with different
net weight.L∗ is the actual wire length after the quadratic
placement,L′ is the estimated wire length using (17),L′′ is
the estimated wire length using (21). The initial net weight
for all the nets are 10. The initial wire length of this net is
about 1150. When the net weight increases from 10 to 30, the
actual wire lengthL∗ decreases from 1150 to 550. As shown
in Fig. 2, bothL′ and L′′ track L∗ quite well. However,L′ is
closer to the actual wire lengthL∗ thanL′′, i.e., our model is
more accurate.

To further validate the wire length sensitivity estimation, we
randomly pick 1% of nets and increase their net weights by
10%. Then we compute the estimation errorE = (L′−L∗)/L∗.
The average estimation error is only0.455% with a standard
deviation of6.08%. So we verify that wire length sensitivity
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Fig. 2. The wire length of a net in ckt2 with different net weights.L∗ is
the actual wire length,L′ is the estimated wire length using (17),L′′ is the
estimated wire length using (21).

TABLE I

ESTIMATION ERRORS WITH REAL NET WEIGHT DISTRIBUTION

Our Model Tsay’s Model
Average Variation Average Variation

1.8% 26% 3.2% 37%

to net weighting formula in (20) works reasonably well even
with a number of nets simultaneously changing their weights.
Moreover, the net weights generated by our net weighting
formula presented in section V can be as large as6 times
the original weights, and 20% of nets might change their
weights simultaneously. Therefore, we apply another set of
experiments which randomly pick 20% of nets and increase
their net weights randomly from 0 to 600% to match the real
net weight distribution. Table I reports the average estimation
errors and variations for our model (20) and Tsay’s model
(22). It shows that our model has less estimation error than
Tsay’s model.

Note that both models estimate the wire length and net
weight relationship after a single global quadratic program-
ming. It is not aimed to estimated the wire length after the
entire placement flow, which usually includes partitioning,
recursive cutting, or other heuristics. However, for sensitivity
analysis, it is still reasonable to use it since the global quadratic
placement roughly determines the overall cell distribution.

In the preliminary version of this paper appeared in ISPD
2004 [13], we used Tsay’s model (22) to estimate wire
length sensitivity to net weight. Although the new model (20)
produces slightly better wire length estimation, the timing
driven placement results of both models are almost the same.
We present the derivation of this model in this section to
demonstrate the physical meanings of wire length sensitivity
to net weight.
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B. Slack Sensitivity to Net Weight

The slack sensitivity to net weight is defined as:

SSlk
W (i) =

∆Slk(i)
∆W(i)

(23)

where Slk(i) and W(i) are the slack and weight of neti
respectively. Since only neti is changed, the slack change
of net i comes from the delay change of neti. Then,

SSlk
W (i) =− ∆T(i)

∆W(i)
(24)

where ∆T(i) is the nominal delay change of neti. Because
smaller net delay (∆T(i) < 0) corresponds to larger slack
(∆Slk(i) > 0), there is a negative sign in the above equation.
Since higher net weight for neti will ideally result in shorter
wire lengthL(i), which in turn, will cause less delay, naturally
we can decompose (24) into the following two terms.

SSlk
W (i) =−ST

L (i)SL
W(i) (25)

whereST
L (i) is the net delay sensitivity to wire length:

ST
L (i) =

∆T(i)
∆L(i)

(26)

We can computeSL
W(i) via (20). The remaining job is to

computeST
L (i). From (9), we can obtain for neti the delay

sensitivity to its wire length change as follows:

ST
L (i) =

∆T(i)
∆L(i)

= rcL(i)+cRd + rCl (27)

It implies that for a given technology (fixedr andc), the delay
of a long wire (largerL(i)) with a weak driver (largerRd) and
large capacitive load (largerCl ) will be more sensitive to the
same amount of nominal wire length change (largerST

L (i)).
For nets that have multiple sinks, since wire length change

of one sink may also change the delays on other sinks due
to the change of the capacitance load seen by the driver, we
need to evaluate the sensitivities of delays on other sinks to
the wire length of this sink as well. From (12), and assuming
that lengths to two different sinksj andk of the same logical
net i are independent variables, we have:

STk
L j

(i) =
∆Tk(i)
∆L j(i)

= cRd (28)

wherek 6= j, andTk(i) is the delay to sinkk, L j(i) is the wire
length from driver to sinkj. As expected, the sensitivity in
this case is only contributed through the driver. Whenk = j,
it is the same as in (27).

S
Tj
L j

(i) =
∆Tj(i)
∆L j(i)

= rcL j(i)+cRd + rCl j (29)

C. FOM Sensitivity to Net Weight

In this section, we will derive theFOM sensitivity to net
weight, defined as follows:

SFOM
W (i) = ∆FOM/∆W(i) (30)

Note thatFOM improvement comes from the delay improve-
ment of this net, (30) can be decomposed into:

SFOM
W (i) =

∆FOM
∆T(i)

· ∆T(i)
∆W(i)

(31)

We define another sensitivity,FOM sensitivity to net delay
as:

SFOM
T (i) = ∆FOM/∆T(i) (32)

From (26), (13) and (32),SFOM
W (i) can be written as:

SFOM
W (i) = SFOM

T (i)ST
L (i)SL

W(i) (33)

We have already shown how to computeST
L (i) and SL

W(i)
in the previous sections. In this section, we will illustrate how
to computeSFOM

T (i). A trivial way to computeSFOM
T is to

run static timing analysis for the entire circuit after eachT(i)
changed, however, this is too time consuming. If there are
N nets, assuming the complexity of static timing analysis is
O(N), the complexity of computing all theSFOM

T are O(N2).
An important contribution of this work is a fast and novel
algorithm to computeSFOM

T . It is based on the following
theorem.

Theorem 1:SFOM
T (i) of a two-pin net i is equal to the

negative of the number of critical timing end points whose
slacks are influenced by neti with a nominal∆T(i).

Proof: Suppose there is a nominal delay change∆T(i) on
net i, it will affect the arrival time of the sink of neti by ∆T(i),
and may propagate to its downstream timing points. Assume
k is an immediate downstream timing point of sinkj of net i.
The new arrival time ofk can be computed using (4).Arr(k)
will change if and only ifd( j,k) is the most critical timing arc
for all timing arcs tok. For a nominal (very small)∆T(i), the
∆Arr(k) is exactly∆Arr( j). Continue this propagation process
we can see that if any timing pointm is changed, the amount
of change toArr(m) will be equal to∆T(i).

∆Arr(m) = ∆T(i) if Arr(m) is changed (34)

Suppose the number of critical timing end points whose arrival
times will be influenced by neti is K(i). It is also the number
of critical timing end points whose slack will be influenced.
The sensitivity ofFOM to the delay change of neti is:

SFOM
T (i) = ∑

m∈M
∆Slk(m)/∆T(i)

= ∑
m∈M

−∆Arr(m)/∆T(i)

= −(K(i)∆T(i))/∆T(i)
= −K(i) (35)

where M is the set of timing end points whose slack will
change due to the delay change of neti. This equation shows
that SFOM

T (i) is the negative of the number of critical timing
end points influenced by neti.

For nets with multiple sinks, we can view them as several
driver-to-sink two-pin nets to do the sensitivity analysis.

Theorem 2:TheFOM sensitivity of the sinkj delay of net
i can be computed by the following equation:

SFOM
Tj

(i) =− ∑
m∈S(i)

Km(i)
STm

L j
(i)

S
Tj
L j

(i)
(36)
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whereS(i) is the set of sinks of neti, Km(i) is the number of
influenced critical timing end points for sinkm of net i.

Proof: Suppose the wire length change on neti’s sink j
is ∆L j(i). This wire length change will cause the delay change
on each sink of neti. From (28), we can compute the delay
change on sinkm due to∆L j(i) as:

∆Tm(i) = STm
L j

(i)∆L j(i) (37)

At each sink, we can use Theorem 1. Thus, we can compute
the total∆FOM due to∆L j(i) as:

∆FOM = − ∑
m∈S(i)

Km(i)∆Tm(i)

= − ∑
m∈S(i)

Km(i)STm
L j

(i)∆L j(i)

ThenSFOM
Tj

(i) can be derived from above equation:

SFOM
Tj

(i) =
∆FOM
∆Tj(i)

= − ∑
m∈S(i)

Km(i)STm
L j

(i)
∆L j(i)
∆Tj(i)

= − ∑
m∈S(i)

Km(i)
STm

L j
(i)

S
Tj
L j

(i)

To compute the number of the influenced critical timing
end pointsKm(i) for each sinkm of each neti, we have
the following efficient algorithm. This algorithm can give the
number of the influenced critical timing end pointsK(i) for
net i at the same time.

Algorithm 1 Counting the number of influenced timing critical
end points for each sink and each net

1: initialize K(i) = 0 for all nets andKm(i) = 0 for each sink
m of net i

2: sort all nets in topological order from timing end points
to timing start points

3: for all Po pin t do
4: setKt(i) to be 1 ift is timing critical (i.e.,Slk(t) < Slkt );

otherwise setKt(i) to be 0
5: for all net i in the above topologically sorted orderdo
6: for all sink pin j of net i do
7: K(i) = K(i)+K j(i)
8: propagateK(i) of net i to the most critical input pinl

of the cell driving i; pin l is a sink of netp:
Kl (p) = Kl (p)+K(i) ;
other input pins of the driver will not be propagated
because they are not on the critical path of neti, thus
cannot influence the timing end points from neti

Algorithm 1 backward traverses the netlist in the topological
order. When it traverses through a gate, only the most timing
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Fig. 3. Counting the number of influenced timing end points.

critical input pin2 gets the propagatedK from its downstream
nets. Since each gate and net will be traversed only once, we
have the following theorem for Algorithm 1:

Theorem 3:The complexity of algorithm 1 isO(N), where
N is the total number of nets in the design.

As an example, Fig. 3 shows two paths from a timing begin
point Pi to timing end pointsPo1 andPo2. In the figure notation
such as (-3, 1), the first number is the slack (in ns), and the
second number is theK value. Since the slacks atPo1 andPo2

are -3ns and -2ns, respectively, worse than the slack target of
0, theK values forPo1 and Po2 are both 1. We can see how
the K val are propagated from PO to PI. Note that for gate C,
the upper input pin has slack of -2ns, while the lower input
pin has slack of -1ns, thus the upper pin is the most timing
critical input pin of gate C, and will influence the slack of
Po2. The lower input pin of C does not influencePo2, meaning
that even if the wire length of net n4 is shortened, it will not
improve theFOM.

IV. SENSITIVITY GUIDED NET WEIGHTING

In this section, we will use the sensitivities derived from the
previous section to guide the net weight generation for slack
andFOM optimization. Again the net weighting scheme is that
we start from a set of initial net weights and compute a new set
of net weights that would maximize theWNSandFOM gain.
Since the sensitivity analysis works best when the net weights
vary little from their initial values, we also add a constant of
total change to bound the net weights. We formulate the net
weighting problem as the following constrained optimization
problem:

max
∆W

∑i=nk
i=n1

[(Slkt −Slk(i))∆Slk(i)+α∆FOM(i)]

s.t. ∑i=nk
i=n1

[∆W(i)]2 ≤C (38)

wheren1,...,nk are critical nets,∆W = {∆W(i)}, C is a constant
to bound the total weight change. The multiplier for∆Slk(i) is
its relative slack to the slack targetSlkt , since we want more
∆Slk(i) for more critical nets. The constantα on each∆FOM
is the same, which is used to balance theFOM and slack. The
quadratic sum constraint of∆W(i) helps to produce smooth

2When there are two or more input pins with the same negative slack,
the K value propagated by this algorithm might be not exactly equal to the
influenced timing end points. This is because those two or more input pins
might or might not come from the same source net. Our experiments show
that either propagate for all the most critical pins or not does not make much
difference on the final timing result. Therefore, if there are multiple most
critical pins with the same slack, we do not propagateK for any of them.
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distribution of net weights. Replacing∆Slk(i) and ∆FOM(i)
with SSlk

W (i), SFOM
W (i) and∆W(i) , we have:

max
∆W

∑i=nk
i=n1

[(Slkt −Slk(i))SSlk
W (i)+αSFOM

W (i)]∆W(i)

s.t. ∑i=nk
i=n1

[∆W(i)]2 ≤C (39)

We can useLagrange multiplier method to solve this
nonlinear programming problem. Let

L(∆W,λ) =
i=nk

∑
i=n1

[(Slkt −Slk(i))SSlk
W (i)+αSFOM

W (i)] ·∆W(i)

+λ · (C−
i=nk

∑
i=n1

[∆W(i)]2) (40)

whereλ is a non-negative Lagrange multiplier. The solution
∆W∗ andλ∗ should satisfy:
{

∂L(∆W,λ)
∂∆W(i) (∆W∗,λ∗) = 0

∂L(∆W,λ)
∂λ (∆W∗,λ∗) = 0

for each neti ∈ (n1, ...,nk)

(41)
Thus we have

∆W∗(i) = β{[Slkt −Slk(i)]SSlk
W (i)+αSFOM

W (i)} (42)

where,

β =

√
C

∑i=nk
i=n1

[(Slkt −Slk(i))SSlk
W (i)+αSFOM

W (i)]2
(43)

is a constant for all nets, which absorbs the effect ofC and
determines how much weight change is allowed. The other
constant parameterα balances the weighting of critical slack
and FOM. In the real implementation, we also linearly scale
(Slkt−Slk(i))SSlk

W (i) andSFOM
W (i) to [0,1] in order to precisely

control the weighting scale viaα andβ.
Based on (42), we propose the following sensitivity guided

net weighting scheme

W(i) =
{

Worg(i) Slk(i) > Slkt
Worg(i)+∆W∗(i) Slk(i)≤ Slkt

(44)

whereWorg(i) is the original net weight,∆W∗(i) is net weight
adjustment from (42).

V. EXPERIMENTAL FLOW AND RESULTS

A. Experimental Flow and Setup

Our sensitivity-based net weighting algorithm can be used
to guide timing driven placement, by either iteratively updat-
ing net weights gradually (e.g., using very smallα and β
parameters) or generating a set of new net weights in one
shot. Iteratively updating net weights might get us the best
results, but it requires many placement, timing analysis, and
net weighting runs. It may take too much run time for modern
large-scale ASIC chips, with hundreds of thousands to millions
of placeable objects. In Algorithm 2, we show an example
of a practical, industrial strength timing driven placement
flow which only runs global placement twice and generates
sensitivity-based net weights once. This flow is used in our
experiments since we are mostly interested in large designs.

Algorithm 2 An example of timing driven placement flow
using sensitivity guided net weighting

1: run wire length driven placement with uniform weight
Wmin, i.e.,Worg(i) = Wmin for all nets

2: run static timing analysis
3: computeSFOM

W , SSlk
W for each net

4: compute weightW(i) for each neti based on (44)
5: run timing driven placement with new net weight

It shall be pointed that many timing-driven quadratic place-
ment engine uses a clique model for multiple-pin nets. Then
each edge of a net shares the same net weight.3 We can still
compute the sensitivities for each edge, then assign a net
weight to the entire net. An alternative approach is to model
the multiple-pin net as a lumped net. Instead of decomposing
a multiple-sink net into a set of edges when computing the
sensitivities, we use a lumped, single sink net to approximate
the net weight in our experiments. The wire length of this
lumped net is the half perimeter length of the bounding box of
the original multi-sink net. The sink of the new net is the one
with the worst slack in the original net because what matters
most is the most critical sink. Since most nets in real designs
have only one or two sinks, the half perimeter length of the
bounding box can approximate the total wire length reasonably
accurately. From Algorithm 1, the influenced timing end points
for each multiple-pin net is simply the summation of that for
its sinks. Note that the lumped net approximation is only used
for computing net weight sensitivities. It is not used for the
static timing analysis to obtain the slack for each net and pin.

The net weighting algorithm is implemented in C++ lan-
guage and tested on the IBM AIX 43P-S85 servers. The
placement tool used in our timing driven placement flow is
the IBM CPlace [22]. CPlace has been used in the design
and production of hundreds of ASIC chips and several mi-
croprocessors. It includes several placement engines. In our
experiment, we uses the quadratic placement engine called
QPS. The placement result of this engine is relatively stable
compared to the pure partition-based engine. CPlace is also
integrated with the IBM Placement Driven Synthesis design
closure tool. Instead of using the old MCNC or ISPD’98
benchmarks, we test our algorithm on a set of real industry
circuits (ASIC chips and cores), with circuit size up to 444K
placeable cells using IBM CMOS technologies [23]. We use a
state-of-the-art static timing analyzer Einstimer from IBM to
perform the timing report. The test circuit characteristics are
summarized in Table II. The slack targetSlkt is set to be 0.3ns
for all circuits in our experiments. We compare the following
four algorithms:

• WL: wire length driven placement with uniform weight
• TS: timing driven placement usingslack
• TSS: timing driven placement usingslack sensitivity
• TSF: timing driven placement using bothslack andFOM

3With a clique model, one may still be able to add additional edge-based net
weighting by creating artificial two-pin nets between the driver and its sinks.
But it would work better in an incremental placement and net weighting flow.
Since our flow only runs global placement twice and net weighting once, we
do not add these artificial two-pin nets.
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TABLE II

TESTCASESIZE AND TECHNOLOGY

Design cells nets technology
ckt1 57K 58K 0.13um
ckt2 72K 64K 0.18um
ckt3 159K 157K 0.25um
ckt4 216K 203K 0.25um
ckt5 252K 257K 0.18um
ckt6 303K 328K 0.18um
ckt7 444K 395K 0.18um
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Fig. 4. WNSandFOM after timing driven placement with differentα.

sensitivity

All our placement results are legal, i.e., there is no cell
overlapping. We report two set of results, one is from tim-
ing driven placement alone, and the other is from physical
synthesis after the timing driven placement to show that it is
important to have a good placement starting point for physical
synthesis to work on.

B. Timing Driven Placement

Based on timing driven placement flow described in Al-
gorithm 2, we first run CPlace withWmin = 10. Then we
compute theSSlk

W andFOM
W for each net. We also run Einstimer

to perform the static timing analysis and get the slack for each
net. Before we generate net weights using (44), we need to
selectα and β. After a set of experiments, we setβ = 60,

i.e., the maximum∆W generated by slack sensitivity will be
60. To evaluate the impact ofFOM sensitivity, we run net
weighting algorithm with differentα ranging from0 to 1. Figs.
4(a) and 4(b) show theWNSand FOM of a set of testcases
after the timing driven placement with net weights generated
by different α. The FOM andWNSare scaled to−1 for the
comparison among different testcases. As shown in the figure,
WNSdoes not have a consistent trend, butFOM gets better
as α increases from0 to 0.8 for most testcases. Thus adding
FOM sensitivity helps to achieve betterFOM. We useα = 0.8
for TSF in the rest experiments.

As a reference, we also report the result from zero wire
model (ZW), i.e., assuming zero wire resistance and capac-
itance. The timing underZW model is the best timing that
any timing driven placement algorithm can possibly achieve.
Furthermore, we run a simple slack based net weighting
algorithm (TS) to compare our result with. This net weighting
algorithm linearly assigns net weights based on net slacks.
To ensure a fair comparison, we makeTS generate the same
average weight asTSSdoes.

Table III compares theFOM and WNSresults fromZW,
WL, TS, TSS, and TSF. Since we can not compare directly
with other timing driven placement algorithms due to the
uniqueness of our flow, we report under the improvement
columns forTS, TSSandTSF in these tables theoptimization
potentialoverWL relative toZW, which is also used in [12].
The optimization potentialis defined as the percentage of
timing improvement by timing driven placement versus wire
length driven placement, compared to an upper bound for
such improvement. The timing (WNS or FOM) difference
of the zero-wire load model versus the wire length driven
placement is used as an upper bound. For example in Table III,
the improvement potential ofTSSfor ckt1 can be computed
by (41650−26093)/(41650−9134) = 48%. We can see that
algorithm TSSand TSF improve FOM andWNSby a large
margin (on average from 37% to 58%) compared with uniform
net weighting (i.e. wire length driven) placementWL. The
algorithmTSF (with both slack andFOM sensitivities) further
improves theTSS(with only slack sensitivity) results, from
49% to 58% forFOM. TheWNSalso gets slight improvement
from 37% to 40% using theTSF algorithm. Compared to
the pure slack based algorithmTS, TSSandTSF have better
FOM andWNSimprovement. Actually theFOM optimization
of TS is just slightly worse thanTSS, however, the average
WNSof TS is significantly worse. The degradation is mainly
caused by some long wire delays in the largest designckt7.
SinceTS does not use sensitivity to guide net weighting, the
low driving strengths of the drivers of those wire are not
considered. ThereforeTSproduces inferior results than those
of TSSandTSF.

Note that we did not report the timing improvement in terms
of cycle time. This is because the chips we tested all have
multiple clock signals with different cycles times. If we only
use the master clock for comparison, the average improvement
of cycle time for these circuits is13%.

In a recent paper, [12] reported an averageTNS (total
negative slack, which is a special case of ourFOM when
the slack threshold is zero) improvement of47.6% andWNS
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TABLE III

FOM AND WNSCOMPARISON AFTER TIMING DRIVEN PLACEMENT.

Design FOM(ns) Improvement WNS(ns) Improvement
ZW WL TS TSS TSF TS TSS TSF ZW WL TS TSS TSF TS TSS TSF

ckt1 -9134 -41650 -28295 -26093 -25602 41% 48% 49% -1.702 -6.274 -3.720 -3.392 -4.254 55% 63% 44%
ckt2 0 -6966 -3359 -4102 -3454 52% 41% 50% 0.248 -2.977 -1.375 -1.784 -1.754 50% 37% 38%
ckt3 -535 -13711 -6466 -6468 -5595 55% 55% 62% -0.55 -4.997 -3.474 -3.684 -3.788 34% 30% 27%
ckt4 -322 -8057 -3673 -4024 -3440 57% 52% 60% -0.941 -7.218 -5.112 -3.736 -3.605 34% 55% 58%
ckt5 -114 -28527 -13826 -15334 -12229 52% 46% 57% -0.102 -3.575 -2.418 -2.379 -2.002 33% 34% 45%
ckt6 -142 -20257 -14200 -9417 -9536 30% 54% 53% -0.508 -5.47 -4.135 -5.484 -4.856 27% -0% 12%
ckt7 -4 -452 -243 -248 -131 47% 46% 72% 0.16 -1.135 -2.351 -0.66 -0.432 -94% 37% 54%

Average 48% 49% 58% 20% 37% 40%

TABLE IV

TOTAL WIRE LENGTH COMPARISON AFTER PLACEMENT

Design TWL (×106) change
WL TS TSS TSF TS TSS TSF

ckt1 10.30 11.24 10.89 11.10 9.14% 5.79% 7.86%
ckt2 14.93 16.20 15.87 16.54 8.50% 6.28% 10.78%
ckt3 40.05 42.59 41.04 42.41 6.35% 2.49% 5.91%
ckt4 49.44 50.20 49.59 50.07 1.52% 0.30% 1.26%
ckt5 59.98 63.92 64.39 63.59 6.57% 7.36% 6.02%
ckt6 134.64 136.03 136.01 135.96 1.03% 1.01% 0.98%
ckt7 126.60 127.07 126.22 126.34 0.37% -0.30% -0.21%

Average 4.78% 3.28% 4.66%

improvement of63.6%. Since we have no access to those
test circuits in [12], we cannot make direct comparison with
those numbers. Also, it should be noted that our test circuits
are significantly bigger than those used in [12] (the largest
circuit in [12] is only 6K, while ours is over 440K). Yet it
is interesting to observe that ourTSF algorithm gets 58%
FOM improvement with a single non-iterative net weighting
(as opposed to [12] which iteratively updates placement and
net weighting).

Table IV compares the total wire length (TWL) from the
four algorithmsWL, TS, TSSandTSF. We can see thatTSS
andTSF only increase TWL by a small percentage, and they
are better thanTS.

C. Post Physical Synthesis Result

For deep submicron timing closure, tremendous amount
of optimizations such as buffer insertion, gate sizing, pin
swapping will be done after placement [19][18]. A good timing
driven placement should provide a good starting point for
the follow-on physical synthesis. We run an industry physical
synthesis tool PDS [17][16] to further improveWNS and
FOM based on the placement results fromWL, TSSandTSF
algorithms. We did not runTS again becauseTSSand TSF
are the best results we have after TDP.

Table V compares theFOM and WNS after PDS for
algorithmsWL, TSSand TSF. Again, we see a consistent
significant improvement ofTSS and TSF over WL. The
explicit FOM guided algorithmTSF still has the bestFOM
after PDS (on average7% better than the improvement by
TSSoverWL). Note that theWNSimprovement ofTSF after
PDS is slightly smaller than that ofTSS, 45% vs. 47%, while
theWNSimprovement ofTSF after placement is higher than
that of TSS. It shows that a placement with betterWNSdoes
not necessarily end up with betterWNSafter PDS. But the
placements with betterFOM in general still have betterFOM
after PDS. This demonstrates the importance of optimizing
FOM explicitly during the placement.

Table VI shows the total wire length of each circuit after
PDS. It can be seen that the wire length difference becomes

smaller compared to Table IV after PDS. So we are able to
achieve significant improvement in timing with little degrada-
tion in the wire length metric. It also shows the average total
wire length ofTSF is only 2 percent worse that ofTSS, which
means timing driven placement withFOM sensitivity trades
off little wire length for a much betterFOM.

TABLE VI

TOTAL WIRE LENGTH COMPARISON AFTER PHYSICAL SYNTHESIS

Design TWL (×106) change
WL TSS TSF TSS TSF

ckt1 10.55 11.14 11.34 5.59% 7.46%
ckt2 15.23 16.07 16.78 5.53% 10.21%
ckt3 56.24 57.15 58.99 1.62% 4.89%
ckt4 49.62 49.70 50.19 0.16% 1.14%
ckt5 60.06 64.42 63.60 7.27% 5.90%
ckt6 144.97 146.16 146.38 0.82% 0.98%
ckt7 133.17 126.12 133.65 -5.30% 0.36%

Average 2.24% 4.42%

Table VII compares the total cell area after PDS for algo-
rithms WL, TSSand TSF. It shows that the total cell area
difference is negligible among these three algorithms. In fact,
TSSand TSF even have slightly smaller area thanWL, for
example ofckt1, which has a1.3 percent area reduction. So a
better placement starting point may need less aggressive gate
sizing.

TABLE VII

TOTAL CELL AREA COMPARISON AFTER PHYSICAL SYNTHESIS

Design Area (×105)
WL TSS TSF

ckt1 6.85 6.76 6.76
ckt2 11.50 11.46 11.47
ckt3 24.79 24.84 24.82
ckt4 153.26 153.20 153.21
ckt5 37.08 36.98 36.98
ckt6 269.31 269.20 269.17
ckt7 99.87 99.78 99.83

VI. CONCLUSIONS

In this paper, we first derive a set of sensitivity analysis
for wire length, slack andFOM due to a nominal change of
net weighting. We then propose a new net weighting scheme
that incorporates both slack andFOM sensitivities. The net
weighting algorithm is implemented in an industrial strength
timing driven placement and physical synthesis flow. Exper-
imental results show by adding slack andFOM sensitivities,
we are able to obtain better results for not just timing-driven
placement (58% in FOM and 40% in WNS), but also the
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TABLE V

FOM AND WNSCOMPARISON AFTER PHYSICAL SYNTHESIS.

Design FOM(ns) Improvement WNS(ns) Improvement
WL TSS TSF TSS TSF WL TSS TSF TSS TSF

ckt1 -7829 -6086 -5170 22% 34% -0.834 -0.743 -0.739 11% 11%
ckt2 -2059 -384 -631 81% 69% -0.705 -0.011 -0.073 98% 90%
ckt3 -1854 -405 -422 78% 77% -0.701 -0.139 -0.19 80% 73%
ckt4 -2537 -1844 -1770 27% 30% -2.156 -1.908 -1.9 12% 12%
ckt5 -4732 -2726 -1819 42% 62% -0.472 -0.443 -0.341 6% 28%
ckt6 -1481 -541 -266 63% 82% -0.36 -0.293 -0.351 19% 3%
ckt7 -94 -8 0 91% 100% -0.097 0 0 100% 100%

Average 58% 65% 47% 45%

physical synthesis optimization after it (65% in FOM and
45% in WNS). Adding theFOM sensitivity to guide the net
weight generation, we can further improve theFOM without
deteriorating the worst slack and wire length.

Since physical synthesis transforms such as buffering and
gate sizing could change the timing of a netlist significantly,
we plan to consider their impact on net weighting explicitly
in the future.
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