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BoxRouter: A New Global Router Based on
Box Expansion and Progressive ILP

Minsik Cho and David Z. Pan

Abstract—In this paper, we propose a new global router,
BoxRouter, powered by the concept of box expansion, progreise
integer linear programming (ILP), and adaptive maze routing.
BoxRouter first uses a simple PreRouting strategy to predict and
capture the most congested region with high fidelity, compared
to the final routing. Based on progressive box expansion initiated
from the most congested region, BoxRouting is performed with
progressive ILP and adaptive maze routing. Our progressive
ILP is shown to be much more efficient than traditional ILP
in terms of speed and quality, and the adaptive maze routing
based on multi-source multi-target with bridge model is effective
in minimizing the congestion and wirelength. It is followed
by an effective PostRouting step which reroutes without rip-
up to enhance the routing solution further and obtain smooth
trade-off between wirelength and routability. Our experimental
results show that BoxRouter significantly outperforms the state
of-the-art published global routers, e.g., 91% better routability
than [1] (with 14% less wirelength and 3.3x speedup), 79% better
routability than [2] (with similar wirelength and 2x speedup),
4.2% less wirelength and 16x speedup than [3] (with simi-
lar routability). Additional enhancement in box expansion and
PostRouting further improves the result with similar wirelength,
but much better routability than the latest work in global
routing [4], [5].

Index Terms—Global routing, physical design, congestion,
routability, integer linear programming (ILP), rectilinear min-
imum Steiner tree

I. INTRODUCTION

Routing is a key stage for VLSI physical design. Aggressid@e’]' [27]
technology scaling has led to much smaller/faster devioas,

more resistive interconnects and larger coupling capawita
Since routing directly determines interconnects (wirgtbn
routability/congestion, and so on) and the overall VLSltsys

performance [6]-[8], it plays a critical role in the dee|53
submicrondesign closure For nanometer interconnects, th

manufacturability and variability issues such as antelffezte

copper chemical-mechanical polishing (CMP), subwavelen
printability, and yield loss due to random defects are béngm
growing concern and shown to be directly impacted by wi

In general, routing consists of two steps, global routind an
detailed routing. While detailed routing finalizes the exact
DRC-compatible pin-to-pin connections, the global rogtin
as its name implies, is the routing stage that plans the
approximate routing path of each net to reduce the complexit
of routing task and guide the detailed router [16]. Thusag h
significant impact on the overall wirelength, routabilignd
timing [16], [17]. Furthermore, it is also the key stage for
optimizing the wire density distribution to improve the oai
manufacturability (e.g., less post-CMP topography vt
less copper erosion/dishing, and less optical interfereinc
better printability [10]-[13]) and yield (e.g., smalleritazal
area [14], [15]).

The importance of global routing in VLSI design flow
has led to many works in predicting and estimating routing
congestion, and designing global routers. Probabilityetlas
congestion prediction for global routing is studied in @],
and global router based congestion estimation is resedrche
in [22], [23] for early wirelength estimation. Within the
scope of over-the-cell global routing model [2], Burstein e
al. [24] proposed a hierarchical approach to speed up intege
programming formulation for global routing, and Kastnes][2
proposed a pattern-based global routing. Raja et al. [2] pre
sentedChi dispersion router based on linear cost function as
well as predicted congestion map, and showed better results
than [25]. The multicommodity flow-based global router by
Albrecht [3] showed good results and was used in industty, bu
at the expense of computational effort. Fast global routgr [
can feed more accurate interconnect information
(such as wirelength and congestion) back to placement er oth
early physical synthesis engines for better design coever
and tighter integration.

In this paper, a new routability-driven global router, n&me
oxRouter is proposed. BoxRouter first performs a very fast

Jet effective PreRouting to identify the most congestedores)

or boxes Then, it progressively expands the routing box, and

gx)erform:s routing within each expanded box (BoxRouting),

until the entire circuit is covered, i.e., all the wires aoaited.

fefficient progressive ILP is formulated with adaptive maze

embedding [8]-[15]. Thus, routing plays a major role in tgrnfouting, and effective PostRouting follows BoxRouting for

of the manufacturing closuras well.
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further enhancement. The major contributions of this paper

include the following.

o We propose a new ILP formulation which is significantly
faster and more scalable than the traditional formulation
in [3], [28], which makes it practical to apply ILP to solve
VLSI routing.

« We observe that a simple PreRouting step can capture the
overall congestion, and improve runtime.

« We propose the key BoxRouting idea which efficiently
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utilizes limited routing capacities based on box expansidd. Global Routing Metrics

initiated from the most congested region estimated by The key task of global router is to maximize the routability
PreRouting. BoxRouting is efficient in terms of routabilto, syccessful detailed routing [27]. In addition, wiregsim,

ity as the wires in the more congested region are routgghtime, and timing are other important metrics for global
before those in the less congested region. router.

« We propose an efficient progressive integer linear pro-
gramming (ILP) for BoxRouting. In our progressive ILP,
only wires between two successive boxes are routed with
L-shape patterns. Thus even with ILP, our runtime is still
much faster than existing global routers [2], [3], [25].

« We propose an adaptive maze routing based on multi-
source multi-target with bridge model. Our adaptive maze
routing uses different routing strategies inside and detsi
the box such that routability can be maximized with
minimum wirelength increase.

« We propose an effective PostRouting step whisdoutes
wires from the most congested regiaithout rip-up It
is more efficient than the conventional rip-up & route. It
also p_rqwde_s smooth t_rade-off between wirelength and terms of routability between two different global routing
routability with only a simple parameter. solutions of similar wirelength.

BoxRouter achieves much better results on the standard Ryntime is also an important consideration, as global
ISPD98 IBM benchmarks than [1]-[5], thus pushes the routing links placement and detailed routing. A fast
state-of-the-art considerably. Due to the fundamentalomp  global router can feed proper interconnection information
tance of global routing in routability, timing, and manu- o higher level design flow for better design conver-
facturability [29], we believe it shall have many applica-  gence [26].
tions/implications for nanometer designs. Preliminarykvof . Other objectives such as timing and manufacturability
BoxRouter is presented in [30]. are significant objectives as well. Since the focus of

The rest of the paper is organized as follows. In Section I, this paper is on the core global routing techniques, they
preliminaries are described. Previous works are surveged i zre not explicitly considered in this work. However, our

are presented in Section IV. In Section V, BoxRouter is

proposed. Experimental results are discussed in Section VI
Section VIl concludes this paper with future work.

« Routability is usually the most important metric for
global routing. It can be estimated by the number of
overflows which indicates that routing demand exceeds
the available routing capacity [25], [27]. In Fig. 1, the
number of overflow between, andvg is one, as there
are four routed nets, but 45 = 3. Formal definition of
overflow can be found in [25].

« Wirelength is an important metric for placement as
well as routing. But, it is less important compared to
routability, as most wires are routed with shortest dis-
tances, thus the total wirelength is in general not too
far away from optimum for a reasonable global routing
solution [27]. However, there can be huge difference in

[1l. PREVIOUSWORKS
A. Congestion Prediction and Estimation

Fast and accurate congestion prediction and estimation are
i essential techniques for reducing congestion in multitdgess
A. Notations of physical synthesis. For example, during placement, éftis ¢
Table | lists the notations used throughout this paper. can be inflated or the white space can be allocated in the
congested region to reduce the congestion and enhance the

Il. PRELIMINARIES

TABLE | routability [31], [32].
THE NOTATIONS IN THIS PAPER Recent study in congestion prediction includes a number
o vertex / global routing cell pf probat_)ilistic app_roac_hes. Lou et al. [18] decompose_ a _net
i edge between; anduv; into multiple two pin wires, then compute the probabilistic
m;; | maximum routing capacity of;; congestion for each G-cell based on the chance of having the
cij | available routing capacity of;; two pin wire routed in the G-cell. While all possible detour-

free paths are assumed with the same probability in [18],
Westra et al. [20] only consider the simple L/Z shape routing

B. Global Routing Model

The global routing problem can be modeled as a grid graph E’jﬁ» LT
G(V, E), where each vertey; represents a rectangular region g s

gty o =
of the chip, so called a global routing cell (G-cell), and dge g__?___ﬁ? B /&
e;; represents the boundary betwegnandv; with a given Y= T2

maximum routing capacityn;;. All the pins are assumed to
be at the center of the corresponding G-cell. Fig. 1 shows how (a) real circuit with G-cells  (b) grid graph for routing
the chip can be abstracted into a grid graph whergs = 3.

A global routing is to find paths that connect the pins insidc:
the G-cells throughG(V, E) for every net.

jg. 1. A real circuit with netlists can be dissected into riplét grids which
n be mapped into graph for global routing with routing cétpam an edge.
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based on the observation that one or two-bend nets are Ve Ve Y Ve
dominant in the real designs. By empirically extracting the @ @W @" a @xaz
occurrence of L and Z shape routings from multiple realiv i v5 v V7R v : s Vi
industrial designs, different probability weights areigsed ® @ ==
to L and Z shapes routings. In [23], it is shown that fast i @ Yauil” ~ = %@
global routing based congestion estimation can be more-acct AP Ve P Xm: v v
rate than probabilistic congestion prediction, as prdisiiai @ @ =
approach highly depends on tools or designs. However, bloba _ _
routing based congestion estimation is not exact neither. A (?) decomposed netb (b) routing candidates
recent paper [26] claims that congestion estimation can be Vi V2 V3 & V2 V3
different from global routing result, unless the same témpines ® ®xaz ® %@z
and optimization parameters are applied in both congestiog 1y v Vi v 1% 7 Vi
estimation and global routing. ® | ® $_
5 Xas@ Xa1] E@

V7, \% Vo! V7, \% Vo!

B. Global Router @ Xa12 @

Typical global router decomposes every net into a set o _ _ . _
two pin wires by building minimum spanning tree or Steiner ~ (¢) possible routing A (d) possible routing B
tree, then routes them bY maze routing qlgonthm, followed tﬁg. 2. Example of ILP for global routing with two possible tmg solutions
rip-up and reroute technique for further improvement. Iy [Lis shown. Two routing solutions in (c) and (d) are valid wig given routing
[25] Kastner et al propose a simple pattern based routi acities, but different in terms of congestion distribatiThe one in (c)

! ) . . . . . _achieves more uniform congestion distribution. T-ILP prefeouting (c) to

rather than maze routing for fast runtime without incurring,iing (q), while N-ILP has no preference.
significant routing quality degradation. Hadsell et al. {2ke

advantage of predicted congestion map to guide global route

and show considerable routing quality improvement over [1] . .

. . . min : C
Congestion-aware Steiner tree in [4], [5], [26] reduces the _
runtime by increasing the number of nets routed by simple St a1, La12; La21; Ta3l, To11, To12 € {0, 1}
and fast pattern routing, and thus less relying on expensive Tall + Tar12 =1
maze routing. Tp11 + Tp1o = 1

While the previous global routers [2], [25], [26] are mainly
based on pattern routing, maze routing, or shortest path
algorithm, Albrecht [3] formulates the global routing asltiru

Ta21 = 1,231 =1
ZTa11 + Tp12 < C

commodity problem which can be solved by an approxima- Ta21 +2p11 < C
tion algorithm for fractional flow with randomized rounding Za11 < C,xq12 < C,a31 < C
First, it repeats building a Rectilinear Minimum Steineedr 211 < Capis < C

(RMST) using maze routing in net-by-net manner. After all
nets are routed in RMST, a set of G-cells above the giv%n
. I
congestion threshold are selected, and all the nets on any 3
those G-cells are routed again by building new RMST. Two

key advantages of such approach are that congestion can bgefore the main discussion, we describe Fig. 2 for clear
evenly distributed over the chip and a small set of nets Whlg}planaﬁon in the following sections. Fig. 2 (a) shows two

are penalized by extreme detour will be discouraged. Overg|royted neta andb which are further decomposed into wires
this algorithm shows good congestion reduction, but at & CQ8ee Section V-A): net has three wiresif,:

f3. T-ILP formulation for the example of Fig. 2 (b)

Wq2 and waS),

of high computational overhead. and neth has one wirew,;). For each wire, we can enumerate
all the possible routing paths, but for simplicity we showyon
IV. PRACTICAL INTEGERLINEAR PROGRAMMING the paths in the minimum length and with minimum vias as
FOR GLOBAL ROUTING in Fig. 2 (b). Each possible routing path is calledoating

. . . candidateof the given wire. In this example, we assume that
Integer linear programming (ILP) technique has been bg:, routing capacity is 2 for the all the edges,(= 2, o5 —

lieved unacceptably slow for global routing in VLSI designz and so forth), thus both Fig. 2 (c) and (d) are routable
despite that it finds the global optimum for a given instanice Qolutions

problem. In this section, we propose a new ILP formulation

for global routing, which is inherently different from the®

in [3], [28], and discuss pros/cons of each formulation.his t A. T-ILP

work, to avoid any confusion, we call the traditional ILP as T-ILP minimizes the maximum congestion over all the
T-ILP and our new ILP as N-ILP. Both T-ILP and N-ILP areedges. Fig. 3 is a T-ILP formulation of Fig. 2 (b) where a
routability-driven, but they adopt different formulat®nwhich variableC' is set to be larger than any congestion on any edge
make big difference in performance and scalability. (i.e., the upper bound). The routing result after solving. B
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min : C max E(i,j,k)eN Qijk * Tijk
s.t zik € {0,1} v(i,5,k) € N s.t: zi, € {0,1} V(i,j,k) € N
Zk:(i,j,k)EN Tije =1 Vi, j Zk:(i,j,k)eN Tije < 1 Vi, j
2 (igmer(e) Tigk < C Ve Yigmer(e) Tisk S e Ve
Fig. 4. General T-ILP formulation Fig. 6. General N-ILP formulation

is not Fig. 2 (d) but Fig. 2 (c), as Fig. 2 (d) has the maximurg NP
congestion 1.0 oreys while Fig. 2 (c¢) has the maximum
congestion 0.5.

Let E be the set of edges in the grid (indexedd)yand let
N be the set of all feasible routing candidates. Furthermo
let L(e) be the set of routing candidates crossing edge
Supposer; ;i is a binary variable set to 1 if thieth routing
candidate of wirg of neti is chosen. Then, Fig. 4 shows

Our proposed N-ILP maximizes the weighted summation
of the number of routed wires under the routing capacity con-
graint. Fig. 5 is a N-ILP formulation of Fig. 2 (b) where each
routing candidate is weighted by its length in the objective
The result from Fig. 5 can be either Fig. 2 (c) or Fig. 2 (d), as
N-ILP does not care about the maximum congestion, as long

general formulation of T-ILP. Note that the number of rogtinas there is no overflow. Fig. 6 shows the general formulatfon o

candidates must be kept small (L-shape or L/Z-shape palfiy-P Whereai;, is the weight of the routing candidaig;;

due to practical limitations (e.g. memory). The advantagfes and the other notations are the same as in Fig. 4. Again, the
T-ILP formulation include: number of routing candidates should be kept small (L-shape
or L/Z-shape path). The advantages of N-ILP formulation

e As it minimizes the maximum congestion (min_ma)?nclude'

formulation), it essentially tries to achieve more uniform ) _ _
« As each candidate; ;; can have a different weight, other

congestion distribution. ; o Lan : :
« The solution of T-ILP formulation always includes one  design objectives like timing can easily be incorporated.

routing candidate for each unrouted wire. Thus, it com- « Due to the hard constraint on routing capacity, the solu-
pletes routing by itself, and does not need any additional tion from N-ILP does not cause any over-congestion on
step, unless there is any over-congested edge. any edge. o _

Meanwhile, the drawbacks of T-ILP formulation include: « The N-ILP can be efficiently solved with branch-and-

. . . bound or branch-and-cut algorithms. This will be ex-
« WhenC in Fig. 4 is larger than anyn. (the maximum : . .
. g plained in Section IV-C.

routing capacity of the edge), the number of over- o
congested edges will explode. It considers not the overallHowever, the drawbacks of N-ILP formulation include:
congestion but the maximum congestion. Therefore, ase The N-ILP may produce a biased routing solution in
long as the congestion is smaller th@hit is possible to terms of congestion uniformness. For example, if there
have many over-congested edges. are two valid solutions with different congestion distribu

« All the over-congested edges should be taken care of to
meet congestion constraint (otherwise, it is unroutable
by detailed router) by post-processing steps such as rip-
upé&reroute.

o The T-ILP cannot be efficiently solved with branch-
and-bound or branch-and-cut algorithms. This will be

tions, it may choose any of both depending on the solver
regardless of congestion uniformness (See Fig. 2).
Different from T-ILP, it may not complete the routing. If
the over-congested edge appears, it will give up routing
some wires with smaller weight not to violate the hard
routing capacity constraint. Thus, N-ILP requires an

explained in Section IV-C. additional step for complete routing.

C. T-ILP vs. N-ILP

max : 2ra11 + 2%a12 + Ta21 + Taz1 + 2Tp11 + 27012 _ o _
st Tall, Ta12, a2, Ta3l, To11; L1z € {0,1} Based on the d|scusspn in Section IV-A and IVB we
compare both ILP formulations in two aspects: routabilitg a
Tall + Tarz < 1 runtime.
Tp11 + Tpr2 <1 1) Routability: As mentioned earlier, both T-ILP and N-
Tao1 < 1,x431 <1 ILP maximize the routability, but in different manners: OR
Tar1 + Tp1n < 2 minimizes the maximum congestion, but N-ILP maximizes the
number of routed wires under the routing capacity condtrain
Taz1 + Lo < 2 This difference becomes highly distinct, depending on wéet
Ta11 < 2,Zq12 < 2,031 < 2 the design is under-congested or over-congested.
Tp11 < 2,Tp12 < 2 « For under-congested designsit is easy for T-ILP and
N-ILP to satisfy the routing constraint. Therefore, T-ILP
Fig. 5. N-ILP formulation for the example of Fig. 2 (b) may be superior to N-ILP, as it can make more uniform
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congestion distribution which improves manufacturayilit 10* ; ;
and crosstalk noise. )

« For over-congested designsT-ILP may unnecessarily §10' 1 ° 3
cause a lot of overflows, as it only cares about tr g
maximum congestion. However, N-ILP itself does nc £ o - 1
cause any over-congested edges by leaving some wi 3, - 1S me
unrouted. The overflows from T-ILP and the unroute Elo ]
wires from N-ILP need to be picked up by the following £,y i et il
maze routing. 2 At

1] 1 1 1 1 1 1 1 1 1

Since, modern VLSI designs are highly congested in ge
eral, the advantage of T-ILP is quite trivial.

2) Runtime:For a given ILP solver, different ILP formula- Fig. 7. Runtimes of T-ILP and N-ILP are compared. It shows that R is
tions may have different runtime complexity. An ILP pr0b|em’nuch faster and more scalable for larger problems than T-ILP.
is first solved as linear programming (LP), then branch based
algorithm is applied to any fractional variable to find the
integral optimal solution. We find that for the most widely V. BOXROUTER
used ILP solving algorithms, branch-and-bound or brana-a  In  this section, we present our new global router,
cut [33], [34], the N-ILP formulation can be solved much mor&0xRouter, which is based on congestion-initiated box expa
efficiently than the T-ILP formulation for the same routingsion. BoxRouter progressively expands a box which intiall
problem. covers the most congested region only, but finally covers the

For demonstration purpose, we prepare various routi ole circuit. After every expansion, a circuit is dividetta

problems in different problem sizes (in terms of the numbé 0 se9t|ons, lnS|d_e the box _and outside the .bOX' Bo>_<R_outer
of variables), then formulate them into both T-ILP and N-ILP'SES cl_lfferent rout_ln_g _strategles for each se_ct|on t_o Mezem
Fig. 7 shows the normalized runtime of each T-ILP and ,\[_outablhty and minimize ww_ele_ngth. ConS|der. Fig. 8 (a),
ILP formulation under typical computing environment (Seghere two wires ¢ and f’) are inside the box, wh.|le the oth_er
Section VI) with GNU Linear Programming Kit (GLPK) 4.8 wires € andd) are not |nS|dg the box. The routing capacity
with all speedup options turned on. Note that we obtain ve&/SIOIe the ng is more precious toand b thanc andd for
similar trend for various algorithms such as branch-anakdo two reasons: o ) )
and branch-and-cut with different cutting planes [34],][36 . _If a andb are not routed within the box, wirelength will
is clear that N-ILP is significantly faster than T-ILP, andtlu increase due to detour. _ .
speedup becomes more significant for larger problem sige, e. * ¢ andd may have another viable routing path outside box
over 1100 times for some large cases. There are two thearetic  Which does not waste the routing capacity inside the box.
explanations why N-ILP can be solved much faster than T-ILPherefore, BoxRouter first routes as many wires inside the bo
as possible with N-ILP in Section IV-B, maximally utilizing
« Since N-ILP is similar to a binary knapsack formulationthe routing capacity inside the box. Then, for the wires Whic
the solution after LP is a near feasible solution witgannot be routed by N-ILP within the box (due to insufficient

almost all variables non-fractional [33], [36]. Howeverrouting capacities), BoxRouter detours them by adaptiveema
due to themin-max nature of the objective function, routing with the fo||owing two Strategies:

the variables in T-ILP have more incentive to remain
fractional after LP as opposed to their counterparts in N-
ILP. Consequently, the LP solution of T-ILP is much more
fractional than that of N-ILP, resulting in more branches
during branch-and-bound or branch-and-cut.

« The branch-and-bound or branch-and-cut techniques ter-
minate in shorter time, if more nodes can be fath-
omed [33]. Unfortunately, the min-max nature of the
objective function in T-ILP results in many near optimal
solutions. Therefore, the corresponding nodes cannot be
fathomed efficiently and the branch tree grows needlessly.

« Inside the box use the routing capacities as much as
possible (greedily), as the wires inside the box have
priority over those outside the box.

« Outside the box use the routing capacities conserva-

tively, as the wires outside the box may need them later

for their viable routing paths.

Box

Keep dense with
greedy strategy

3) Summary:As discussed in Section IV-C.1 and IV-C.2
N-ILP is significantly faster than T-ILP, and the solution:
quality from N-ILP is similar to that from N-ILP for the over- i
congested design. Thus, N-ILP is expected to work better for =TT
the modern VLSI designs. Our proposed N-ILP is adopteda) motivation for BoxRouting (b) strategies of BoxRouting
in BoxRouter in Section V, in progressive manner with bogig. 8. The basic concept of BoxRouter
expansion concept.

Keep uniform wit
conservative strategy
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[ Minimum Steiner Tree | Algorithm 1 PreRouting
| ot Dec:mposition | Input: A list of wires W
1: Sort eachw in W by length in ascending order
a PreRoute & Initial Box | 2: for eachw in W do
! 3 if wis flatthen
w [Progressive ILP Routind 4: Make w routed
g §| Adapiive Maze Routing] 5: OF = the number of updated overflows
é0< ¥ — s I 6: if OF > 0 then
[0) ansion
S |5 X EXpANs| 7: Make w unrouted
19) _ .
@ 8: en_d if
% 9: end if
v 10: end for

| PostRoute |

Fig. 9. BoxRouter consists of three main steps: PreRoutirgxRButing,
and PostRouting. BoxRouting can be further composed of pesgre ILP
and adaptive maze routing.

Those two strategies keep the wire density of the circui
in Fig. 8 (b), and make the wires detour the more conge
region to maximize the routability with minimum wirelengu
overhead.

The overall flow of BoxRouter is in Fig. 9, which Wil rig. 11, congestion estimations after PreRouting and BosiRguare
be explained in detail in the rest of this section. Section Wempared. It shows that simple PreRouting can effectivelyturapoverall
A describes the preprocessing for BoxRouter. Section V:8ngestion as well as the most congested region.
illustrates PreRouting for congestion estimation and ingut
speedup. Section V-C explains BoxRouting, the main idea of
BoxRouter which includes progressive ILP (PILP), adaptiv@uted. Routing each wire from a single net separately may
maze routing (AMR), and box expansion. Finally, Section \have downside of loosing information on other wires, résglt
D shows how PostRouting improves wirelength and routgbiliin suboptimal routing. This issue is addressed in adaptaezem
further while controlling the trade-off between them. routing in Section V-C.2.

(a) congestion after PreRouting (b) congestion after BoxRouting

A. Steiner Tree and Net Decomposition B. PreRouting and Initial Box

A net can be decomposed into two piteswith Rectilinear ~ PreRouting simply routes as many flat wires as possible
Minimum Steiner Tree as shown in Fig. 10. In BoxRoute¥ia the shortest pattwithout creating any overflow as in
Flute [37] and GeoSteiner [38], [39] are tested for Steindgorithm 1. As bulk of nets are destined to be routed in
tree construction, but Flute is finally adopted due to i§mple patterns (L-shape or Z-shape) [20], [23], [25], Pre-
small computational overhead. Note that different Stefree Routing can improve the runtime without degrading the final
algorithms such as timing-driven or congestion-driverirgte Solution. More importantly, if enough number of wires can be
tree algorithms can be used in BoxRouter as well. A specf@uted by PreRouting, the global congestion can be captured
wire which does not need a bend is calleflaa wire [18]. For with reasonable accuracy. According to our experiments for
example, wirea-g e-d e-f andb-f in Fig. 10 (b) are flat wires, the tested benchmarks, about 60% of the final wirelength on
while wire f-c requires at least one bend to be routed. Ead@yerage can be routed with tiny computational overhead by
wire from a net becomes a single routing object. HowevedrreRouting. Fig. 11, shows two congestion maps, one after

the net is finally routed, only if all the wires from a net aré’reRouting and the other one after BoxRouting where more
congested area is brighter. It shows that congestion histépo

Fig. 11 (b) can be predicted from Fig. 11 (a) by PreRouting. A
box which encompasses the four G-cells in the most congested
area will be created as shown in Fig. 12 (a) as a starting point
of BoxRouting. Note that if there are two most congested
areas, then the one closer to the center of the circuit isteele

C. BoxRouting
(a) hypergraph for a net (b) wires after decomposition ) In th|S Subseption, B-OXROUting will be eXpIained Wlth
Fig. 12. BoxRouting consists of three steps, progressiegar
Fig._ 10. Netcanbe de_composedinto two pin wires with ReetdlirMinimum  |inear programming routing, adaptive maze routing, and box
Steiner Tree Construction. . . . .
expansion as in Fig. 9. Those three steps are repeatedhetil t
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(d) Unrouted wireb after progressive ILP (e) Box i is expanded, and more wires are (f) BoxRouting is performed with Bok+1.
is routed by adaptive maze routing. enclosed by Box+1.

Fig. 12. BoxRouting example

max :Tp1 + Tz + Tp1 + T2 + Tpt + Tn2 max : Y {wq + w2} Vi € Whou
S.t @p1, Tpo, Tf1, T2, Thi, Tho € {0,1} s.timi, x40 € {0,1} Vi € Whou
Tp1 + T2 <1 i1+ 22 < 1 Vi € Whyou
Tp+ a0 <1 xio =0 Vi € Whox N Wiias
T =0 Z Tij < Ce Ve € Wion
Th +The <1 e€x; ;

<
Lol +Tf1 T Thy S CAB Fig. 14. General progressive ILP formulation

Tp1 + 21 < €BD

< . o o .
Tvz + Th2 = cac until BoxRouting, if PreRouting gives up routing them due

Tpy + Th2 < COD to any overflow, or new Steiner points introduced by adaptive
maze routing (AMR) (explained later in this section) comger
Fig. 13. Progressive ILP formulation of Fig. 12 (c) non-flat wire into a flat wire. For efficient routing as mentain

in the beginning of this section, only wires within the boXlwi

expanded box covers the whole circuit. Each of those steps Bf routed by PILP and AMR.
explained in the following subsections. In Fig. 12 (c), the wires within the box are shown with

1) Progressive ILP Routing (PILP): We show in Sec- G-cells @¢4,vp,v¢ and vp), and the corresponding PILP
tion IV that N-ILP is more efficient than T-ILP for modern,formulation for maximum routability is shown in Fig. 13. To
typically over-congested VLSI design. Therefore, we use Nainimize the number of vias, two L-shape routing candidates
ILP formulation in PILP and further extend it by combining(@s1, zp2 andxn1, z52) are considered for each wire in our
it with the box expansion concept. PILP formulation, but only one routing candidates{ and

Assuming a box is expanded from the most congested2=0) is considered for flat wires. General PILP formulation
region as in Fig. 12 (a), consider Fig. 12 (b), where wird§ shown in Fig. 14, where. is the available routing capacity
within the box afteri-th expansion (box) are shown with on edgee (See Table 1)}V, is a set of unrouted wires within
squares I, f and k), and the other wires are shown withthe current box, and;,,, is a set of flat wires.
circles. The already routed wires by either PreRouting or Different from the hierarchical ILP [24], our PILProgres-
previous BoxRouting are simply shown as solid lines. Notavely routes a part of the circuit, which is covered by each
that some flat wires likg', : andk could be remained unroutedexpanding box. This box expansion limits the problem size
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Algorithm 2 BoxRouting Algorithm 3 Adaptive Maze Routing Cost for BoxRouting
Input: A list of wires W in box B Input: G-cell V,,,V,, Box B

1: Solve progressive ILP withl/ 1: CostC = myy — Cay

2: for eachw in W do 2. if egy isinside B andc,, > 0 then

3. if w is unroutedthen 3z C=1

4: Perform adaptive maze routing far 4. end if

5. end if Output: C

6: end for

is required to avoid small overflows, AMR may return a path
such that PILP which is NP-hard can be solved efficientlwith overflows for the least overall cost.
Three advantages of our PILP can be summarized as followsFor the maze router implementation, we propose a multi-
« Basic formulation is the same as N-ILP of Section Iv-BS0urce multi-target with bridge (MMB) maze routing model
inheriting its advantages in runtime and scalability. for highe_r ef_ficiency as illustrated in Fig. 15. Consider the
« Even though the last box can cover the whole circuigx@mple in Fig. 15 (a) where the source G-cedind the target
the PILP size remains tractable, as N-ILP is performeg-Cell T are to be routed and the congestion is represented as

on the wires between two successive boxes like betwedhded region. To avoid congestion, a simple maze routing ca
Box i and Boxi+1 in Fig. 12 (e). easily find thg routing patpath2 msteaq ofpathl. However,

« As shown in Fig. 12 (e), the newer box always contairdS the goal is to mak& and 7' electrically connected, we
the older box. Consequently, the solution from the oldé&@n achieve electrical connection as well as shorter wigtte
PILP is reflected in the newer PILP formulation, providPy alternatively routinge and y shown aspath3. The other

ing smooth transition between two successive problerf@§@mple in Fig. 15 (b) shows the case where the routing
for high quality solution. betweenb and c is detoured due to congestion. In this case,

. . . . even thoughpathl is the shortest path betwee$ and T’
Due to the limited routing capacity of each edge, some WirGS hout anv congestion issue. the pahz-v-T Shown as
may not be routed with the above PILP;; + ;2 < 1 in Y 9 ' P Y

. . . . ath2 — path3 is the better routing path, because it shares
Fig. 14 relaxes the routing constraint such that some wiigg qﬁnd utilizes the existing routed pagluth3, resulting in the

not be routed if the overflow occurs. For example, assumillg .+ total wirelenath
mpp = mcp = 2 andzy; = 1, the wireb cannot be routed gtn.
with ILP (231 = 232 = 0), as two prerouted wires oecp, P . T
and one prerouted wire with the wire (x5, = 1) on egp g r’" PN
consume all the routing capacities. For this case, the ise br\iiilgegréij}) 1
routed by AMR as in Fig. 12 (d) with the routing cost from ; R 4
Algorithm 3.

2) Adaptive Maze Routing (AMR): Algorithm 3 returns a
unit cost as long asxy is inside box and still has available y P .
routing capacity (line 2, 3). Otherwise, it returns a cost ™. .~ |
inversely proportional to the available routing capasitfine sourcé group br‘i‘agggr-(—)a’ég
1). This cost function makes maze routing adaptively find the
best routing path such that the shortest path inside the box
for wirelength minimization, but the most idle path outsideig. 16. Multi-source multi-target with bridge maze routing deb
the box for routability maximization. Note that the resaurc
outside the box should be used conservatively, as the wirestware of the above mentioned cases, the proposed multi-
outside the current box may need them later. If too big detossurce multi-target with bridge (MMB) based maze routing in
Fig. 16 is implemented for AMR. The basic idea behind MMB
is to make the maze router honor the existing partial routed
paths of the net for shorter wirelength and less congeshion.
detail, the proposed model is based on three different group
of G-cells as in Fig. 16.

« Source group: a group of G-cells which are electrically
! L connected to the source G-céll
% pathl @

taréet group

Dpath2gX

« Target group: a group of G-cells which are electrically
connected to the target G-c4ll.
« Bridge group: multiple groups of G-cells on the partial
routing paths which are connected to neither the source
Fig. 15.  Efficient multi-source multi-target maze routing exéespare S nor the targeftl'.
gléjj:éztse%ngﬂ?;fngtfsl?lem alternative paths are found bysidering multiple .Note that identifying each group pf G.—c.ells can be.done
with any graph traversal algorithm with trivial computatad

(a) by finding shorter path-y (b) by sharing routed path-y
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Algorithm 4 Adaptive Maze Routing

Input: Sources and targett of net N with box B

1: Find source groufr, of s

2: Find target groups, of ¢

3: Find all bridge group<iy1, Ga, ... of N
4: A priority queue@ = ¢

5: for each G-cellV, in G, do

6: CostT,of V, =0

7:  EnqueueV, into @

8: end for

9: Best target G-celV}, = ¢, T, = ¢
10: while @ is not emptydo

11: dequeue a G-celV, from @

12:  if T, > Ty then

13: break

14: end if

15:  for each adjacent G-celf, of V, do
16: T,, = Algorithm 3 (V,,V,, B)
17: T, =Ty + T,

18: if V, € Gy andT, < T, then
19: Vi, = Vy,Tb = Ty

20: else if V, € Gy; then

21: for each G-cellV, in Gy; do
22: T, =T,

23: EnqueueV, into @

24: end for

25: else

26: EnqueueV, into @

27: end if

28: end for

29: end while

30: P = Backtrace the best path frol to any G-cell ofG,

Output: P

overhead. There can be multiple bridge groups in case it

BoxRouting (AMR after PILP) again is shown in Fig. 12 (f).
The amount of increment during box expansion significantly
affects the routing solution. As the box grows larger for
every expansion with bigger increment, the runtime incsas
exponentially due to larger PILP problem size (more wires ar
added into the formulation due to larger expansion). Bid, th
smaller overflow can be obtained, as the routing is performed
more globally. There can be several heuristics to determine
the increment such as constant increment size or dynamic
increment size, but it is required to keep PILP problem size
manageable. More discussion is presented in Section VirAft
all wires are routed (the box becomes big enough to cover
the whole circuit), PostRouting of Section V-D will follow
BoxRouting. Each wire in the box is optimally routed by PILP,
but the global optimality is not guaranteed as box expands.

To certain extend, BoxRouting mimics the diffusion ef-
fect which was originally proposed for placement migration
in [40]. By each BoxRouting step, all the wires in the more
congested region (within the box) are routed first by PILEnth
by AMR. This makes the wires outside the box detour the box,
if necessary. Such box expansion and congestion spreading
diffuses wires in a progressive and systematic manner.

Our box expansion can be initiated from multiple regions,
in case there are several congestion hotspots. This may lead
to better congestion distribution as well as improved raeti
As the key idea behind box expansion is to diffuse wires
from more congested regions to less congested regions, in-
tuitively multiple box expansion has advantages. More impo
tantly, multiple box expansion can be effectively perfodne
on multiprocessor/distributed computing environment tlie
two reasonsa) most commercial ILP solvers itself support
such computing environments) each PILP can be solved
independently as long as boxes are not overlapped. However,
several implementation issues such as where to begin (how
to define congestion hotspot) and when to stop should be
dressed with well-tuned heuristics.

many routed paths (from PreRouting or previous AMR) are

not connected with each other.

Flooding of the maze routing is started from the all the G-

D. PostRouting (Reroute without Rip-up)
As AMR in BoxRouting uses conservative strategy outside

cells in the source group, and is terminated when any G-cglb pox as in Algorithm 3 (finding the most idle routing

in the target group with the minimal cost is discovered. T'}ﬁ'ath outside the box)

it may create unnecessary detour and

flooding within a bridge group is free by treating one bridggefiow, Thus, PostRouting simply reroutes wires to remove

group as a single virtual G-cell to encourage the utilizatid
the existing routed paths for shorter total wirelength. dilst

on AMR is in Algorithm 4.

unnecessary overhead with box expansion initiated from the
most congested region, as done in BoxRouting. In detail,
a wire in the more congested region will be rerouted first,

It should be noted that MMB based maze routing maynd such rerouted wire can release the routing capacity, as i

change the initial Steiner tree structure according to thgay find the better routing path. Then, the surrounding wires
congestion updated during routing, and this may negativedyn be rerouted with the released routing capacity, paténti
affect the runtime as the maze router needs to search larg&fucing wirelength and overflow again. This chain reaction
space for the optimal routing path. This runtime issue c@fiopagates from the most congested region to less congested
be mitigated if the congestion-driven Steiner tree alganit regions along the box expansion. Consider the example in
is adopted. Note that simple wirelength-driven Steinee tresig. 17 where two wires: and y are routed around the G-
algorithm is used in this work. cell V.. Before the PostRouting (thus, during BoxRouting),
3) Box Expansion: After all the wires inside the box arethe wire x detoursV, during AMR in Section V-C.2 due to
routed either by PILP or AMR, the boxwill be expanded high congestion ifi’, in spite of the available routing capacity
to boxi+1, and new wiresd d and k) are encompassed by R. However, ifR is still available after BoxRouting is finished,
box i+1 as shown in Fig. 12 (e). The result after applyinthen there is no reason to leafeavailable at a cost of longer
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TABLE I
V) ISPD98 IBMBENCHMARKS FORGLOBAL ROUTING
z VZ
i N ® circuit routing graph Ib.d
QP name| cells | nets | wires' || grids |v. cag] h. cap|| wlen
CP @ @ @ [ibmO1| 12036| 11507| 28232 64x64 | 12 | 14 || 60142

] - ) ] ibm02| 19062| 18429| 55649 || 80x64 | 22 34 || 165863
(a) routing before PostRouting  (b) routing after PostRouting | ibm03| 21924| 21621| 45727 || 80x64 | 20 30 || 145678
. o . . . ibm04 | 26346| 26163 53487 || 96x64 | 20 23 || 162734
Fig. 17. Example of PostRouting is shown. In (a), a routingacétp R is ibmo5| 28146| 27777| 94304 || 128x64| 42 63 409709
not utilized by BoxRouting, as AMR finds less congested pHtR remains | .

unused after BoxRouting is finished, it may be the reason fbostmal Igmgg 2121%]?;4812 iiggi 180295??615 iggxgi 32 gg gggggg
routing path for a wirex. Thus,z can be rerouted by utilizing?, which iom X
shortens a wire) with the released routing capacity framas well, as in (b). 'Emgg 22221 ggggg 122332 %géxgi i}‘, gg 22%‘2%(2)
ibm X

ibm10| 66948| 64227| 182010|| 256x64| 27 40 || 574407

wirelength. x can be rerouted througi® to minimize the ?the number of wires after net decomposition

wirelength without causing any overflow. Afteris rerouted, : vertical routing capacity

the wirey which is detoured during BoxRouting due tacan  , horizontal routing capacity L .
be rerouted as well using the routing capacity released afte asymptotic lower bound wirelength [39] hereafter in this section
is rerouted, thus reducing wirelength again.

TABLE Il
PREROUTING IN BOXROUTER FORISPD98 IBMBENCHMARKS

Algorithm 5 Maze Routing Cost for PostRouting

Input: G-cell V,, V,,, ParamK
1: CostC = K circuit PreRouting

. name|| Ib. wlen] pr. wlerf] %
2.1f cpy >0 then bmOL| 60142 | 40992 |68.2

3 C=1 ibm02|| 165863| 109519| 66.0
4: end if ibm03|| 145678| 85628 |58.8
Output: C ibm04|| 162734| 94644 |58.2

ibm05|| 409709| 240781 | 58.8
ibm06|| 275868| 172988| 62.7

AMR of Section V-C.2 is used again for PostRouting, but ibmo7|| 363537| 210904|58.0
with a different routing cost function in Algorithm 5, where ibm08|| 402412| 243517 60.5
a user-defined parametds is introduced. The parameter ibm09|| 411260 240928 58.6

ibm10|| 574407 | 336999|59.7
average| 61.0

# prerouted wirelength

K controls the trade-off between wirelength and routability
(overflow), by setting the cost of each overflow &s Thus,
higher K will discourage overflow at a cost of wirelength
increase (more detours), but lowéf will suppress detour
at a cost of overflows. The effectiveness of paraméters
discussed in Section VI. Kit (GLPK) 4.8 [34] is used as ILP solver. We use ISPD98
Our PostRouting is more efficient than the widely used RipBM benchmarks [1] for our experiments. Table Il summarizes
up&Reroute (R&R), as PostRouting makes a witduntarily €ach ISPD98 IBM benchmark circuit and its corresponding
release a routing capacity (this happens, only when the &id graph model. The lower bound wirelength of each circuit
lution improves) during its rerouting, while R&R deprives iiS computed by the most accurate GeoSteiner 3.1 [37], [39].
from a wire in the congested region without guaranteeing anyTable Il shows the routing completion percentage after
improvement. Although R&R and PostRouting target for leddreRouting. On average, 61% of the lower bound wirelength
congestion, the approaches are different. While R&R rips wan be routed after PreRouting which is enough to capture
the already routed wires to secure routing capacity diyectthe overall congestion as well as the most congested region.
PostRouting makes more routing capacity available indirec Further, over 61% routing completion even before the main
by shortening the wirelength of each wire (wirelength igouting phase will improve the runtime.
linearly proportional to the number of routing capacities i Fig. 18 shows the overflow and runtime by the amount of
use). PostRouting is guaranteed to find the equal or betkerx increment (See Section V-C) for one benchmark. It ofearl
routing path for the given objective function, as the cutreshows that with larger box increment, the overflow decreases
routing path can always be found as the worst case routibgt the runtime increases exponentially. While the wireleng
path. Thus, the routing quality can be improved gradually byaries only by 0.11%, the overflow decreases by 30%, but the

repeating PostRouting. runtime increases by 500%. It indicates that with larger box
increment during box expansion of BoxRouting, the solution
VI. EXPERIMENTAL RESULTS quality can be improved at a cost of runtime.

We implement BoxRouter in C++. All the experiments are The effectiveness of parametéf (See Section V-D) is
performed on a 2.8 GHz Pentium-4 Linux machine with 2Ghown in Fig. 19. It shows that with largek, overflow
RAM. Flute [37] with high accuracy option is used for Rectidecreases exponentially, but wirelength increases ltpairi
linear Minimum Steiner Tree, and GNU Linear Programmingally. We constantly find that overflow saturates faster than
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TABLE IV
% 5 10 :(5 20 25 20 RESULTS FROMBOXROUTER FORISPD98 IBMBENCHMARKS
(a) ibm02 circuit BoxRouter (=10) BoxRouter §=15)
name| Ib.wlen|| wler® | ovfl w.o(%)]| wlen |ovfl|w.o(%)
X 10° ibm01| 60142 || 65029 |166| 8.1 65193 |126| 8.4
. ibm02| 165863|| 177921| 43 | 7.3 || 179086 33 | 8.0
6001 ibm03| 145678|| 149466| 20 | 2.6 | 149879 9 2.9
' ibm04| 162734(| 171044| 378| 5.1 || 171756|342| 5.5
f < ibm05| 409709|| 409747| 0 0.0 || 409747 O 0.0
2 100 . B ibm06| 275868|| 281715 7 2.1 || 282002 5 2.2
€ | S e Overlow 1% & ibm07| 363537| 374910, 83 | 3.1 || 376247/ 81| 3.5
g | — Wire lengt @ ibm08| 402412 408897| 46 | 1.6 | 409584 31 | 1.8
© k = ibm09| 411260|| 417599 8 1.5 418023 4 1.6
200¢ ibm10| 574407|| 590738 18 | 3.0 |[591820 10 | 3.0
average 3.4 3.7
. & wirelength hereafter in this section
o s B TR PR b overflow hereafter in this section
K ¢ wirelength overhead

(b) ibm10
Fig. 19. Routability and wirelength trade-off by Paramekér region can improve the number of overflow by 33.1 % on
average, proving that it is more effective than randomly
initiated one in terms of congestion.
wirelength, and the best trade-off occurs betwd€nl0 to For thorough comparison, we download two available
K=15 for all the tested benchmarks. Fig. 20 also shows tgebal routers, Labyrinth 1.1 [1], [25] and Fengshui 5.1
runtime is independent of paramef€r The runtime variations (which has the newest implementation of #é: dispersion

(a;jgfjl';e) of ibm02 and ibm10 are only 0.7% and 0.5%outer) [2], [41], and implement multicommodity flow-based
respectively, whileK varies from 1 to 30. global router [3] in C++ (the binary is not available from the

Table IV shows the routing results by BoxRouter wit+10 author). Note that we use the same routine for Rectilinear Mi
and K=15, the best trade-off found in Fig. 19. It shows thamum Steiner Tree, congestion estimation, and maze routing
BoxRouter has on average 3.4% and 3.7% wirelength overhdadfair comparison in the multicommodity flow-based global
(regarding the lower bound wirelength) féf=10 andK=15 router implementation. Although the results of Labyrintida
respectively, and provides high quality solutions for &rg Fengshui are reported in [2], we reproduce the results due to
circuits with small overflows. the recent update in the benchmarks [1].

Table VI compares the congestion-initiated box expansionTable V shows the experimental results and comparison
with the random-initiated box expansion wham15. It shows for Labyrinth and Fengshui, and Table VII for the multi-
that the box expansion initiated from the most congestedmmodity flow-based router. As there is a trade-off between
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TABLE V
COMPARISON WITHLABYRINTH 1.1 [25]AND FENGSHUI5.1 (Chi DISPERSION [2] FORISPD98 IBMBENCHMARKS

circuit Labyrinth 1.1 Fengshui 5.1 BoxRouter Imprv. on Labyrinth Imprv. on Fengshui
name|| wlen [ovfl|cpu(s)| wlen |ovfl]cpu(s)| wlen |ovfl| cpu(s)|| wlen(%)| ovfl(%) | spd(x}| wien(%) [ ovfl(%) | spd(x}]
ibmO1| 76517 | 398| 21.2 | 66006 | 189| 15.1 | 65588 | 102| 8.3 14.3 74.4 25 0.6 46.0 1.8
ibmO02 || 204734| 492 | 34.5 | 178892| 64 | 47.9 | 178759 33 | 34.1 12.7 93.3 1.0 0.1 48.4 14
ibm03 || 185116| 209 | 36.3 | 152392| 10 | 35.2 | 151299| 0 | 16.9 18.3 100 21 0.7 100 2.1
ibmO04 || 196920| 882 | 83.5 | 173241| 465| 54.1 | 173289| 309| 23.9 12.0 65.0 35 0.0 335 2.3
ibm05%| 420583| 0 | 59.2 | 412197| O | 104.8|409747| 0 | 49.5 - - -
ibmO06 || 346137| 834 | 104.3| 289276| 35 | 80.1 | 282325 0 | 33.0 18.4 100 3.2 2.4 100 2.4
ibmOQ7 || 449213| 697 | 228.1 | 378994| 309 | 122.2| 378876/ 53 | 50.9 15.7 92.4 45 0.0 82.8 2.4
ibmO08 || 469666| 665 | 238.7 | 415285| 74 | 113.8| 415025 0 | 93.2 11.6 100 2.6 0.1 100 1.2
ibmQ9 || 481176| 505 | 359.3 | 427556| 52 | 125.1| 418615 0 | 63.9 13.0 100 5.6 21 100 2.0
ibm10 || 679606| 588 | 435.7 | 599937| 51 | 212.9|593186] 0 | 95.1 12.7 100 4.6 11 100 2.2
average 14.3 91.7 3.3 0.8 79.0 2.0

* speedup hereafter in this section
b ibm05 is dropped from comparison hereafter in this section, as it is al tcaie.

TABLE VI TABLE VII
IMPROVEMENTS ON THE RANDOMLY INITIATED BOX EXPANSION(K:15) COMPARISON WITH MULTICOMMODITY FLOW-BASED ROUTER[3] FOR
ISPD98 IBMBENCHMARKS

circuit || Random Init?| Congestion Init. Imprv.
name || wlen [ ovfl | wlen ovil || wlen(%) [ ovfl(%) circuit]] Multicommodity BoxRouter Imprv?
ibmO1 || 65089 | 171 | 65193 | 126 -0.2 26.3 name|| wlen [ovfl] cpu(s)] wlen Jovfl[cpu(s)|wlen(%)[spd(x)
ibm02 || 178924| 55 | 179086| 33 -0.1 40.0 ibmO1]| 68981 43| 151.2| 67674 41| 11.8]] 1.9 | 12.8
ibm03 || 149895| 15 | 149879| 9 0.0 40.0 ibm02//190418 3 | 494.5|182269 2 | 35.7| 4.3 | 13.9
ibm04 || 171812| 395 | 171756 342 0.0 13.4 ibm03||160759 0 | 329.8/151299 0 | 16.9| 5.9 | 195
ibmO05 || 409744| 0 | 409747 O 0.0 0 ibm04|| 176610 225| 326.6|173779249| 31.4| 16 | 104
ibm06 || 282875| 9 | 282002| 5 0.3 44.4 ibm05||410954 0 | 28.2|409747 0 | 49.5 - -
ibmQ7 || 375584| 115| 376247 81 -0.2 29.6 ibm06|[296981 0 | 951.8|2823259 0 | 33.0|| 4.9 | 28.9
ibm08 || 409025| 58 | 409584| 31 -0.1 46.6 ibm07|/40851Q 0 |1229.0394170 O | 50.8| 3.5 | 24.2
ibm09 || 418131| 7 | 418023 4 0.0 42.9 ibm08||429913 0 | 865.7|415029 0 | 93.2| 3.5 9.3
ibm10 || 592784| 19 | 591820| 10 0.2 47.4 ibm09||442514 0 | 726.7|418615 0 | 63.9| 54 | 11.4

average 0.0 33.1 ibm10|[634247 0 |1068.459318¢ 0 | 95.1|| 6.5 | 11.2
2 average of 10 random initiations from low congested regions average 42 | 157

& overflow is not shown, as both are highly comparable.
b only one phase is required for ibm05, a trivial case.

wirelength and routability, we choose the paramekérof . . .
. . : Figure. 21 shows pie chart for cputime break down averaged
BoxRouter of Table Vwith wirelength constraint such that _— . .
from all the benchmark circuits. PreRouting takes neglé&ib

wirelength from BoxRouter is as small as or smaller thagmount of total cputime (1.4%), while routing over 60% of

those from Labyrinth and Fengshui for fair comparison. R(\a/\'/ires. BoxRouting which may be considered the slowest part

garding Table VII, we first carefully choose the parametersf BoxRouter due to ILP takes about 25%, while PostRouting
of the multicommaodity flow-based router for each benchmar] '

0, I i i0-
such that the best results are yielded within 25 phases ({ﬁ\kes over 57%. This proves that the proposed PILP is sig

: . . . . . |ﬁcantly fast while providing high quality solution. Onéh
maximum phase in [3]), then simulate tbm01, ibm02, 'bm(.)cg)'ther hand, PostRouting which is mainly the maze routing is

and ibm07 (circuits with non-zero overflow in Table V) again . .
) . the current bottleneck in runtime for BoxRouter.
for BoxRouterwithout any constraint.

) _ So far, all the results from BoxRouter are with constant
As shown in Table V, BoxRouter outperforms Labyrinth

and Fengshui by wide margin. In terms of wirelength and
overflow, BoxRouter can reduce the wirelength by 14.3%, the
overflow by 91.7% compared with Labyrinth, and improve the
overflow by 79% with similar wirelength (actually 0.8% bejte
compared with Fengshui. Also, BoxRouter is 3.3x and 2.0x
faster than Labyrinth and Fengshui respectively. Multicom
modity flow-based router and BoxRouter show very compara-
ble overflow as shown in Table VII. However, BoxRouter is
on average 15.7x, up to 29x faster, and produces 4.2% shorter
wirelength on average than multicommodity flow-based noute
It implies that BoxRouter can provide high quality global

routing solution with significantly less design turn-ardun
time. Fig. 21. Pie chart for average cputime break down
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TABLE VI

COMPARISON WITHDPROUTER [5] AND FASTROUTE 2.0 [4] FORISPD98 IBMBENCHMARKS

circuit DpRouter FastRoute 2.0 BoxRouter+ Imprv. on DpRouter | Imprv. on FastRoute 2.0
name|| wlen |ovfl|cpu(s)] wlen |ovfl|cpu(s)] wlen |ovil| cpu(s)|pilpT rert] wlen(%)| ovfl(%) | spd(x)| wlen(%)| ovfl(%) | spd(x)
ibmO1|| 63857|125| 2.4 | 68489| 31| 4.5 | 67052 O | 261.6| 2 | 50 -5.0 100 [-109.00 2.1 100 | -58.1
ibm02|( 178261 3 | 3.8 |178868 0 | 3.5 |174898 0 | 623 | 6 | 1 1.9 100 | -16.4| 2.2 - -17.8
ibm03|| 150663 O | 0.8 |150393 O | 0.8 |149949 0 | 430 | 6 | 1 0.5 - -53.8| 0.3 - -53.8
ibm04|| 172608 165| 14.7 |175037 64 | 14.3 |178653 37 |1791.8 13 |100|| -3.5 77.6 |-121.9 -2.1 42.2 |-125.3
ibm06|/ 286025 14 | 4.0 |284935 O | 3.9 282218 0 | 69.2 | 7 | 2 13 100 | -17.3| 1.0 - -17.7
ibm07|/ 379133 99 | 6.9 |375185 0 | 4.7 |378933 0 | 889.5| 11| 30 0.1 100 |-128.9] -1.0 - -189.3
ibm08|| 412308 56 | 11.5 411703 O | 10.2 |409337] 0 | 262.9| 13| 4 0.7 100 | -22.9| 0.6 - -25.8
ibm09|(419199 47 | 5.9 |424949 3 | 55 |418817 O |1154| 9 | 1 0.1 100 | -19.6| 1.4 100 | -21.0
ibm10|| 598460 46 | 9.7 |595622 O | 8.2 |5877421 0 | 142.0| 17| 1 1.8 100 | -146| 1.3 - -17.3

average -0.2 97.2 | -56.0| 0.6 80.7 | -58.5
@ scaled runtime based on the runtime of Fengshui 5.1 in [26] and in Table V

> the number of PILP solved with up to 10,000 wires
¢ the number of PostRouting repeat

size of box increment and single PostRouting. However, it is
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possible to alter the size of box increment dynamically, and The authors would like to thank Prof. Patrick Madden from
repeat PostRouting for further improvement. Instead offigav gyNy Binghamton and Dr. Christoph Albrecht from Cadence

constant size of box increment, we fix the maximum number gf
wires for each PILP which can be found by empirically testingg

rkeley Lab for helpful discussions, llyas Mohamed lyoob i
pt. Operation Research in Univ. of Texas at Austin for the

ILP solver. Consequently, box is kept expanded until it €8vecomparison of ILP formulations, and Kun Yuan and Katrina

the given maximum number of wires. We call the improveg,,
BoxRouter as BoxRouter+ as shown in Table VIII, and com-
pare BoxRouter+ with the latest global routers, DpRoutér [5
and FastRoute 2.0 [4]. Also, it shows the number of PILRy
instances with 10,000 maximum wires, and the number of rd2]
peated PostRouting. Overall, BoxRouter+ shows signifigant 3]
better routability than DpRouter and FastRoute 2.0 with-com
parable wirelength, and completes the most number of ¢écui
However, BoxRouter+ is slower than DpRouter and FastRouté!
2.0. The main bottleneck in BoxRouter+ depends on thg;
difficulty of each circuit. If a circuit is relatively easy,hich
requires only one or two iterations of PostRouting, the mai
runtime bottleneck is solving larger ILP instance. For leard
circuits, it requires multiple iterations of PostRoutindniah
makes it the bottleneck for runtime. However, considerhmag t
the real bottleneck in VLSI routing flow is detailed routing, (g
better routability can compensate the runtime overheadt, as
can result in significant speedup in detailed routing.

o)
71

(9]

(20]

VIl. CONCLUSION
[11]

In order to cope with the increasing impact of interconne{ilt
on system performance, we present an efficient global routér
BoxRouter to maximize the routability with minimum wire-
length. Experimental results show that BoxRouter outperfo
the state-of-the-art publicly available global routerstémms
of wirelength, routability, and runtime. As the BoxRouter
is still in beta version, we believe that further improvemeril4l
can be achieved with multiple box expansions, faster ILP
solver and so on. Current implementation of BoxRouter [$5]
available at www.cerc.utexas.edu/utda. We plan to address
timing, crosstalk, and manufacturability issues on the dbp [16]
the BoxRouter framework.

(23]

in UTDA Lab in Univ. of Texas at Austin for proofreading.
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