New Approaches to Total Power Reduction Including Runtime Leakage

Dennis Sylvester
University of Michigan, Ann Arbor
Electrical Engineering and Computer Science
http://vlsida.eecs.umich.edu
dennis@eecs.umich.edu
March 1, 2004

Colleagues on this work: Prof. David Blaauw, Ashish Srivastava, Dongwoo Lee, Harmander Deogun, Rajeev Rao, Saumil Shah

Components of power dissipation

- Increasing contribution of static (leakage) power
- Leakage is significant in both standby mode (mobile apps) and runtime (high-performance non-mobile parts)

Figure source: Intel
Reducing Power Dissipation

- Pressing need to reduce power dissipation
 - High-performance designs
 - Packaging / cooling costs
 - Power supply integrity
 - Reliability (temperature)
 - Mobile applications
 - In addition to above: Battery life

- Circuit performance is generally determined by a small fraction of the gates
 - Requires the availability of very high performance devices
 - Higher Vdd
 - Lower threshold voltage
 - Aggressive gate length

- All gates in the design contribute to power dissipation
 - Would like to use slower devices whenever possible (higher Vth, lower Vdd, possibly longer gate lengths)

Multiple Vth

- Exponential reduction in leakage power
- Cost : Additional masks
- Value of higher threshold
 - Tradeoff: Delay penalty ↔ Leakage reduction
- Can be easily incorporated into standard design flows
 - Multi-threshold library
 - Tradeoff: Library size ↔ runtime
 - Generally threshold selection is done at gate level
 - 2X library size
- Provides runtime leakage power reduction
 - Contrary to standby mode based approaches
Multiple Vdd

- Quadratic reduction in switching power
 \[P_{\text{switching}} \sim \alpha_{sw} \cdot C_L \cdot V_{DD}^2 \cdot f \]
- Roughly cubic reduction in leakage power (DIBL, V*Ioff)
- Value of lower Vdd
 - 0.6 – 0.7 times V_{DD}^{high}
 - 0.5*V_{DD}^{high} in dual-Vth processes

![Power vs. VDDL graph]

Ref: Usami

Multiple Vdd - Topological Constraint

- V_{DD}^{low} cells cannot be directly connected to V_{DD}^{high} cells
 - PMOS does not turn off
 - Results in static current

- Level converters (LCs) are used to up-convert a low Vdd signal to a high Vdd signal
 - Incurs delay and energy overhead
Multiple Vdd – 2 General Approaches

- Clustered Voltage Scaling (CVS)
 - Only one voltage transition along a path
 - Level conversion only at flip-flops

- Extended CVS (ECVS)
 - Multiple voltage transitions along a path
 - Level conversion using asynchronous LC's
 - 40 - 50% improvement in power observed

Other Issues in Multi-Vdd

- Generation of additional voltage supplies
- Impact on power grid design
- Hard to use standard design tools
 - Simple Power Compiler based approach found to provide only a 6% power reduction
 - Cell layout must change
 - Increase in routing costs
Outline

- Concurrent Vdd/Vth assignment and sizing algorithm
- Standby mode leakage reduction using state, Vth, and Tox assignment
- Runtime leakage reduction with bus encoding + novel Vth assignment strategies

Our Approach: Overview

- Seek to maximize total power reduction in a dual Vdd/Vth design
- Uses Vdd, Vth, and sizing: VVS
 - VVS is a two-pass approach
 - Uses sensitivity metrics to minimize power in each pass
 - 1st pass: CVS with concurrent up-sizing
 - Generates slack and allows for a larger fraction of gates to be set to low Vdd
 - 2nd pass: Move back towards primary outputs (POs), setting gates to high Vth and re-setting gates to high Vdd or resizing to recover slack
 - Continue while total power dissipation is found to decrease
Gate Level Vdd/Vth Assignment

- Perform timing analysis and begin CVS
 - Initial circuit synthesized at $V_{dd\text{high}}$ and $V_{th\text{low}}$
- Obtain the candidate set of gates (front)
 - Do not serve as input to any high Vdd gate
 - If set to low Vdd will violate timing

Backward Pass

- Order candidates based on a metric
 - Slack, capacitance, etc.
- To meet timing size up gates
 - Gates to be sized up are obtained based on sensitivity
 - Size up until timing is again met
- Sensitivity=$\Delta D/\Delta \text{Area}$
 - \[\Delta D = \sum_{\text{arcs}} (\Delta \text{delay}_{\text{arc}}(t) \times \frac{1}{(k + \text{Min (slack)} - \text{slack}_{\text{arc}})}) \]
 - k is a small positive number
 - Weights arcs that impact critical paths
Backward Pass, cont.

- Stopping criterion
 - When a gate is set to low Vdd only a fixed number of gates are upsized
 - The total power dissipation measure is not used in the hope to get out of local minima
- The end of the pass is signaled when no candidate gates can be set to low Vdd
- The best seen solution is stored and is restored at the end of the pass

Forward Pass

- Now candidate gates which define the front are
 - Operating at low Vdd
 - Have all high Vdd as inputs
- Select gates on the front and set them to high Vdd/upsizen
 - Select gates to be set to high Vt
 - Commit these changes if total power is found to decrease
 - Stop when no available options for gate upsizing/high Vdd assignment
- The gates are set to high Vth based on their sensitivity
 - Sensitivities of the form ΔPower/ΔDelay
 - Weighted by slack
 - All gates are candidates to be set to high Vth (no topological constraints)
Results

- 0.13µm process, timing constraint is 20% slower than absolute fastest design point (optimally sized, all Vdd\text{high} and V\text{thlow})
- Vdd\text{high}=1.2V, V\text{thhigh}=0.23V
- Vdd\text{low}=0.6V, V\text{thlow}=0.12V

High switching activity at primary inputs
CVS+sizing (backward pass) does much better than just CVS

Impact of Circuit Activity

- For low activities the algorithm successfully steers toward a better solution by attacking leakage power more directly
 - In some benchmarks switching power is increased to minimize total power
 - Low activities \(\rightarrow\) converges dual-Vth + sizing
- VVS provides a single cohesive algorithm that seeks out best power reduction over a range of switching activities
 - Ex: across functional units in a design

Average power reduction by component across switching activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Static</th>
<th>Dynamic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (3)</td>
<td>41%</td>
<td>31%</td>
<td>34%</td>
</tr>
<tr>
<td>Nominal (1)</td>
<td>69%</td>
<td>16%</td>
<td>45%</td>
</tr>
<tr>
<td>Low (1/3)</td>
<td>73%</td>
<td>7%</td>
<td>59%</td>
</tr>
</tbody>
</table>
Other results ...

- For high switching activities, VVS assigns many gates to low Vdd and low Vth combination to attack dynamic power.

- Exhaustive cutset enumeration was performed to find optimal results:
 - VVS performs close to optimal.
 - Least effective when optimal front lies in middle of circuit (more possibilities).

<table>
<thead>
<tr>
<th>Backoff</th>
<th>Initial Power (uW)</th>
<th>Final Power using VVS (uW)</th>
<th>Final Power using cutset enumeration (uW)</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>117.10</td>
<td>91.70</td>
<td>91.70</td>
<td>0.00%</td>
</tr>
<tr>
<td>1.3</td>
<td>95.70</td>
<td>74.27</td>
<td>73.90</td>
<td>0.38%</td>
</tr>
<tr>
<td>1.4</td>
<td>78.60</td>
<td>57.84</td>
<td>56.90</td>
<td>1.20%</td>
</tr>
<tr>
<td>1.5</td>
<td>72.60</td>
<td>56.12</td>
<td>51.50</td>
<td>6.37%</td>
</tr>
<tr>
<td>1.6</td>
<td>66.70</td>
<td>48.40</td>
<td>46.80</td>
<td>2.40%</td>
</tr>
</tbody>
</table>

Outline

- Concurrent Vdd/Vth assignment and sizing algorithm

- Standby mode leakage reduction using state, Vth, and Tox assignment

- Runtime leakage reduction with bus encoding + novel Vth assignment strategies
Leakage Current Components

- **Subthreshold leakage** (I_{sub})
 - Dominant when device is OFF
 - Enhanced by reduced V_t from process scaling

- **Gate tunneling leakage** (I_{gate})
 - Due to aggressive scaling of gate oxide thickness (T_{ox})
 - A super-exponential function of T_{ox}
 - Comparable to I_{sub} in 90nm technologies

Low Power Standby Mode

- Previous approaches to put a circuit into standby mode
 - State assignment [Halter, CICC1997]
 - Multi-threshold CMOS (MTCMOS) [Mutoh, JSSC1995]
 - Dual-V_t assignment [Wei, DAC1998]
 - Simultaneous state and V_t assignment [Lee, DAC2003]

- Only for subthreshold leakage reduction

- Proposed work
 - Leakage current reduction in standby mode
 - Minimize both I_{sub} and I_{gate}
 - Simultaneous state, V_t and T_{ox} assignment
 - Gate leakage for PMOS
 - One order of magnitude smaller than NMOS
 - PMOS I_{gate} is considered negligible in current analysis
Introduction – Dual V_t and Dual T_{ox}

- Exploit dual oxide thickness technologies (becoming available)
 - Dual T_{ox} – for I_{gate} minimization
 - Dual V_t – for I_{sub} minimization

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Normalized values</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_t</td>
<td>Oxide thickness</td>
</tr>
<tr>
<td>Low</td>
<td>Thin</td>
</tr>
<tr>
<td>High</td>
<td>Thin</td>
</tr>
<tr>
<td>Low</td>
<td>Thick</td>
</tr>
<tr>
<td>High</td>
<td>Thick</td>
</tr>
</tbody>
</table>

- $\Delta T_{ox} \sim 3A$, $\Delta V_t \sim 120mV$, $I_{gate}/I_{leak} = 36\%$
- Both high V_t and thick T_{ox}: very large performance impact

Overview of Approach

- If input state is unknown
 - Cannot be predicted which transistors will be ON or OFF
 - Some transistors must be assigned to both high-V_t and thick oxide

- Given a known input state
 - OFF device: I_{gate} is small
 - Considered only for high-V_t
 - ON device: no impact on I_{sub}
 - Only needs to be considered for thick T_{ox}

- A transistor need not be assigned to both high-V_t and thick T_{ox}
 - Significantly improved leakage/delay trade-off
- Only a subset of transistors need to be considered for high-V_t or thick T_{ox}
Exploit Input Pin Re-ordering

- I_{gate} dependence of input pin ordering [Lee, DAC2003]
 - I_{gate} depends strongly on the position of ON/OFF transistors
 - Place off-transistor at bottom of stack

- Reduce performance penalty of thick-oxide transistors

Cell Library Options

- Library options
 - Trade-off points for a given gate
 - 4 vs. 2
 - Details in the paper (DATE04)
 - V_t or T_{ox} assignment control in a stack
 - Individual-based vs. stack-based
 - Both libraries have the same number of cells

<table>
<thead>
<tr>
<th>Stack control</th>
<th>Individually</th>
<th>Uniform</th>
</tr>
</thead>
<tbody>
<tr>
<td># of trade-off points</td>
<td>2</td>
<td>✓</td>
</tr>
</tbody>
</table>
Heuristics

- Exact solution has search space size of 2^{n+2m} (where n is # of PIs and m is # of gates)
- Branch and bound approach used
- Heuristic 1
 - Both state & gate tree: only one downward traversal
 - Gate tree: pre-sorted by leakage
 - Tends to produce a fast high quality solution
- Heuristic 2
 - Gate tree: only one downward traversal
 - State tree: search w/time limit
- Results indicate
 - Heuristic 1: fast runtime
 - Heuristic 2: better results

Results

- Leakage current comparison between heuristics
 - 5% of maximum delay penalty
 - Baseline is avg of 10K random input vectors

<table>
<thead>
<tr>
<th></th>
<th>All Low V_t & thin T_{ox}</th>
<th>Heu1</th>
<th>Heu2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current (uA)</td>
<td>I_{leak}</td>
<td>X</td>
<td>Time</td>
</tr>
<tr>
<td>c432</td>
<td>24.5</td>
<td>6.9</td>
<td>3.6</td>
</tr>
<tr>
<td>c499</td>
<td>65.8</td>
<td>24.8</td>
<td>2.7</td>
</tr>
<tr>
<td>c880</td>
<td>50.1</td>
<td>8.7</td>
<td>5.7</td>
</tr>
<tr>
<td>c1355</td>
<td>70.8</td>
<td>15.4</td>
<td>4.6</td>
</tr>
<tr>
<td>c1908</td>
<td>56.7</td>
<td>14.7</td>
<td>3.9</td>
</tr>
<tr>
<td>c2670</td>
<td>104.7</td>
<td>14.7</td>
<td>7.1</td>
</tr>
<tr>
<td>c3540</td>
<td>128.5</td>
<td>21.6</td>
<td>6.0</td>
</tr>
<tr>
<td>c5315</td>
<td>221.2</td>
<td>31.1</td>
<td>7.1</td>
</tr>
<tr>
<td>c6288</td>
<td>346.8</td>
<td>114.7</td>
<td>3.0</td>
</tr>
<tr>
<td>c7552</td>
<td>270.0</td>
<td>32.6</td>
<td>8.3</td>
</tr>
<tr>
<td>alu64</td>
<td>260.0</td>
<td>42.2</td>
<td>6.2</td>
</tr>
<tr>
<td>AVG</td>
<td></td>
<td>5.3</td>
<td></td>
</tr>
</tbody>
</table>

Delay with all low V_t & thin T_{ox}

- 0%
- 5%
- 10%
- 25%

Delay with all high V_t & thick T_{ox}

- 100%
Results

- Leakage current comparison vs. previous work
 - At 25% delay penalty

<table>
<thead>
<tr>
<th></th>
<th>All low V_t & thin T_{ox}</th>
<th>V_t & State</th>
<th>V_t, T_{ox} & State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I_{leak}</td>
<td>X</td>
<td>I_{leak}</td>
</tr>
<tr>
<td>c432</td>
<td>24.5</td>
<td>8.2</td>
<td>3.0</td>
</tr>
<tr>
<td>c499</td>
<td>65.8</td>
<td>23.8</td>
<td>2.8</td>
</tr>
<tr>
<td>c880</td>
<td>50.1</td>
<td>16.2</td>
<td>3.1</td>
</tr>
<tr>
<td>c1355</td>
<td>70.8</td>
<td>23.9</td>
<td>3.0</td>
</tr>
<tr>
<td>c1908</td>
<td>56.7</td>
<td>18.2</td>
<td>3.1</td>
</tr>
<tr>
<td>c2670</td>
<td>104.7</td>
<td>30.0</td>
<td>3.5</td>
</tr>
<tr>
<td>c3540</td>
<td>128.5</td>
<td>40.3</td>
<td>3.2</td>
</tr>
<tr>
<td>c5315</td>
<td>221.2</td>
<td>70.6</td>
<td>3.1</td>
</tr>
<tr>
<td>c6288</td>
<td>346.8</td>
<td>112</td>
<td>3.1</td>
</tr>
<tr>
<td>c7552</td>
<td>270.0</td>
<td>84.2</td>
<td>3.2</td>
</tr>
<tr>
<td>alu64</td>
<td>260.0</td>
<td>75.3</td>
<td>3.5</td>
</tr>
<tr>
<td>AVG</td>
<td>3.1</td>
<td>9.1</td>
<td></td>
</tr>
</tbody>
</table>

- Leakage current comparison between cell library options
 - At 5% delay constraint

<table>
<thead>
<tr>
<th></th>
<th>All low V_t & thin T_{ox}</th>
<th>4-option individually</th>
<th>2-option individually</th>
<th>4-option uniform stack</th>
<th>2-option uniform stack</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I_{leak}</td>
<td>X</td>
<td>I_{leak}</td>
<td>X</td>
<td>I_{leak}</td>
</tr>
<tr>
<td>c432</td>
<td>24.5</td>
<td>6.9</td>
<td>3.6</td>
<td>7.5</td>
<td>3.3</td>
</tr>
<tr>
<td>c499</td>
<td>65.8</td>
<td>24.8</td>
<td>2.7</td>
<td>27.6</td>
<td>2.4</td>
</tr>
<tr>
<td>c880</td>
<td>50.1</td>
<td>8.7</td>
<td>5.7</td>
<td>9.0</td>
<td>5.6</td>
</tr>
<tr>
<td>c1355</td>
<td>70.8</td>
<td>15.4</td>
<td>4.6</td>
<td>17.0</td>
<td>4.2</td>
</tr>
<tr>
<td>c1908</td>
<td>56.7</td>
<td>14.7</td>
<td>3.9</td>
<td>15.2</td>
<td>3.7</td>
</tr>
<tr>
<td>c2670</td>
<td>104.7</td>
<td>14.7</td>
<td>7.1</td>
<td>12.2</td>
<td>8.6</td>
</tr>
<tr>
<td>c3540</td>
<td>128.5</td>
<td>21.6</td>
<td>6.0</td>
<td>23.9</td>
<td>5.4</td>
</tr>
<tr>
<td>c5315</td>
<td>221.2</td>
<td>31.1</td>
<td>7.1</td>
<td>30.7</td>
<td>7.2</td>
</tr>
<tr>
<td>c6288</td>
<td>346.8</td>
<td>114.7</td>
<td>3.0</td>
<td>120.6</td>
<td>2.9</td>
</tr>
<tr>
<td>c7552</td>
<td>270.0</td>
<td>32.6</td>
<td>8.3</td>
<td>31.2</td>
<td>8.7</td>
</tr>
<tr>
<td>alu64</td>
<td>260.0</td>
<td>42.2</td>
<td>6.2</td>
<td>42.3</td>
<td>6.2</td>
</tr>
<tr>
<td>AVG</td>
<td>5.28</td>
<td>5.27</td>
<td>4.91</td>
<td>4.77</td>
<td></td>
</tr>
</tbody>
</table>
Outline

- Concurrent Vdd/Vth assignment and sizing algorithm
- Standby mode leakage reduction using state, Vth, and Tox assignment
- Runtime leakage reduction with bus encoding + novel Vth assignment strategies

Runtime leakage in buses

- 50% of total chip leakage in inverters/buffers
 - Much of this in repeaters which are:
 - Very wide
 - Growing in #
 - Heavily speed constrained so often use low Vth
 - Do not experience stack effect as multi-input gates do

- Standby leakage reduction relatively easy compared to runtime
 - We can absorb a delay penalty when we know that no new data is coming
 - In runtime, data can come at any time; must be ready to process as fast as possible

- What can we do besides dual-Vth?
Staggered Vth bus design

- Selective use of high-Vth devices yields the possibility of low leakage in runtime
 - Stagger them along the wire to create a very low leakage state
 - Delay (or dynamic energy) penalty is much lower than all high-Vth
 - We cannot dictate state in runtime so this does not help in general
 - Unless we can dictate state

Encoding to enforce proper state

- Choose a 3→4 encoding, also eliminate worst-case crosstalk
- Exact encoding selected to minimize total power
 - Requires anticipated state and transition probabilities
 - Ex: what is the most common state, what is the most common transition
 - Also consider the encode/decode logic complexity
Reducing encoding complexity

- We consider all possible encodings (mappings from input states to actual transmitted encoded states) within T% of minimal
- Then use logic complexity as tiebreaker
- Results in 1-2% power penalty with 13% fewer gates/area overhead

Results (includes delay overhead)

- 0.13um CMOS at 105C, 64-bit Alpha architecture running 9 applications (address bus)
- 26% total power savings on average, 42% leakage reduction
- Maximal switching activity case (Test_1), total power still reduced
- Compared to previous crosstalk-aware approaches, we save 54% total power (nearly all of it in leakage)
Alternate Repeater Vth Assignments

- Other possibilities of Vth assignment in repeaters can help reduce leakage in runtime

- **Separate NMOS/PMOS Vth (SPNVt)**
 - All PMOS are low-Vth, all NMOS are high-Vth
 - Advantages: predictable leakage (state independent), balances fast/slow paths through the repeater chain, easy to manufacture

- **Mixed Vth**
 - Wide devices such as in repeaters are split into parallel fingers, separated by a contacted pitch
 - Assign a fraction, \(\alpha \), of total width to low-Vth (1 - \(\alpha \) is then high-Vth)
 - Effectively a third Vth with speed and leakage behavior intermediate to high/low Vth
 - No manufacturing costs for this 3rd Vth, no area penalties since parallel fingers are spaced out significantly already

Vth assignment scheme results

- Mixed config: \(\alpha = 0.3 \)
- Achievable speed is best for mixed, also good for SPNVt
- Runtime leakage of \(\alpha = 0.3 \) is 54% lower than low-Vth with small dynamic energy penalty
- Total average power reduction is 14%
 - Switching behavior taken from 11 benchmark applications, address bus
 - Strongly depends on ratio of static to dynamic power

Hybrid approaches are possible; upper bits in 64-bit address buses are usually zeroes

 Stagger to favor low-leakage 0s
Conclusions

- Need to leverage “multi-everything” to address the power management gap
 - EDA must enable simultaneous sizing, Vdd, and Vth assignment; the 3 major knobs in power reduction
 - Total power reductions on the order of 35-60% are achievable

- Standby mode leakage can be effectively reduced by combining state assignment with Vth and Tox assignment
 - Sizable leakage reductions (5-9X) with modest delay penalties (3-15% vs. all low Vt and thin Tox)
 - Much less overhead than MTCMOS, body biasing

- Runtime leakage in global interconnect repeaters can be addressed using Vth assignment schemes (sometimes with encoding)
 - 40-54% leakage reductions with small dynamic power penalty
 - Total power savings depends heavily on static/dynamic ratio
 - Implies these techniques improve with scaling
 - Mixed Vth provides pseudo-continuous Vth assignment, opening up a range of new optimizations in the energy/delay design space