15. Deep Submicron Issues

J. A. Abraham
Department of Electrical and Computer Engineering
The University of Texas at Austin
EE 360R – Computer-Aided IC Design
Fall 2011
October 19, 2011

Ideal Transistor I-V

Shockley first-order transistor models

\[I_{ds} = \begin{cases}
0 & V_{gs} < V_t \\
\beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} \\
\frac{\beta}{2} (V_{gs} - V_t)^2 & V_{ds} > V_{dsat}
\end{cases} \]

cutoff
linear
saturation
Ideal nMOS I-V Plot

180 nm TSMC process

- Ideal Models
 - $\beta = 155(W/L) \ \mu A/V^2$
 - $V_t = 0.4 \ V$
 - $V_{DD} = 1.8 \ V$

Simulated nMOS I-V Plot

180 nm TSMC process
BSIM3 3V3 SPICE models

- What differs?
 - Less ON current
 - No square law
 - Current increases in saturation
Velocity Saturation

- We assumed carrier velocity \propto E-field
 - $\nu = \mu E_{lat} = \mu V_{ds}/L$
- Carriers scatter off atoms
- Velocity reaches ν_{sat}
 - Electrons: $6 - 10 \times 10^6$ cm/s
 - Holes: $4 - 8 \times 10^6$ cm/s
- Better model
 - $\nu = \frac{\mu E_{lat}}{1 + \frac{E_{lat}}{E_{sat}}} \Rightarrow \nu_{sat} = \mu E_{sat}$

Velocity Saturation I-V Effect

- Ideal transistor ON current increases with V_{DD}^2
 - $I_{ds} = \mu C_{ox} \frac{W}{L} \frac{(V_{gs} - V_t)^2}{2} = \frac{\beta}{2} (V_{gs} - V_t)^2$
- Velocity-saturated ON current increases with V_{DD}
 - $I_{ds} = C_{ox} W (V_{gs} - V_t) \nu_{max}$
- Real transistors are partially velocity saturated
 - Approximate with α-power law model
 - $I_{ds} \propto V_{DD}^{\alpha}$
 - $1 < \alpha < 2$ determined empirically
α-Power Model

\[
I_{ds} = \begin{cases}
0 & V_{gs} < V_{t} \\
I_{dsat} \frac{V_{ds}}{V_{dsat}} & V_{ds} < V_{dsat} \\
I_{dsat} & V_{ds} > V_{dsat}
\end{cases}
\]

- \(I_{dsat} = P_c \beta \frac{V_{gs} - V_{t}}{2} \alpha\)
- \(V_{dsat} = P_\nu (V_{gs} - V_{t})^{\alpha/2}\)

α, β, \(P_c\), and \(P_\nu\) are parameters determined empirically from a curve-fit of I-V characteristics.

Channel Length Modulation

- Reverse-biased p-n junctions form a **depletion region**
 - Region between n and p with no carriers
 - Width of depletion \(L_d\) region grows with reverse bias
 - \(L_{eff} = L - L_d\)
- Shorter \(L_{eff}\) = more current
 - \(I_{ds}\) increases with \(V_{ds}\)
 - Even in saturation

- [Diagram of depletion region and channel length modulation](image)
Channel Length Modulation I-V

\[I_{ds} = \frac{\beta}{2} (V_{gs} - V_t)^2 (1 + \lambda V_{ds}) \]

\[\lambda = \text{channel length modulation coefficient} \]
- Not feature size
- Empirically fit to I-V characteristics

Body Effect

- \(V_t \): gate voltage necessary to invert channel
- Increases if source voltage increases because source is connected to the channel
- Increase in \(V_t \) with \(V_s \) is called the body effect

Body Effect Model

\[V_t = V_{t0} = \gamma \left(\sqrt{\phi_s + V_{sb}} - \sqrt{\phi_s} \right) \]

\(\phi_s \) = surface potential at threshold
- Depends on doping level \(N_A \)
- As well as intrinsic carrier concentration \(n_i \)

\(\gamma \) = body effect coefficient

\[\gamma = \frac{t_{ox}}{\varepsilon_{ox}} \sqrt{2q\varepsilon Si N_A} \]

\[\frac{\sqrt{2q\varepsilon Si N_A}}{C_{ox}} \]
OFF Transistor Behavior

- What about current in cutoff?
- Simulated results don’t match measurements
- What differs?
 - Current doesn’t go to 0 in cutoff

Leakage Sources

- Subthreshold conduction
 - Transistors can’t abruptly turn ON or OFF
- Junction leakage
 - Reverse-biased PN junction diode current
- Gate leakage
 - Tunneling through ultrathin gate dielectric
- Subthreshold leakage is the biggest source of leakage in modern transistors

Subthreshold Leakage

- Subthreshold leakage is exponential with V_{gs}

 $$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_t}{nV_T}} \left(1 - e^{-\frac{V_{ds}}{V_T}} \right), \quad I_{ds0} = \beta V_T^2 e^{1.8}$$

- n is process dependent, typically 1.4 – 1.5
Other Leakage Sources

Drain-Induced Barrier Lowering (DIBL)
- Drain Voltage also affects V_t ($V'_t = V_t - \eta V_{ds}$)
- High drain voltage causes subthreshold leakage to increase

Junction Leakage
- Reverse-biased p-n junctions have some leakage
 $$I_D = I_S \left(\frac{V_D}{e^{VT} - 1} \right)$$
- I_S depends on doping levels
 - As well as area and perimeter of diffusion regions
 - Typically $< 1 \text{ fA/\mu m}^2$

Gate Leakage
- Carriers may tunnel through very thin gate oxides
- Negligible for older processes
- Becoming critically important for nanoscale transistors
- However, use of metal gates and rare-earth dielectrics (Hf) may reduce this significantly

Predicted tunneling current (from Song, 2001)
Temperature Sensitivity

- Increasing temperature
 - Reduces mobility
 - Reduces V_t
- I_{ON} decreases with temperature
- I_{OFF} increases with temperature

So What?

- So what if transistors are not ideal?
 - They still behave like switches, and isn’t that enough for digital logic?
- But these effects matter for . . .
 - Supply voltage choice
 - Logical effort
 - Quiescent power consumption
 - Pass transistors
 - Temperature of operation
Parameter Variations

- Transistors have uncertainty in parameters
 - Process: L_{eff}, V_t, t_{ox} of nMOS and pMOS
 - Vary around typical (T) values

- Fast (F)
 - L_{eff}: short
 - V_t: low
 - t_{ox}: thin

- Slow (S): opposite

- Not all parameters are independent for nMOS and pMOS

Environmental Variation

- V_{DD} and T also vary in time and space
- Fast:
 - V_{DD}: high
 - T: low

<table>
<thead>
<tr>
<th>Corner</th>
<th>Voltage</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1.98</td>
<td>0°C</td>
</tr>
<tr>
<td>T</td>
<td>1.8</td>
<td>70°C</td>
</tr>
<tr>
<td>S</td>
<td>1.62</td>
<td>125°C</td>
</tr>
</tbody>
</table>
Process Corners

- Process corners describe worst case variations
 - If a design works in all corners, it will probably work for any variation
- Describe corner with four letters (T, F, S)
 - nMOS speed
 - pMOS speed
 - Voltage
 - Temperature

Important Corners

Some critical simulation corners include

<table>
<thead>
<tr>
<th>Purpose</th>
<th>nMOS</th>
<th>pMOS</th>
<th>V_{DD}</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle time</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Power</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Subthreshold leakage</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>Pseudo-nMOS</td>
<td>S</td>
<td>F</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Causes of Variations?

Minimum Feature Size

<table>
<thead>
<tr>
<th>Feature Size (microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.01</td>
</tr>
</tbody>
</table>

- Human hair, 100 μm
- Amoeba, 15 μm
- Red blood cell, 7 μm
- AIDS virus, 0.1 μm
- Buckyball, 0.001 μm
Features Smaller than Wavelengths

What is drawn is not what is printed on silicon

Source: Raul Camposano, Synopsys

Random Dopant Fluctuations
Dynamic Temperature Variations

Thermal Map – 1.5 GHz Itanium Chip

Dynamic Voltage and Power Variations

Voltage variations

Power variations