
21. Interrupts November 12, 2018
Chapter 10

• Review

• Transfer control for I/O operations

• Polling

• Interrupt-driven I/O

• Priority

• Processor state

• Example

Review: Transfer Control

Who determines when the next data transfer occurs?

Polling
• CPU keeps checking status register until

new data arrives OR device ready for next data

• “Are we there yet? Are we there yet? Are we there yet?”

Interrupts
• Device sends a special signal to CPU when

new data arrives OR device ready for next data

• CPU can be performing other tasks instead of polling device.

• “Wake me when we get there.”

Review: LC-3
Memory-mapped I/O (Table A.3)

Asynchronous devices
• synchronized through status registers

Polling and Interrupts
• the details of interrupts are discussed in Chapter 10

Bit [15] is one when device ready to
display another char on screen.

Display Status Register (DSR)xFE04

Character written to bits [7:0] will be
displayed on screen.

Display Data Register (DDR)xFE06

Bits [7:0] contain the last character
typed on keyboard.

Keyboard Data Reg (KBDR)xFE02

Bit [15] is one when keyboard has
received a new character.

Keyboard Status Reg (KBSR)xFE00

FunctionI/O RegisterLocation

Review: Input from Keyboard

When a character is typed:

• its ASCII code is placed in bits [7:0] of KBDR
(bits [15:8] are always zero)

• the “ready bit” (KBSR[15]) is set to one

• keyboard is disabled -- any typed characters will be ignored

When KBDR is read:

• KBSR[15] is set to zero

• keyboard is enabled

KBSR

KBDR
15 8 7 0

1514 0

keyboard data

ready bit

Review: Basic Input Routine

new
char?

read
character

YES

NO

Polling

POLL LDI R0, KBSRPtr

 BRzp POLL

 LDI R0, KBDRPtr

 ...

KBSRPtr .FILL xFE00

KBDRPtr .FILL xFE02

Review: Simple Implementation: Memory-Mapped
Input

Address Control Logic
determines whether
MDR is loaded from

Memory or from KBSR/KBDR.

Review: Output to Monitor

When Monitor is ready to display another character:

• the “ready bit” (DSR[15]) is set to one

When data is written to Display Data Register:

• DSR[15] is set to zero

• character in DDR[7:0] is displayed

• any other character data written to DDR is ignored
(while DSR[15] is zero)

DSR

DDR
15 8 7 0

1514 0

output data

ready bit

Review: Basic Output Routine

screen
ready?

write
character

YES

NO

Polling

POLL LDI R1, DSRPtr

BRzp POLL

STI R0, DDRPtr

...

DSRPtr .FILL xFE04

DDRPtr .FILL xFE06

Review: Simple Implementation: Memory-Mapped
Output

Sets LD.DDR
or selects

DSR as input.

Review: Keyboard Echo Routine

Usually, input character is also printed to screen.

• User gets feedback on character typed
and knows its ok to type the next character.

new
char?

read
character

YES

NO

screen
ready?

write
character

YES

NO

POLL1 LDI R0, KBSRPtr

BRzp POLL1

LDI R0, KBDRPtr

POLL2 LDI R1, DSRPtr

BRzp POLL2

STI R0, DDRPtr

...

KBSRPtr .FILL xFE00

KBDRPtr .FILL xFE02

DSRPtr .FILL xFE04

DDRPtr .FILL xFE06

Interrupt-Driven I/O

External device can:

(1) Force currently executing program to stop;

(2) Have the processor satisfy the device’s needs; and

(3) Resume the stopped program as if nothing happened.

Why?

• Polling consumes a lot of cycles,
especially for rare events – these cycles can be used
for more computation.

• Example: Process previous input while collecting
current input. (See Example 8.1 in text.)

Interrupt-Driven I/O

To implement an interrupt mechanism, we need:

• A way for the I/O device to signal the CPU that an
interesting event has occurred.

• A way for the CPU to test whether the interrupt signal is set
and whether its priority is higher than the current program.

Generating Signal

• Software sets "interrupt enable" bit in device register.

• When ready bit is set and IE bit is set, interrupt is signaled.

KBSR
1514 0

ready bit
13

interrupt enable bit

interrupt signal
to processor

Priority

Every instruction executes at a stated level of urgency.

LC-3: 8 priority levels (PL0-PL7)

• Example:

Payroll program runs at PL0.

Nuclear power correction program runs at PL6.

• It’s OK for PL6 device to interrupt PL0 program,
but not the other way around.

Priority encoder selects highest-priority device,
compares to current processor priority level,
and generates interrupt signal if appropriate.

Testing for Interrupt Signal

CPU looks at signal between STORE and FETCH phases.

If not set, continues with next instruction.

If set, transfers control to interrupt service routine.

EAEA

OPOP

EXEX

SS

FF

DD

interrupt
signal?

Transfer to
ISR

Transfer to
ISR

NO

YES

Details in Chapter 10

Full Implementation of LC-3 Memory-Mapped I/O

Because of interrupt enable bits, status registers (KBSR/DSR)
must be written, as well as read.

Interrupt-Driven I/O (Part 2)

Interrupts were introduced in Chapter 8

1. External device signals need to be serviced

2. Processor saves state and starts service routine

3. When finished, processor restores state and resumes program

Chapter 8 didn’t explain how (2) and (3) occur,
because it involves a stack

Now, we’re ready…

Interrupt is an unscripted subroutine
call,

triggered by an external event.

Processor State

What state is needed to completely capture the
state of a running process?

Processor Status Register
• Privilege [15], Priority Level [10:8], Condition Codes [2:0]

Program Counter
• Pointer to next instruction to be executed.

Registers

• All temporary state of the process that’s not stored in memory.

Where to Save Processor State?

Can’t use registers.

• Programmer doesn’t know when interrupt might occur,
so she can’t prepare by saving critical registers.

• When resuming, need to restore state exactly as it was.

Memory allocated by service routine?
• Must save state before invoking routine,

so we wouldn’t know where.

• Also, interrupts may be nested –
that is, an interrupt service routine might also get interrupted!

Use a stack!
• Location of stack “hard-wired”.

• Push state to save, pop to restore.

Supervisor Stack

A special region of memory used as the stack
for interrupt service routines

• Initial Supervisor Stack Pointer (SSP) stored in Saved.SSP

• Another register for storing User Stack Pointer (USP):
Saved.USP

Want to use R6 as stack pointer

• So that our PUSH/POP routines still work

When switching from User mode to Supervisor mode
(as result of interrupt), save R6 to Saved.USP

Invoking the Service Routine – The Details

1. If Priv = 1 (user),
Saved.USP = R6, then R6 = Saved.SSP.

2. Push PSR and PC to Supervisor Stack.

3. Set PSR[15] = 0 (supervisor mode).

4. Set PSR[10:8] = priority of interrupt being serviced.

5. Set PSR[2:0] = 0.

6. Set MAR = x01vv, where vv = 8-bit interrupt vector
provided by interrupting device (e.g., keyboard = x80).

7. Load memory location (M[x01vv]) into MDR.

8. Set PC = MDR; now first instruction of ISR will be fetched.

Note: This all happens between
the STORE RESULT of the last user instruction and
the FETCH of the first ISR instruction.

Returning from Interrupt

Special instruction – RTI – that restores state.

1. Pop PC from supervisor stack. (PC = M[R6]; R6 = R6 + 1)

2. Pop PSR from supervisor stack. (PSR = M[R6]; R6 = R6 + 1)

3. If PSR[15] = 1, R6 = Saved.USP.
(If going back to user mode, need to restore User Stack Pointer.)

RTI is a privileged instruction.
• Can only be executed in Supervisor Mode

• If executed in User Mode, causes an exception
(More about that later)

Example

/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

x3006PC

Program A

ADDx3006

Executing ADD at location x3006 when Device B interrupts

Executing AND at x6202 when Device C interrupts.

Saved.SSP
ISR for
Device B

AND

x6210 RTI

ISR for
Device C

x6300

x6315 RTI

x6202

Example (1)

PC

Saved.SSP

Example (2)

PC

Program A ISR for
Device B

Example (3)

PC

Program A ISR for
Device B

Example (4)

/ / / / / /

PC

Example (5)

/ / / / / /

PC

Example (6)

/ / / / / /

PC

Exception: Internal Interrupt

When something unexpected happens
inside the processor, it may cause an exception

Examples:

• Privileged operation (e.g., RTI in user mode)

• Executing an illegal opcode

• Divide by zero

• Accessing an illegal address (e.g., protected system memory)

Handled just like an interrupt

• Vector is determined internally by type of exception

• Priority is the same as running program

