
EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 1

EE382V-ICS:
System-on-a-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 10 – High-Level Synthesis

Sources:
Jacob Abraham

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 2

Lecture 13: Outline

• Introduction

• High-level synthesis (HLS)

• Essential issues

• Behavioral specification languages

• Target architectures

• Intermediate representation

• Scheduling/allocation/binding

• Control generation

• High-level synthesis flow

• Source-level optimizations

• Synthesis in temporal domain

• Synthesis in spatial domain

• Directions in high-level synthesis

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 2

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 3

High Level Synthesis (HLS)

• Convert a high-level description of a design to a RTL
netlist
• Input:

– High-level languages (e.g., C)
– Behavioral hardware description languages (e.g., VHDL)
– State diagrams / logic networks

• Tools:
– Parser
– Library of modules

• Constraints:
– Area constraints (e.g., # modules of a certain type)

– Delay constraints (e.g., set of operations should finish in clock cycles)

• Output:
– Operation scheduling (time) and binding (resource)
– Control generation and detailed interconnections

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 4

High Level Synthesis

CDFG

Parsing

Transformation

Synthesis

Structural
RTL

Behavioral
Description

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 3

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 5

StructuralBehavioral

Physical

Trans
Gate

RTL
Processor

Boolean

Algorithm
Application

GDSII

Placement

Floorplan

Physical
Design

Source: D. Gajski, Y.-L. Lin

Y-Chart

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 6

StructuralBehavioral

Physical

Trans
Gate

RTL
Processor

Boolean

Algorithm
Application

GDSII

Placement

Floorplan

Logic
Synthesis

Source: D. Gajski, Y.-L. Lin

Y-Chart

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 4

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 7

StructuralBehavioral

Physical

Trans
Gate

RTL
Processor

Boolean

Algorithm
Application

GDSII

Placement

Floorplan

High-Level Synthesis

Source: D. Gajski, Y.-L. Lin

Y-Chart

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 8

Lecture 10: Outline

 Introduction

• Essential issues

• Behavioral specification languages

• Target architectures

• Intermediate representation

• Scheduling/allocation/binding

• Control generation

• High-level synthesis flow

• Directions in high-level synthesis

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 5

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 9

Behavioral Specification Languages

• First HLS approaches (90’s)
• Popular HDL

– Verilog, VHDL

• Synthesis-oriented HDLs
– UDL/I

• Recent resurgence (00’s)
• Popular legacy programming languages

– C/C++

• Add hardware-specific constructs to existing languages
– SystemC

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 10

FSM Data
Path

FSM Data
Path FSM Data

Path

Finite-State Machine with Data Path

Target Architecture

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 6

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 11

Arch I

Arch II

Arch III

D
elay

Area

Design Space Exploration

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 12

Design Space and Quality Measures

• Design space

• Set of all feasible implementations

• Quality Measures

• Performance
– Cycle-time

– Latency

– Throughput

• Area cost

• Power Consumption

• Testability

• Reusability

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 7

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 13

* *

+

Control Flow Graph

Data Flow Graph

Intermediate Representation

• Control/Data Flow Graph
(CDFG)

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 14

Allocation/Binding

Functional UnitsOperations

StorageVariables
Signals

Bus/Wire/MuxData Transfers

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 8

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 15

RF

FU
FU

RF

Variables/Signals

Data Transfer

Operations

Allocation/Binding

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 16

Controller Generation

Scheduled
CDFG

Allocated
Datapath

Micro-Operations
for

Every Control Step

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 9

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 17

Hardware Variations

• Functional Units
• Pipelined
• Multi-cycle
• Chained
• Multi-function

• Storage
• Register, register file
• Single-/multi-ported RAM, ROM
• FIFO, Scratchpad

• Interconnect
• Bus-based
• Mux-based
• Protocol-based

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 18

Functional Unit Variations

+
**

*
*

-
+

Step 1

Step 2

Step 3

Step 4

+

+
+

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 10

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 19

Storage/Interconnect Variations

RF

FU
FU

RF
Segmented
Buses

Distributed
FIFO

Mux

Chaining

Multi-Port

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 20

Architectural Pipelining

FSM Data
Path

Control pipelining

D
at

a
p

ip
el

in
in

g

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 11

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 21

Lecture 10: Outline

 Introduction

 Essential issues

• High-level synthesis flow

• Source-level optimizations

• Synthesis in temporal domain

• Synthesis in spatial domain

• Directions in high-level synthesis

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 22

Lex

Parse

Compilation
front-end

Behavioral
Optimization

Intermediate
form

Arch synth
Logic synth

Lib Binding HLS backend

x = a + b c + d

+
+

a b c d

+

+

a d b c

Source: R. Gupta

High-Level Synthesis Flow

• Expressions

• Parse tree

 Data-flow graph (DFG)

 Control/data-flow of
basic blocks (CDFG)

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 12

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 23

Behavioral Optimization

• Data-flow transformations from software compilation

• Tree height reduction
– Balance expression tree, expose parallelism

• Constant and variable propagation (a = 1; c = 2 * b; → c = 2;)

• Common sub-expression elimination (a=x+y; c=x+y; → c = a;)

• Dead-code elimination

• Operator strength reduction (e.g., *4 → << 2)

• Control-flow transformations for hardware

• Conditional expansion
– If (c) then x=A else x=B

 compute A and B in parallel, x=(C)?A:B

• Loop expansion
– Instead of three iterations of a loop, replicate the loop body three times

A
B x

c

Source: R. Gupta

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 24

Tree-Height Reduction

• Commutativity and associativity

• x = a + b * c + d → x = (a + d) + b * c

• Distributivity

• x = a * (b * c * d + e) → x = a * b * c * d + a * e;

+

+

*

a b c d

*+

+

a b cd

*

+

*

*

a b c d e

+

* *

* *

a b c d ea

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 13

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 25

Architectural Synthesis

• Deals with “computational” behavioral descriptions
• Behavior as sequencing graph

(called dependency graph, or data flow graph DFG)
• Hardware resources as library elements

– Pipelined or non-pipelined
– Resource performance in terms of execution delay

• Constraints on operation timing
• Constraints on hardware resource availability
• Storage as registers, data transfer using wires

• Objective
• Generate a synchronous, single-phase clock circuit
• Might have multiple feasible solutions (explore tradeoff)
• Satisfy constraints, minimize objective:

– Maximize performance subject to area constraint
– Minimize area subject to performance constraints

Source: R. Gupta

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 26

Synthesis in Temporal Domain

• Scheduling and binding in different order or together
• Schedule is a mapping of operations to time slots (cycles)
• Scheduled sequencing graph is a labeled graph

+

NOP

 + <
-

-
NOP

1

2
3

4

+

NOP

+

<
-

-

NOP

1

2
3

4

Source: R. Gupta

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 14

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 27

Operation Types

• For each operation, define its type

• For each resource, define a resource type,
and a delay (in terms of # cycles)

• T is a relation that maps an operation to a resource type
that can implement it
• T : V {1, 2, ..., nres}

• More general case:
• A resource type may implement more than one operation

type (e.g., ALU)

• Resource binding:
• Map each operation to a resource with the same type
• Might have multiple options

Source: R. Gupta

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 28

Synthesis in Spatial Domain

• Resource sharing
• More than one operation bound to same resource
• Operations have to be serialized
• Can be represented using hyperedges (define vertex

partition)

+

NOP

 + <

-

-

NOP

1

2
3

4

Source: R. Gupta

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 15

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 29

Scheduling and Binding

 Resource dominated

 Control dominated

• Resource constraints:
• Number of resource instances of each type

{ak : k=1, 2, ..., nres}

• Scheduling:
• Labeled vertices (v3)=1

• Binding:
• Hyperedges (or vertex partitions) (v2)=adder1

• Cost:
• Number of resources area
• Registers, steering logic (Muxes, busses), wiring, control unit

• Delay:
• Start time of the “sink” node
• Might be affected by steering logic and schedule (control)
 Resource-dominated vs. ctrl-dominated

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 30

Architectural Optimization

• Optimization in view of design space flexibility

• A multi-criteria optimization problem:
• Determine schedule and binding .
• Under area , latency and cycle time objectives

• Find non-dominated points in solution space

• Solution space tradeoff curves:
• Non-linear, discontinuous
• Area / latency / cycle time (more?)

• Evaluate (estimate) cost functions

 Unconstrained optimization problems for resource
dominated circuits:
• Min area: solve for minimal binding
• Min latency: solve for minimum scheduling

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 16

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 31

Scheduling and Binding

• Cost and determined by both and
• Also affected by floorplan and detailed routing

• affected by :

• Resources cannot be shared among concurrent ops

• affected by :

• Resources cannot be shared among concurrent ops

• When register and steering logic delays added to
execution delays, might violate cycle time

• Order?

• Apply either one (scheduling, binding) first

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 32

How Is the Datapath Implemented?

• Assuming the following schedule and binding
• Wires between

modules?
• Input selection?
• How does binding/

scheduling affect
congestion?

• How does binding/
scheduling affect
steering logic?

+

+

<

-

-

1

2

3

4

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 17

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 33

Lecture 10: Outline

 Introduction

 Essential issues

 High-level synthesis flow

• Directions in high-level synthesis

• Term rewriting systems

• C-based high-level synthesis

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 34

Term Rewriting for High Level Synthesis

• Research at MIT (Arvind group)

• New programming language to facilitate high level
synthesis

• Object oriented

• Rich types

• Higher-order functions

• Transformable

• Borrows from Haskell
– Functional programming

• Commercial: Bluespec

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 18

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 35

Term Rewriting Systems: Example

• Terms: GCD(x,y)

• Euclid’s algorithm for Greatest Common Denominator

• Rewrite rules:

• GCD(x,y)) GCD(y,x) if x > y, y 0

• GCD(x,y)) GCD(x,y-x) if x · y, y 0

• Initial term: GCD(initX, initY)

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 36

TRS Used to Describe Hardware

• Terms represent the state
• Registers, FIFOs, memories

• Rewrite rules: conditions) action
• Represent the behavior in terms of actions on the state
• Guarded atomic actions

• Language support to organize state and rules into
modules

• Can provide view of Verilog or C modules

 Synthesize the control logic (scheduling)
 Not full HLS (allocation, binding manual)

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 19

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 37

interface

module

Source: Arvind, MIT

Bluespec: Modules

• All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
• Behavior is expressed in terms of atomic actions on the

state
• Rules can manipulate state in other modules only via

their interfaces.

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 38

Euclid’s algorithm for computing the Greatest Common
Divisor (GCD):

15 6
9 6 subtract

3 6 subtract

6 3 swap

3 3 subtract

0 3 subtractanswer:

Programming with Rules: GCD

Source: Arvind, MIT

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 20

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 39

module mkGCD (I_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swap ((x > y) && (y != 0));
x <= y; y <= x;

endrule
rule subtract ((x <= y) && (y != 0));

y <= y – x;
endrule

method Action start(int a, int b) if (y==0);
x <= a; y <= b;

endmethod
method int result() if (y==0);

return x;
endmethod

endmodule

Internal
behavior

External
interface

State

typedef int Int#(32)

Assumes x /= 0 and y /= 0

x y

swap sub

GCD in Bluespec Verilog (BSV)

Source: Arvind, MIT

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 40

x_en y_en

x_en = swap? OR start_en
y_en = swap? OR subtract? OR start_en

x y

> !(=0)

swap? subtract?

sub

x
y

en
rdy

x
rdy

st
ar

t
re

su
lt

rdy = (y==0)

start_en start_en

Generated Hardware Module

Source: Arvind, MIT

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 10

© 2010 A. Gerstlauer 21

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 41

Lecture 10: Outline

 Introduction

 Essential issues

 High-level synthesis flow

• Directions in high-level synthesis

Term rewriting systems

• C-based high-level synthesis
Catapult C

Catapult C® Synthesis
High Level Synthesis Webinar

Stuart Clubb
Technical Marketing Engineer
April 2009

Catapult Webinar - April 2009
2

Agenda

 How can we improve productivity?

 C++ Bit-accurate datatypes and modeling

 Using C++ for hardware design
— A reusable, programmable, variable decimator

 Synthesizing, optimizing and verifying our C++
— Live demo

Catapult Webinar - April 2009
3

How can we improve productivity

 Designs bring ever increasing complexity

 More complex designs require more
— Time

— People

— Resources

 Increase of “Gates Per Day” for RTL has stalled
— Time to validate algorithm

— Time to code RTL

— Time to Verify RTL

Catapult Webinar - April 2009
4

Productivity Bottlenecks

 Finding an algorithm’s optimal
hardware architecture and
implementing it in a timely manner

 Reducing the number of bugs
introduced by the RTL design process

 Verification of the RTL implementation
to show that it matches the original
algorithm

Catapult Webinar - April 2009
5

 Manual Steps
1. Define micro-architecture
2. Write RTL
3. Optimize area/speed through

RTL synthesis

 Drawbacks
1. Disconnect causes design errors
2. RTL hard-codes technology

making re-use impractical
3. Manual RTL coding too time-

consuming leading to fewer
iterations and sub-optimal
designs

4. Designs typically overbuilt

Floating Point
Model

Fixed Point
Model

Micro-architecture
Definition

RTL
Design

RTL Area/Timing
Optimization

RTL
Synthesis

Place & Route

Hardware
ASIC/FPGA

Manual
Methods

Logic
Analyzer

+

C/C++

Precision RTL
or DC

ASIC or FPGA
Vendor

Algorithm
Description

S
ys

te
m

 D
es

ig
n

er
H

ar
d

w
ar

e
D

es
ig

n
er

V
en

d
o

r
Typical RTL Design Flow

The RTL Flow: Past History

Catapult Webinar - April 2009
6

Floating Point
Model

Fixed Point
Model

Micro-architecture
Definition

RTL
Design

RTL Area/Timing
Optimization

RTL
Synthesis

Place & Route

Hardware
ASIC/FPGA

Manual
Methods

Logic
Analyzer

+

C/C++

Precision RTL
or DC

ASIC or FPGA
Vendor

Algorithm
Description

S
ys

te
m

 D
es

ig
n

er
H

ar
d

w
ar

e
D

es
ig

n
er

V
en

d
o

r

Typical RTL Design Flow

Traditional Flow vs. Catapult Flow

Hardware
ASIC/FPGA

Place & Route

RTL
Synthesis

Catapult
Synthesis

Constraints

Logic
Analyzer

Floating Point
Model

Fixed Point
Model

Micro-architecture
Definition

RTL
Design

RTL Area/Timing
Optimization

RTL
Synthesis

Place & Route

Hardware
ASIC/FPGA

Manual
Methods

Logic
Analyzer

+

Precision RTL
or DC

ASIC or FPGA
Vendor

Algorithm
Description

S
ys

te
m

 D
es

ig
n

er
H

ar
d

w
ar

e
D

es
ig

n
er

V
en

d
o

r

Typical RTL Design Flow Catapult Design Flow

Floating Point
Model

Fixed Point
Model

Algorithm
Description

+

 Fewer bugs - Safer design flow

 Shorter time to RTL

 More efficient methodology

 Design optimized through
incremental refinement

Catapult Webinar - April 2009
7

C++ Bit Accurate Data Types

 SystemC data types or Mentor Graphics
Algorithmic C data types

 Hardware Designers need exact bit widths
— Extra bits costs gates ($$) and performance ($$)

 Rounding and Saturation are important

 Simulating what you will synthesize is key
— Simulation speed affects validation efforts

Catapult Webinar - April 2009
8

SystemC DataTypes

 Limited Length Integer and Fixed-point
— sc_int/sc_uint – maximum 64-bit integer result

— sc_fixed_fast/sc_ufixed_fast actually based on a double with
maximum 53-bit fixed-point result

— Problems mixing signed and unsigned
 (sc_int<2>) -1 > (sc_uint<2>) 1 returns true!

 Arbitrary Length Integer and Fixed Point
— Resolves most, but not all, issues of ambiguity/compatibility

— Slow simulation with fixed-point

— Fixed point conditionally compiled due to speed
 SC_INCLUDE_FX

Catapult Webinar - April 2009
9

Mentor Graphics “Algorithmic C” types

 Fixed-point and Integer types

 Faster execution on same platform
— >200x faster than SystemC types

 Easy to use, consistent, with no ambiguity

 Parameterized
— Facilitate reusable algorithmic development

 Built in Rounding and Saturation modes

 Freely available for anyone to download

http://www.mentor.com/esl

Catapult Webinar - April 2009
10

Templatized AC Fixed Data Types

 W = Overall Width
 I = Number of integer bits
 S = signed or unsigned (boolean)
 Q = Quantization mode
 O = Overflow mode

ac_fixed<W,I,S,Q,O> my_variable

ac_fixed<8,1,true,AC_RND,AC_SAT> my_variable ;

“0.0000000” 8-bit signed, round & saturate

ac_fixed<8,8,true,AC_TRN,AC_WRAP> my_variable ;

“00000000” 8-bit signed, no fractional bits.

Catapult Webinar - April 2009
11

Using C++ for hardware design

 Function call with all I/O on the interface
— Represents the I/O of the algorithm

 C++ object-oriented reusable hardware
— Technology, implementation, and Fmax independent

— Multiple instantiations of functions (objects) with state
 RTL component instantiation

— Instantiations with differing implementations
 RTL VHDL architectures

Catapult Webinar - April 2009
12

A programmable variable decimator

 Programmable ratio (phases)

 Tap Length based on decimation factor and ‘N’
— x1 decimation = 1 * N taps;

— x4 decimation = 4 * N taps

— x8 decimation = 8 * N taps

 Seamless transitions between output rates
— Two sets of externally programmable coefficients

— Centered delay line access

Catapult Webinar - April 2009
13

Top Level Filter function

 Simple instantiation of templatized class

 Call member function “decimator_shift”

 Write the member function once
— Implement a filter with any tap length, and any data types

void my_filter (
ac_channel<d_type> &data_in,
ratio_type ratio,
bool sel_a,
c_type coeffs_a[N_TAPS_1*N_PHASES_1],
c_type coeffs_b[N_TAPS_1*N_PHASES_1],
ac_channel<d_type> &data_out

) {

static decimator<ratio_type,d_type,c_type,a_type,N_TAPS_1,N_PHASES_1> filter_1 ;

filter_1.decimator_shift(data_in,ratio,sel_a,coeffs_a,coeffs_b,data_out) ;

}

typedef’s for data types
passed to class object

Catapult Webinar - April 2009
14

Data types used in this example

 Use of AC data types for bit-accurate modeling and
Synthesis ensures 100% match between RTL and C++

#define N_TAPS_1 8
#define N_PHASES_1 8
#define LOG_PHASES_1 3

#define DATA_WIDTH 8
#define COEFF_WIDTH 10

typedef ac_fixed<DATA_WIDTH,DATA_WIDTH,true,AC_RND,AC_SAT> d_type ;
typedef ac_fixed<COEFF_WIDTH,1,true,AC_RND,AC_SAT> c_type ;
typedef ac_fixed<DATA_WIDTH+COEFF_WIDTH+7,DATA_WIDTH+7+1,true> a_type ;

// 0 to 7 rate
typedef ac_int<LOG_PHASES_1,false> ratio_type ;

Data type will round and
saturate when written

Full Precision Accumulator
- Saturation is order dependent

3-bit unsigned for decimation ratio

Catapult Webinar - April 2009
15

template <class rType, class dType, class cType, class aType, int N_TAPS, int N_PHASES>
class decimator {

// data members
dType taps[N_TAPS*N_PHASES];
aType acc;
// member functions

public:
decimator() { // default constructor

for (int i=0;i<N_TAPS*N_PHASES;i++) {
taps[i] = 0 ;

}
};
void decimator_shift(

ac_channel<dType> &data_input,
rType ratio,
bool sel_a,
cType coeffs_a[N_TAPS_1*N_PHASES_1],
cType coeffs_b[N_TAPS_1*N_PHASES_1],
ac_channel<dType> &data_out

) ;
} ;

Class Object for FIR filter

taps and accumulator
are private objects

Default constructor
Initializes tap registers
to zero (reset)

Member function prototype

Catapult Webinar - April 2009
16

if(data_input.available(ratio+1)) {
acc = 0 ;
PHASE:for(int phase=0; phase<N_PHASES; phase++) {

SHIFT:for(int z=(N_TAPS*N_PHASES-1);z>=0;z--) {
taps[z] = (z==0) ? data_input.read() : taps[z-1] ;

}

MAC:for(int i=0;i<N_TAPS;i++) {
int tap_offset = (N_PHASES * N_TAPS)/2 - ((ratio.to_int()+1)*N_TAPS/2) ;
int tap_index = (i*(ratio.to_int()+1)) ;
int coeff_index = tap_index + (ratio-phase) ;
tap_index = tap_index + tap_offset ;
cType coeff_read = (sel_a) ? coeffs_a[coeff_index] : coeffs_b[coeff_index] ;
acc += coeff_read * taps[tap_index] ;

}

if (phase==ratio) {
data_out.write(acc) ;
break ;

}
}

}

Decimator code

 Simple, bit-accurate, C++
 Technology independent
 Yes, that’s it – design done

— We need a testbench main()

Phase for decimation
reads

Implied shift register
architecture captures
data streaming in

Seamless, variable
iterations using “break”

Catapult Webinar - April 2009
17

 How does this help?
— ANY interface is possible

— Design is built to the interface

— C++ source remains independent of
the interface

Defining The Hardware Interface
Patented Interface synthesis makes it possible

C/C++

Algorithm
Data Pure C++ has no concept of interfaces

Hardware

IO
(RTL)

IO
Lib

C/C++
Implemented

in
Hardware

IO
Lib

IO
(RTL)

Design

Patent Pending

Catapult Webinar - April 2009
18

Optimizing C++ Algorithms

 Catapult maps physical resources for each variable
in the C++ code

— Wires, handshakes, registers, RAM’s, custom
interfaces, custom components

 Catapult builds efficient hardware optimized to the
constraints of resource bandwidth

 Catapult enables you to quickly find architectural
bottlenecks in an algorithm

 Datapath pipelines are created to meet desired
frequency target

Catapult Webinar - April 2009
19

Verification of Catapult RTL using C++

 Catpult automates
verification of the
synthesized design

 The original C++
testbench can be reused
to verify the design

— RTL or Cycle Accurate
— VHDL or Verilog

 RTL can be replaced with
gate netlist for VCD
driven power analysis of
solutions

Simulator

Golden results DUT results

Original C++
Testbench

Original C++
Design

RTL

Transactor

Transactor

Comparator

Catapult Webinar - April 2009
20

More productive than RTL

 Higher level of abstraction with considerably faster verification

 High Level Synthesis drives implementation details
— Interfaces

— Frequency, latency, throughput

— All based on target technology

 Design reuse and configurability is enhanced

 Hand coded RTL designed for one technology is not always
optimal for another

— Excessive pipelining increases power and area

— Faster technologies allow for more resource sharing at same Fmax

Catapult Webinar - April 2009
21

Synthesizing the Decimator

 90nm example library

 N=8 (filter is effectively 8 taps to 64 taps)

 100M Samples maximum data rate in

 4 micro-architectures to solve the design
— 1, 2, 4, 8 multipliers

— 800MHz down to 100 MHz

 Which is “right” solution?

Catapult Webinar - April 2009
22

Which is the right solution?

 Area => 800MHz

 Power => 100Mhz

— Interesting “saddle” at 400MHz

Catapult Webinar - April 2009
23

Catapult C Synthesis
The Five Key Technologies which Make Catapult C Different

 Key: Synthesize standard ANSI C++
— Not a ‘hardware C’ but pure ANSI C++
— No proprietary extensions, universal standard,

easiest to write & debug

 Optimization for ASIC or FPGA
— Generation of technology optimized RTL

 Incremental design methodology
— Maximum visibility, maximum control

 Interface synthesis
— Interface exploration and optimization

 Integrated SystemC verification
— Provides automatic verification environment
— Pure ANSI C++ in, Verified RTL out

Catapult Webinar - April 2009
24

