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High Level Synthesis (HLS)

• Convert a high-level description of a design to a RTL 
netlist
• Input:

– High-level languages (e.g., C)
– Behavioral hardware description languages (e.g., VHDL)
– State diagrams / logic networks

• Tools:
– Parser
– Library of modules

• Constraints:
– Area constraints (e.g., # modules of a certain type)

– Delay constraints (e.g., set of operations should finish in  clock cycles)

• Output:
– Operation scheduling (time) and binding (resource)
– Control generation and detailed interconnections
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Behavioral Specification Languages

• First HLS approaches (90’s)
• Popular HDL

– Verilog, VHDL

• Synthesis-oriented HDLs
– UDL/I

• Recent resurgence (00’s)
• Popular legacy programming languages

– C/C++

• Add hardware-specific constructs  to existing languages
– SystemC
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Design Space and Quality Measures

• Design space

• Set of all feasible implementations

• Quality Measures

• Performance
– Cycle-time

– Latency

– Throughput

• Area cost

• Power Consumption

• Testability

• Reusability
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* *

+

Control Flow Graph

Data Flow Graph

Intermediate Representation

• Control/Data Flow Graph 
(CDFG)
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Hardware Variations

• Functional Units
• Pipelined
• Multi-cycle
• Chained
• Multi-function

• Storage
• Register, register file 
• Single-/multi-ported RAM, ROM
• FIFO, Scratchpad

• Interconnect
• Bus-based
• Mux-based 
• Protocol-based
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Lecture 10: Outline
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 Essential issues

• High-level synthesis flow

• Source-level optimizations

• Synthesis in temporal domain

• Synthesis in spatial domain

• Directions in high-level synthesis
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x = a + b  c + d
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a b c d

+

+ 

a d b c

Source: R. Gupta

High-Level Synthesis Flow

• Expressions

• Parse tree

 Data-flow graph (DFG)

 Control/data-flow of 
basic blocks (CDFG) 
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Behavioral Optimization

• Data-flow transformations from software compilation

• Tree height reduction
– Balance expression tree, expose parallelism

• Constant and variable propagation (a = 1;  c = 2 * b; → c = 2;)

• Common sub-expression elimination (a=x+y; c=x+y; → c = a;)

• Dead-code elimination

• Operator strength reduction (e.g., *4 → << 2)

• Control-flow transformations for hardware

• Conditional expansion
– If (c) then x=A else x=B

 compute A and B in parallel, x=(C)?A:B

• Loop expansion
– Instead of three iterations of a loop, replicate the loop body three times

A
B x

c

Source: R. Gupta
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Tree-Height Reduction

• Commutativity and associativity

• x = a + b * c + d → x = (a + d) + b * c

• Distributivity

• x = a * (b * c * d + e) → x = a * b * c * d + a * e;

+

+

*

a b c d

*+

+

a b cd

*

+

*

*
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+

* *
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a b c d ea
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Architectural Synthesis

• Deals with “computational” behavioral descriptions
• Behavior as sequencing graph

(called dependency graph, or data flow graph DFG)
• Hardware resources as library elements

– Pipelined or non-pipelined
– Resource performance in terms of execution delay 

• Constraints on operation timing
• Constraints on hardware resource availability
• Storage as registers, data transfer using wires 

• Objective
• Generate a synchronous, single-phase clock circuit
• Might have multiple feasible solutions (explore tradeoff)
• Satisfy constraints, minimize objective:

– Maximize performance subject to area constraint
– Minimize area subject to performance constraints

Source: R. Gupta
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Synthesis in Temporal Domain

• Scheduling and binding in different order or together
• Schedule is a mapping of operations to time slots (cycles)
• Scheduled sequencing graph is a labeled graph
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Operation Types

• For each operation, define its type

• For each resource, define a resource type,
and a delay (in terms of # cycles)

• T is a relation that maps an operation to a resource type 
that can implement it
• T : V  {1, 2, ..., nres}

• More general case:
• A resource type may implement more than one operation 

type (e.g., ALU)

• Resource binding:
• Map each operation to a resource with the same type
• Might have multiple options

Source: R. Gupta
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Synthesis in Spatial Domain

• Resource sharing
• More than one operation bound to same resource
• Operations have to be serialized
• Can be represented using hyperedges (define vertex 

partition)
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Scheduling and Binding

 Resource dominated

 Control dominated

• Resource constraints:
• Number of resource instances of each type

{ak : k=1, 2, ..., nres}

• Scheduling:
• Labeled vertices (v3)=1

• Binding:
• Hyperedges (or vertex partitions) (v2)=adder1

• Cost:
• Number of resources  area
• Registers, steering logic (Muxes, busses), wiring, control unit

• Delay:
• Start time of the “sink” node
• Might be affected by steering logic and schedule (control)
 Resource-dominated vs. ctrl-dominated
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Architectural Optimization

• Optimization in view of design space flexibility

• A multi-criteria optimization problem:
• Determine schedule  and binding .
• Under area , latency  and cycle time  objectives

• Find non-dominated points in solution space

• Solution space tradeoff curves:
• Non-linear, discontinuous
• Area / latency / cycle time (more?)

• Evaluate (estimate) cost functions

 Unconstrained optimization problems for resource 
dominated circuits:
• Min area: solve for minimal binding
• Min latency: solve for minimum  scheduling
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Scheduling and Binding

• Cost  and  determined by both  and 
• Also affected by floorplan and detailed routing

•  affected by :

• Resources cannot be shared among concurrent ops

•  affected by :

• Resources cannot be shared among concurrent ops

• When register and steering logic delays added to 
execution delays, might violate cycle time

• Order?

• Apply either one (scheduling, binding) first
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How Is the Datapath Implemented?

• Assuming the following schedule and binding
• Wires between

modules?
• Input selection?
• How does binding/

scheduling affect
congestion?

• How does binding/
scheduling affect
steering logic?

+











+

<

-

-

1

2

3

4



EE382V-ICS: System-on-Chip (SoC) 
Design

Lecture 10

© 2010 A. Gerstlauer 17

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 33

Lecture 10: Outline

 Introduction

 Essential issues

 High-level synthesis flow

• Directions in high-level synthesis

• Term rewriting systems

• C-based high-level synthesis
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Term Rewriting for High Level Synthesis

• Research at MIT  (Arvind group)

• New programming language to facilitate high level 
synthesis

• Object oriented

• Rich types

• Higher-order functions

• Transformable

• Borrows from Haskell
– Functional programming

• Commercial: Bluespec
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Term Rewriting Systems: Example

• Terms: GCD(x,y)

• Euclid’s algorithm for Greatest Common Denominator

• Rewrite rules:

• GCD(x,y) ) GCD(y,x)       if x > y, y  0

• GCD(x,y) ) GCD(x,y-x)    if x · y, y  0

• Initial term: GCD(initX, initY)
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TRS Used to Describe Hardware

• Terms represent the state
• Registers, FIFOs, memories

• Rewrite rules: conditions ) action
• Represent the behavior in terms of actions on the state 
• Guarded atomic actions

• Language support to organize state and rules into 
modules

• Can provide view of Verilog or C modules

 Synthesize the control logic (scheduling)
 Not full HLS (allocation, binding manual)
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interface

module

Source: Arvind, MIT

Bluespec: Modules

• All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
• Behavior is expressed in terms of atomic actions on the 

state
• Rules can manipulate state in other modules only via 

their interfaces.
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Euclid’s algorithm for computing the Greatest Common 
Divisor (GCD):

15 6
9 6 subtract

3 6 subtract

6 3 swap

3 3 subtract

0 3 subtractanswer:

Programming with Rules: GCD

Source: Arvind, MIT
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module mkGCD (I_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swap ((x > y) &&  (y != 0));
x <= y;  y <= x;

endrule
rule subtract ((x <= y) && (y != 0));

y <= y – x;
endrule

method Action start(int a, int b) if (y==0);
x <= a;  y <= b;

endmethod
method int result() if (y==0);

return x;
endmethod

endmodule

Internal
behavior

External
interface

State

typedef int Int#(32)

Assumes x /= 0 and y /= 0

x y

swap sub

GCD in Bluespec Verilog (BSV)

Source: Arvind, MIT

EE382V-ICS: SoC Design, Lecture 10 © 2010 A. Gerstlauer 40

x_en y_en

x_en = swap? OR start_en
y_en = swap? OR subtract? OR start_en

x y

> !(=0)

swap? subtract?

sub

x
y

en
rdy

x
rdy

st
ar
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Generated Hardware Module

Source: Arvind, MIT
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Lecture 10: Outline

 Introduction

 Essential issues

 High-level synthesis flow

• Directions in high-level synthesis

Term rewriting systems

• C-based high-level synthesis
Catapult C 
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Agenda

 How can we improve productivity?

 C++ Bit-accurate datatypes and modeling

 Using C++ for hardware design
— A reusable, programmable, variable decimator

 Synthesizing, optimizing and verifying our C++
— Live demo
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How can we improve productivity

 Designs bring ever increasing complexity

 More complex designs require more
— Time

— People

— Resources

 Increase of “Gates Per Day” for RTL has stalled
— Time to validate algorithm

— Time to code RTL

— Time to Verify RTL

Catapult Webinar - April 2009
4

Productivity Bottlenecks

 Finding an algorithm’s optimal 
hardware architecture and 
implementing it in a timely manner

 Reducing the number of bugs 
introduced by the RTL design process

 Verification of the RTL implementation 
to show that it matches the original 
algorithm
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 Manual Steps
1. Define micro-architecture
2. Write RTL
3. Optimize area/speed through 

RTL synthesis

 Drawbacks
1. Disconnect causes design errors
2. RTL hard-codes technology 

making re-use impractical
3. Manual RTL coding too time-

consuming leading to fewer 
iterations and sub-optimal 
designs

4. Designs typically overbuilt
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The RTL Flow: Past History
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 Fewer bugs - Safer design flow

 Shorter time to RTL

 More efficient methodology

 Design optimized through 
incremental refinement
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C++ Bit Accurate Data Types

 SystemC data types or Mentor Graphics 
Algorithmic C data types

 Hardware Designers need exact bit widths
— Extra bits costs gates ($$) and performance ($$)

 Rounding and Saturation are important

 Simulating what you will synthesize is key
— Simulation speed affects validation efforts 
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SystemC DataTypes

 Limited Length Integer and Fixed-point
— sc_int/sc_uint – maximum 64-bit integer result

— sc_fixed_fast/sc_ufixed_fast actually based on a double with 
maximum 53-bit fixed-point result

— Problems mixing signed and unsigned
 (sc_int<2>) -1  >  (sc_uint<2>) 1 returns true!

 Arbitrary Length Integer and Fixed Point
— Resolves most, but not all, issues of ambiguity/compatibility

— Slow simulation with fixed-point

— Fixed point conditionally compiled due to speed
 SC_INCLUDE_FX 



Catapult Webinar - April 2009
9

Mentor Graphics “Algorithmic C” types

 Fixed-point and Integer types

 Faster execution on same platform
— >200x faster than SystemC types

 Easy to use, consistent, with no ambiguity

 Parameterized
— Facilitate reusable algorithmic development

 Built in Rounding and Saturation modes

 Freely available for anyone to download

http://www.mentor.com/esl
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Templatized AC Fixed Data Types

 W = Overall Width
 I = Number of integer bits
 S = signed or unsigned (boolean)
 Q = Quantization mode
 O = Overflow mode

ac_fixed<W,I,S,Q,O> my_variable

ac_fixed<8,1,true,AC_RND,AC_SAT> my_variable ;

“0.0000000” 8-bit signed, round & saturate

ac_fixed<8,8,true,AC_TRN,AC_WRAP> my_variable ;

“00000000” 8-bit signed, no fractional bits.
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Using C++ for hardware design

 Function call with all I/O on the interface
— Represents the I/O of the algorithm

 C++ object-oriented reusable hardware
— Technology, implementation, and Fmax independent

— Multiple instantiations of functions (objects) with state
 RTL component instantiation

— Instantiations with differing implementations
 RTL VHDL architectures
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A programmable variable decimator

 Programmable ratio (phases)

 Tap Length based on decimation factor and ‘N’
— x1 decimation = 1 * N taps; 

— x4 decimation = 4 * N taps

— x8 decimation = 8 * N taps

 Seamless transitions between output rates
— Two sets of externally programmable coefficients

— Centered delay line access
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Top Level Filter function

 Simple instantiation of templatized class

 Call member function “decimator_shift”

 Write the member function once
— Implement a filter with any tap length, and any data types

void my_filter (
ac_channel<d_type> &data_in,
ratio_type ratio,
bool sel_a,
c_type coeffs_a[N_TAPS_1*N_PHASES_1],
c_type coeffs_b[N_TAPS_1*N_PHASES_1],
ac_channel<d_type> &data_out

) {

static decimator<ratio_type,d_type,c_type,a_type,N_TAPS_1,N_PHASES_1> filter_1 ;

filter_1.decimator_shift(data_in,ratio,sel_a,coeffs_a,coeffs_b,data_out) ;

}

typedef’s for data types 
passed to class object

Catapult Webinar - April 2009
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Data types used in this example

 Use of AC data types for bit-accurate modeling and 
Synthesis ensures 100% match between RTL and C++

#define N_TAPS_1 8
#define N_PHASES_1 8
#define LOG_PHASES_1 3

#define DATA_WIDTH 8
#define COEFF_WIDTH 10

typedef ac_fixed<DATA_WIDTH,DATA_WIDTH,true,AC_RND,AC_SAT> d_type ;
typedef ac_fixed<COEFF_WIDTH,1,true,AC_RND,AC_SAT> c_type ;
typedef ac_fixed<DATA_WIDTH+COEFF_WIDTH+7,DATA_WIDTH+7+1,true> a_type ;

// 0 to 7 rate
typedef ac_int<LOG_PHASES_1,false> ratio_type ;

Data type will round and 
saturate when written

Full Precision Accumulator
- Saturation is order dependent

3-bit unsigned for decimation ratio
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template <class rType, class dType, class cType, class aType, int N_TAPS, int N_PHASES>
class decimator {

// data members
dType taps[N_TAPS*N_PHASES];
aType acc;
// member functions

public:
decimator() { // default constructor

for (int i=0;i<N_TAPS*N_PHASES;i++) {
taps[i] = 0 ;

}
};
void decimator_shift(

ac_channel<dType> &data_input,
rType ratio,
bool sel_a,
cType coeffs_a[N_TAPS_1*N_PHASES_1],
cType coeffs_b[N_TAPS_1*N_PHASES_1],
ac_channel<dType> &data_out

) ;
} ;

Class Object for FIR filter

taps and accumulator 
are private objects

Default constructor 
Initializes tap registers 
to zero (reset)

Member function prototype

Catapult Webinar - April 2009
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if(data_input.available(ratio+1)) {
acc = 0 ;
PHASE:for(int phase=0; phase<N_PHASES; phase++) {

SHIFT:for(int z=(N_TAPS*N_PHASES-1);z>=0;z--) {
taps[z] = (z==0) ? data_input.read() : taps[z-1] ;

}

MAC:for(int i=0;i<N_TAPS;i++) {
int tap_offset = (N_PHASES * N_TAPS)/2 - ((ratio.to_int()+1)*N_TAPS/2) ;
int tap_index = (i*(ratio.to_int()+1)) ;
int coeff_index = tap_index + (ratio-phase) ;
tap_index = tap_index + tap_offset ;
cType coeff_read = (sel_a) ? coeffs_a[coeff_index] : coeffs_b[coeff_index] ;
acc += coeff_read * taps[tap_index] ;

}

if (phase==ratio) {
data_out.write(acc) ;
break ;

}
}

}

Decimator code

 Simple, bit-accurate, C++
 Technology independent
 Yes, that’s it – design done

— We need a testbench main()

Phase for decimation 
reads

Implied shift register 
architecture captures 
data streaming in

Seamless, variable 
iterations using “break”
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 How does this help?
— ANY interface is possible

— Design is built to the interface

— C++ source remains independent of 
the interface

Defining The Hardware Interface
Patented Interface synthesis makes it possible

C/C++

Algorithm
Data  Pure C++ has no concept of interfaces

Hardware

IO
(RTL)

IO
Lib

C/C++
Implemented

in
Hardware

IO
Lib

IO
(RTL)

Design

Patent Pending
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Optimizing C++ Algorithms

 Catapult maps physical resources for each variable 
in the C++ code

— Wires, handshakes, registers, RAM’s, custom 
interfaces, custom components

 Catapult builds efficient hardware optimized to the 
constraints of resource bandwidth

 Catapult enables you to quickly find architectural 
bottlenecks in an algorithm

 Datapath pipelines are created to meet desired 
frequency target
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Verification of Catapult RTL using C++

 Catpult automates 
verification of the 
synthesized design

 The original C++ 
testbench can be reused 
to verify the design

— RTL or Cycle Accurate
— VHDL or Verilog

 RTL can be replaced with 
gate netlist for VCD 
driven power analysis  of 
solutions

Simulator

Golden results DUT results

Original C++ 
Testbench

Original C++ 
Design

RTL

Transactor

Transactor

Comparator
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More productive than RTL

 Higher level of abstraction with considerably faster verification

 High Level Synthesis drives implementation details
— Interfaces

— Frequency, latency, throughput

— All based on target technology

 Design reuse and configurability is enhanced

 Hand coded RTL designed for one technology is not always 
optimal for another

— Excessive pipelining increases power and area

— Faster technologies allow for more resource sharing at same Fmax
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Synthesizing the Decimator

 90nm example library

 N=8 (filter is effectively 8 taps to 64 taps)

 100M Samples maximum data rate in

 4 micro-architectures to solve the design
— 1, 2, 4, 8 multipliers

— 800MHz down to 100 MHz

 Which is “right” solution?
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Which is the right solution?

 Area => 800MHz

 Power => 100Mhz

— Interesting “saddle” at 400MHz
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Catapult C Synthesis
The Five Key Technologies which Make Catapult C Different

 Key: Synthesize standard ANSI C++
— Not a ‘hardware C’ but pure ANSI C++
— No proprietary extensions, universal standard, 

easiest to write & debug

 Optimization for ASIC or FPGA
— Generation of technology optimized RTL

 Incremental design methodology
— Maximum visibility, maximum control

 Interface synthesis
— Interface exploration and optimization 

 Integrated SystemC verification
— Provides automatic verification environment
— Pure ANSI C++ in, Verified RTL out
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