SoC Manufacturing Test

- SoC Testability Features
 - Boundary Scan
 - P1500 standard
- SoC Testing Costs
- Built-In Self Test
- · Testing Mixed-Signal Components
 - "Alternate" test
- Defect Tolerance
- Error Detection and Fault Tolerance
- Loopback test of Mixed-Signal SoCs

SoC Design - ICS, Fall 2010 November 13, 2010

J. A. Abraham

Partitioning for SoC Test

- Partition according to test methodology:
 - Logic blocks
 - Memory blocks
 - Analog blocks
- Provide test access:
 - Boundary scan
 - Analog test bus
- Provide test-wrappers for cores

SoC Design - ICS, Fall 2010 November 13, 2010

J. A. Abraham

Boundary Scan

- Testing boards is also difficult
 - Need to verify solder joints are good
 - Drive a pin to 0, then to 1
 - · Check that all connected pins get the values
- Through-hold boards used "bed of nails"
- SMT and BGA boards cannot easily contact pins
- Build capability of observing and controlling pins into each chip to make board test easier

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

SoC Manufacturing Test

Boundary Scan (IEEE 1149.1) Boundary Scan Register Μ Device Identification Reg. U Optional User Test Data Register X Optional TDI Bypass Register Decoding Logic Instruction Register DR Clocks and Control IR_Clocks and Control TDO **TMS** Select TCK Enable SoC Design - ICS, Fall 2010 SoC Manufacturing Test J. A. Abraham November 13, 2010

Boundary Scan Interface

 Boundary scan is accessed through five pins

- TCK: test clock

- TMS: test mode select

- TDI: test data in

– TDO: test data out

- TRST*: test reset (optional)

 Chips with internal scan chains can access the chains through boundary scan for unified test strategy.

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

RUNBIST Instruction

- Purpose: Allows issue of BIST command to component through JTAG hardware
- Optional instruction
- Lets test logic control state of output pins
 - 1. Can be determined by pin boundary scan cell
 - 2. Can be forced into high impedance state
- BIST result (success or failure) can be left in boundary scan cell or internal cell
 - Shift out through boundary scan chain
- May leave chip pins in an indeterminate state (reset required before normal operation resumes)

Source: Bushnell and Agrawal

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

SoC Manufacturing Test

Purpose: Bypasses scan chain with 1-bit register

From
TDI
ShiftDR
ClockDR
ClockDR
ClockDR
ClockDR
Source: Bushnell and Agrawal
Soc Design - ICS, Fall 2010
November 13, 2010

BYPASS Instruction

From
TDI
CLK
CLK
CLK
CLK
CLK
CLK
Source: Bushnell and Agrawal
Soc Manufacturing Test
November 13, 2010

Soc Manufacturing Test
22

Additional DFT Components

- Test source: Provides test vectors via on-chip LFSR, counter, ROM, or off-chip ATE.
- Test sink: Provides output verification using on-chip signature analyzer, or off-chip ATE.
- Test access mechanism (TAM): User-defined test data communication structure; carries test signals from source to module, and module to sink; tests module interconnects via test-wrappers; TAM may contain bus, boundary-scan and analog test bus components.
- Test controller: Boundary-scan test access port (TAP); receives control signals from outside; serially loads test instructions in test-wrappers.

Source: H. Kerkhoff

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

SoC Manufacturing Test

racturing re

Test Wrapper for a Core

- Logic added around a core to provide test access to the embedded core
- ☐ Test-wrapper provides for each core input terminal
 - An external test mode Wrapper element observes core input terminal for interconnect test
 - An internal test mode Wrapper element controls state of core input terminal for testing the logic inside core
 - For each core output terminal
 - A normal mode Host chip driven by core terminal
 - An external test mode Host chip is driven by wrapper element for interconnect test
 - An internal test mode Wrapper element observes core outputs for core test

Source: H. Kerkhoff

SoC Design - ICS, Fall 2010 November 13, 2010

J. A. Abraham

SoC Manufacturing Test

Goals of IEEE P1500

- Core test interface between embedded core and system chip
- Test reuse for embedded cores
- Testability guarantee for system interconnect and logic
- Improve efficiency of test between core users and core providers

Source: H. Kerkhoff

SoC Design - ICS, Fall 2010 November 13, 2010

J. A. Abraham

SoC Manufacturing Test

Built-In Self Test (BIST)

- Increasing circuit complexity, tester cost
 - Interest in techniques which integrate some tester capabilities on the chip
 - Reduce tester costs
 - Test circuits at speed (more thoroughly)
- · Approach:
 - Compress test responses into "signature"
 - Pseudo-random (or pseudo-exhaustive)
 pattern generator (PRG) on the chip
- Integrating pattern generation and response evaluation on chip – BIST

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

SoC Manufacturing Test

Why is Conventional Test Successful? • Two innovations have allowed test to keep

- Two innovations have allowed test to keep up with complex designs
- The stuck-at fault model
 - the model allows structural test generation, with a number of faults which is linear in the size of the circuit
- Partitioning the circuit
 - partitioning the circuit (with scan latches for example), alleviates the test problem so that test generation does not have to deal with the entire circuit
- Do these two assumptions hold for Deep soc Deep soc Deep soc Deep soc Deep soc Deep soc Manufacturing Test November 13, 2010

Defects in DSM Technologies

- Experiments on real chips (e.g., Stanford University)
 - Stuck-at tests do not detect some defects unless they are applied at speed
- Resistive opens comprise the bulk of test escapes in one production line
 - Likely in copper interconnect cause delay faults
- Delay faults identified as the cause of most test escapes on another line
 - Speed differences of up to a factor of 1.5 can exist between fast and slow devices - problems with "speed binning"

"speed binning"
SoC Design - ICS, Fall 2010
J. A. Abraham
SoC Manufacturing
November 1889 Sing possibility of shorts and crosstally

Native-Mode Built-In Self Test

- Functional capabilities of processors can be used to replace BIST hardware – (UT research, published in ITC 1998)
- Application to self-test of processors at Intel FRITS method applied to Pentium 4, Itanium (Published in ITC 2002)

Hardware for MISR

SoC Design - ICS, Fall 2010 .

November 13, 2010

J. A. Abraham

Software implementation

of MISR
for each data value D; {
 Shift_Right_Through_Carry(S);
 if (Carry) { S = XOR(S, polynomial) }
 S = XOR(S, D;)
}

SoC Manufacturing Test

Native-Mode Self Test for Processors

- Random instructions can be run from cache and results compressed into a signature
- Implementation in Intel FRITS system showed benefits for real chips (Pentium 4, Itanium)
- Technique can be used for self-test of an embedded processor in a System-on-Chip
- Is it possible to now use this processing capability to test other modules (digital, analog/mixed-signal and RF) on the SoC?
 - -First, can the processor test be improved to detect realistic defects, e.g., small delays?

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

Are Random Tests Sufficient?

- Intel implementation involved code in the cache which generated random instruction sequences
- Interest in generating instructions targeting faults
- Possible to generate instruction sequences which will test for an internal stuck-at fault in a module (Gurumurthy, Vasudevan and Abraham, ITC 2006)
- In order to deal with defects in DSM technologies, need to target small delay defects
- Recent work: automatically generate instruction sequences which will target small delay defects in an internal module (Gurumurthy, Vemu, Abraham and Saab, European Test Symposium (ETS) 2007)

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

Instruction mapping using bounded model checking

- Uses symbolic model verifier's (SMV) bounded model checking option (BMC)
 - -Provides verification result up to a given bound
 - Accepts properties written in linear temporal logic (LTL)
 - -Generates a counterexample if property fails
- Expresses the controllability and observability constraints in LTL
- Extracts instruction sequence from the counterexample

SoC₉Design - ICS, Fall 2010 November 13, 2010

J. A. Abraham

45

Application to stuck-at faults

- Used a commercial ATPG engine at the module level
- Mapped sequences generated by the ATPG engine
- No feedback
 - No additional effort if the sequence generated for a fault is not mappable
- Targeted hard-to-detect faults with this approach
- Able to achieve 82% fault coverage
 - -Up from 68% through random instructions

SoCoDesign - ICS, Fall 2010 November 13, 2010 J. A. Abraham

Test for Small Delay Defects

- Weighted random instructions will give good coverage for hard defects
- Need to test paths in the circuit to detect small delay defects
- However, the number of paths in a circuit can be exponential in the number of nodes
- Solution: test the longest path through every node
 - This will detect the smallest possible delay increase which will cause the circuit to fail
- Total number of tests linear in number of nodes

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

SoC Manufacturing Test

47

Automatic Generation of Instruction Sequences for Small Delay Defects

Phase 1: all paths above delay threshold

Phase 2: longest paths through all nodes Delay-Based ATPG: generate "TRUE" paths above given delay threshold

Functional mapping: use verification engine

Feedback: heuristics to speed up search

Functional mapping - Illustrated

- Transformed model and property given to BMC
- Counterexample, if produced, satisfies the excitation, controllability and robustness constraints
- Fails the assertion → some output is different between faulty and correct logic
- Values for 'insn_input' in counterexample trace gives the required instruction sequence

SoC Design - ICS, Fall 2010 November 13, 2010

J. A. Abraham

51

Feedback

- Many paths generated by DATPG are not functionally feasible
- Many non-functional paths have a common nonfunctional sub-path
- Process of identifying the maximal non-functional sub-path in a given path is time consuming - O(n²) iterations needed
- Fact first few nodes in consecutive paths produced by DATPG are generally the same

UT Austin, ECE Department

Experimental setup

- OR1200
 - Open source RISC processor
 - -5 stage pipeline
 - Source code and documentation available from

www.opencores.org

Synthesized using TSMC's 0.18uArtisan technology No. of instructions in OR1200 ISA

No. of 15878 combinational

No. of sequential elements

1594

SoC Design - ICS, Fall 2010 November 13, 2010

J. A. Abraham

53

Results

Phase1: Threshold 80% of clock

Paths	Yes	No	Timed out
27424	15118	12106	200

Phase2: Results for some modules

N → Node coverage efficiency

Percentage of nodes for which mapping produced a test or rejected all paths given by DATPG

Yes - Functionally feasible

Not functionally feasible

Module	Yes	No	Rejecte d Sub- paths	N(%)
ctrl	1826	29191	68087	91
alu	1427	16985	2716	100
Isu	970	4077	3744	100
wbmux	1146	2285	2118	100

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

N	96%	
Average mapping time	18.85se cs	

Test Access Mechanisms for SoC Test

- Non-functional access
 - Uses a kind of access to core not allowed during the normal functional operation
 - Generally based on scan chains or other design for test (DFT) structures
 - Can also use the embedded processor as the test source/sink → Needs wrappers around the core under test
- Functional access
 - Embedded processor is the test source/sink → No DFT structures or wrappers around the cores

Non-functional TAMs

- Boundary scan based
 - Uses the JTAG/boundary scan mechanism to load/capture the tests
 - Slow since the access is serial
- Direct access based
 - Direct access to core test pins given through external pins
 - Faster
 - High overhead to route the access pins and also multiple pins required

57

Functional TAMs for Testing Cores

- Software-Based Self Test: Use the intelligence of the embedded processor to test the SOC
- At-speed tests are possible
- Cores in the SOC can be of three kinds
 - White box -- internals visible, structure changeable
 - 2. Grey box all the internals visible, but structure of the core cannot be changed
 - Black box no internals visible, no change can be made on the core
- Any methodology for testing black box cores should not depend on knowledge of the core's internals

Approach to Testing Cores

- Uses functional TAM
- Uses pre-existing vectors
- Generates software to be loaded on to the embedded processor
 - Gurumurthy, Sambamurthy and Abraham, Int'l Test Synthesis Workshop (ITSW) 2008

Pre-Existing Vectors

- If using a core bought from vendor
 - Vectors might also be provided by the vendor
- Reusing a core
 - Vectors from the previous use
- Newly designed core
 - Validation vectors
- Only constraint: these vectors must be functional test patterns for the core

Reverse Driver

- Parses the vector sequence to generate the data set to be sent to the core being tested
- Is specific to each core as many as the number of driver programs
- Only overhead involved
- Generates the output in a format readable by the driver program

61

Reverse Driver - Illustration

- Peripheral core communicating with external environment (send/receive 32-bit data)
- Five 8-bit registers addresses 0 − 4
 - Register 0 Control
 - Registers 1 to 4 Data

Address	Data		
0x00	0x07		
0x01	0x54	Reverse	Send at speed rate
0x02	0xDF	Driver	
0x03	0x71		Data
0x04	0x78		0x0754DF7178
	•		62

Software Generation

- Use the driver program associated with each core being tested
- Driver programs
 - Software code that actually talks with the nonprocessor cores
 - Know about the bus protocol
 - Generally able to take in the data to be sent to the core or read back data from the core
 - Developed as part of designing the SOC

63

Coverage Measurement

- Simulate the SOC using the software generated
 - Platform used SOC validation can be used
- Monitor the core boundaries to capture the pin data
- Fault simulate the core with the captured data

Testing Mixed-Signal SoCs

- Analog test issues
- · Analog test bus
- · "Alternate" tests
- System-level Built-In Self Test
- Testers and test application

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

SoC Manufacturing Test

Testing Analog/Mixed-Signal/RF Circuits

- Have to deal with continuous signals
- Customers want a guarantee of specifications
- A defect may or may not affect the desired behavior of a chip
- Tests are for the specifications, not for defects
- Similar trend in digital: testing for distributed path delays
- Test costs are very high if every specification has to be tested

"Alternate Tests"

Analog Test Bus (IEEE 1149.4)

- PROs:
 - Usable with digital JTAG boundary scan
 - Adds analog testability both controllability and observability
 - Eliminates large area needed for analog test points
- CONs:
 - May have a 5% measurement error
 - C-switch sampling devices couple all probe points capacitively, even with test bus off – requires more elaborate (larger) switches
 - Stringent limit on how far data can move through the bus before it must be digitized to retain accuracy

Source: Bushnell and Agrawal

SoC Design - ICS, Fall 2010 November 13, 2010

J. A. Abraham

SoC Manufacturing Test

Analog Test Bus Diagram

Source: Bushnell
and Agrawal

SoC Design - ICS, Fall 2010 November 13, 2010

J. A. Abraham

SoC Manufacturing Test

anulaciuming resi

Typical Mixed-Signal Test Program

- Open-Shorts
 - Detected wirebond and packaging issues
- Leakage Test Input and Tri-State pads
- · DC Levels Vol, Voh, Vih, Vil of pads
- Digital Tests: SCAN Tests, Memory, Functional Test (@ speed, high speed IO)
- Current tests Dynamic, Special Modes, Standby, Iddq
- Mixed-Signal Test
 - PLL, DAC, ADC, OpAmps, Filters, References, Mixers
 - Gain Stages, Impedance Match, PA, LNA . . .

SoC Design - ICS, Fall 2010 November 13, 2010

J. A. Abraham

SoC Manufacturing Test

Example Device

- Cell-Phone Handset Baseband IC
 - Digital
 - Flash, SRAM, Keypad, LCD, SIM Card, PC & LED interfaces
 - · RISC Controller, DSP, Hardware Co-processors
 - · Embedded SRAM
 - · Embedded ROM
 - Transceiver and Power Management Control
 - Control DAC/ADC
 - · PA, Transceiver
 - Voice CODEC
 - Baseband DAC, ADC
 - PLL
 - Timer
- Voltage References SoC Design ICS, Fall 2010

J. A. Abraham

Single Site Test Program

Tester: Teradyne Catalyst

• Capital Cost: \$2.3 million

Test Times: 10 Seconds

- Test time profile:

DAC/ADCs: 35%
Digital & Memory 30%
Idd 17%
Leakage & O/S: 8%
Reference tests: 5%
PLL: 3%
Test overhead: 2%

SoC Design - ICS, Fall 2010 .I A

November 13, 2010

J. A. Abraham

SoC Manufacturing Test

7

Multi-Site Test

- Multi-Site Test testing more than 1 device at a time
- Parallel Tests testing of multiple devices simultaneously
 - Assumes no resource limitations
- Serial Tests testing executed one site at a time because of resource limitations

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

SoC Manufacturing Test

76

Multisite Mixed-Signal Testing

- Multi-site Functional, Scan, Memory, leakage & continuity test efficiencies are typically high: 85-98%
 - Resource per-pin / site
 - Per Pin PMU leakage & continuity
 - Functional pattern memory behind each pin
 - SCAN Capability, Memory Test Option (per site)
- Mixed-Signal efficiencies are typically driven by resource constraints
 - dedicated vs. shared instruments
 - which drive parallel vs. serial execution

SoC Design - ICS, Fall 2010 November 13, 2010

J. A. Abraham

Multi-Site Tester

A single site tester Test Coverage

- High Resolution AWG & Digitizer Voice Codec

GP DACs & ADCs

– Time Jitter DigitizerPLL

- High Bandwidth AWG & Digitizer BB codec

– DMM References

– Digital Pins with PMU– Digital &

Memory

Leakage & OS

- Instrument requirements for quad site Parallel Testing
 - 4x if each resource is not shared
 - Costly purpose build tester, with instruments shared

SoC Design - ICS, Fall 2010 November 13, 2010

J. A. Abraham

SoC Manufacturing Test

ivianulaciuming re

Parallel Test								
Cell Phone SOC (different device)								
	Multi-Site Efficiency	Tester Cost	Ratio					
Single site	1.00	1.00	1					
Dual site non-shared	1.73	1.32	1.3					
Qual site non-shared	3.00	2.16	1.4					
Multi-Site efficiency goes up faster than tester cost.								
SoC Design - ICS, Fall 2010 November 13, 2010	J. A. Abraham	S	oC Manufacturing Test					

Hard Drive Read Channel Device

Typical device: DAC & ADC, AGC, Filters, Thermal Sensor, OpAmps, ROM, PLL, Digital Signal Processing, Small Memory

# Sites	Catalyst	Efficiency	Tiger	Efficiency
Single	3.19 sec		2.59 sec	
Dual	3.86 sec	79.1%	2.99 sec	84.7%
Triple	4.53 sec	79.0%	3.40 sec	84.5%
Quad	5.18 sec	79.2%	3.80 sec	84.5%

Digital test:

Leakge test:

Idd test:

169ms single site - Catalyst
128ms single site - Catalyst
60ms single site - Catalyst
Signal Processing Overhead:
291ms single site - Catalyst

All other test mixed-signal in nature

SoC Design - ICS, Fall 2010 J. A. Abraham SoC Manufacturing Test November 13, 2010 83

Pipeline Test Example

Site 1	O/S	LKG	Func	PLL	DAC	ADC	Codec
	-PE	-PE	-PE	-TJD	-Dig	-AWG	-LFAC
Site 2	O/S	LKG	Func -	Codec	PLL	DAC	ADC
	-PE	-PE	PE	-LFAC	-TJD	-Dig	-AWG
Site 3	O/S	LKG	Func	ADC	Codec	PLL	DAC
	-PE	-PE	-PE	-AWG	-LFAC	-TJD	-Dig
Site 4	O/S	LKG	Func	DAC	ADC	Codec	PLL
	-PE	-PE	-PE	-Dig	-AWG	-LFAC	-TJD

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

How do we define a failure?

ANY COMBINATION OF
CIRCUIT/PROCESS PARAMETERS
THAT CAUSES ONE OR MORE OF
THE CIRCUITS SPECIFICATIONS TO
BE VIOLATED IS DEFINED TO BE A
FAILURE

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

New Alternate Test Approach

Replace

Expensive specification tests, fully or partially

With

Low-cost, easy-to-perform alternate tests

Such that

No yield loss

Same coverage as specification tests

Source: Chatterjee

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

RF System Specifications

- Transmitter
 - System Gain, Gain Flatness, System IIP3,
 System NF, ACPR, Dynamic range, Modulation quality (Spectral mask), PA switching
- Receiver
 - System Gain, System IIP3, System NF, LO Stability, Sensitivity, BER/FER, EVM

Source: Chatterjee

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

SoC Manufacturing Test

Test setup: Gain and IIP3 Gain test setup - Single tone input - Gain = $20\log_{10}(A/a)$ dB IIP3 test setup - Two tone test $- IIP3 = a\sqrt{(A/b)}$ OIP3 - Non-linearity test for amplifiers, mixers Also measured for complete systems Source: Chatterjee SoC Manufacturing Test SoC Design - ICS, Fall 2010 J. A. Abraham November 13, 2010

Transmitter Specifications

- Adjacent Channel Power Ratio (ACPR)
 - Amount of energy spilled to adjacent bands
 - Non-linearity measure of transmitter
- Dynamic Range
 - Range of power within which transmitter operates reliably
- Gain Flatness
- Modulation Quality
 - The spectral shape of the modulated signal

Source: Chatterjee

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

SoC Manufacturing Test

Desired Channe

Adjacent Channels

Receiver Specifications

- LO Stability
 - Stability of LO frequency w.r.t. time and environment
- Sensitivity
 - Minimum signal level that the system can detect with acceptable SNR
- BER/FER
 - Error in received bits/frames
- Error Vector Magnitude
 - Quality of modulation
 - Denoted in %

SoC Design - ICS, Fall 2010

November 13, 2010

Source: Chatterjee

J. A. Abraham

Loopback-Based Self-Test

- · Test several blocks at the same time using loopback
 - Measure the combined performance of path
- Advantages
 - Reduced test time
 - No performance degradation from insertion of test points
- Limitations
 - Combined response of nonfunctionally related paths
 - Distortion and noise of signal paths are additive
 - Fault masking
 - Misclassification
- Need to extract performance parameters of individual signal paths

SoC Design - ICS, Fall 2010

November 13, 2010

Loopback + DFT Scheme

- · Provide dynamic performance parameters of individual signal paths
 - Avoid yield loss due to fault masking
- DFT circuitry on loadboard or on chip
 - Implement analog filter and adder as DFT circuitry
 - Reduce silicon cost with minimal pin count (2 dedicated pins)
 - · Compatible with existing loopback scheme
 - Characterize harmonic distortion and noise parameters

Measurement Setup

- Agilent E8257D Signal Generator
- Agilent E4448A Spectrum Analyzer
- Tektronix DPO 7104 Digital Oscilloscope

- Many tuning knobs designed
- Almost every bias point can be adjusted to simulate real case chip variations

(mismatch, supply drop etc.).

SoC Design, Fall 2007 Nov. 12, 2007

SoC Manufacturing Test

Test Procedure: Input Signal

• Two tone signal of 939.9MHz and 940.1MHz at -10dBm

- Tone signal selection is not limited to these values
- Depends on chip applications and specifications to be tested

SoC Design, Fall 2007 Nov. 12, 2007

Testing Non-Electrical Modules – MEMS

- Develop new ways of characterizing and testing MicroElectroMechanical (MEM) systems
 - Use gravity to provide mechanical input
- Reduce test time and cost by using electrical tests to characterize and test mechanical subsystem
 - Correlate electrical and mechanical tests
- Develop and validate approach with measurements on commercial MEM accelerometer

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

Target Accelerometer

- Analog Devices ADXL204
- Dual-axis
- Full scale reading of +/- 1.7 g, 0g => 1.65V
- Saturates beyond full scale non-linear response
- MEM Capacitive Transducer

SoC Design - ICS, Fall 2010 November 13, 2010

J. A. Abraham

SoC Manufacturing Test

1

Capacitor Plates Distance between capacitive plates varies with acceleration C varies with 1/d Source: ADXL204 Product Manual, Analog Devices Inc. SoC Design - ICS, Fall 2010 J. A. Abraham SoC Manufacturing Test November 13, 2010

Accelerometer Function

- Simple first-order model
- · Variation in plate spacing due to displacement, d (caused by an applied acceleration), produces a voltage on output pin
- $\delta V/d$

SoC Design - ICS, Fall 2010 November 13, 2010

J. A. Abraham

Conventional Mechanical Stimulus

- "Shaker": standardized acceleration generator
 - Compare output voltage with expected value from standard acceleration
 - Expensive
- Turn-table: centrifugal force
 - Centrifugal acceleration from rotation
 - Also expensive

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

SoC Manufacturing Test

Our Mechanical Stimulus

- · Uses fact that the DUT is a dual axis device
- Tilt device to change acceleration due to gravity (g=9.81m/s²) on different axes
 - 1.65 V when horizontal

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

12

Methodology

- Measure V_x and V_y for $\theta x=0^{\circ}$, $\theta y=0^{\circ}$
- Change the orientation of the DUT physically, imparting a gravitational acceleration component on it
- $g_{x_eff} = g(sin\theta_x + cos\theta_x)$
- $g_{y_eff} = g(sin\theta_y + cos\theta_y)$
- Obtain marker points and interpolate to obtain a curve

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

Calibration using Electrical Test

- Unit has test input pin connected to capacitor elements
- Applied electrical signal produces electrostatic force, producing displacement
- · Resulting change in output voltage
- Measurements of result of input step
 - 10,000 runs for each DUT
 - National Instruments platform

SoC Design - ICS, Fall 2010 November 13, 2010 J. A. Abraham

