SoC Manufacturing Test

- SoC Testability Features
 - Boundary Scan
 - P1500 standard
- SoC Testing Costs
- Built-In Self Test
- Testing Mixed-Signal Components
 - “Alternate” test
- Defect Tolerance
- Error Detection and Fault Tolerance
- Loopback test of Mixed-Signal SoCs

The Manufacturing Test Problem

IC Mfg Cost

Cost of Test

Cost : Cents / 10,000 Transistors

Mixed Signal

Digital

Partitioning for SoC Test

- Partition according to test methodology:
 - Logic blocks
 - Memory blocks
 - Analog blocks

- Provide test access:
 - Boundary scan
 - Analog test bus

- Provide test-wrappers for cores

DFT Architecture for SOC

Source: Bushnell and Agrawal
Scan

- Convert each flip-flop to a scan register
 - Only costs one extra multiplexer
- Normal mode: flip-flops behave as usual
- Scan mode: flip-flops behave as shift register
- Contents of flops can be scanned out and new values scanned in

Scannable Flip-flops

(a)

(b)

(c)
Scan Design and Delay Test

Need two patterns for delay test
Shifting in second pattern changes state of the nodes
Solutions: Scan Shifting or Last Shift Launch
Functional Justification or Broadside Test

Tri-Scan Scheme

Based on state holding property of CMOS
Tri-Scan Scheme

Voltage at Tri-stated output w.r.t. time

SoC Design - ICS, Fall 2010
J. A. Abraham
November 13, 2010

SoC Manufacturing Test

UT Austin, ECE Department
Boundary Scan

- Testing boards is also difficult
 - Need to verify solder joints are good
 - Drive a pin to 0, then to 1
 - Check that all connected pins get the values
- Through-hole boards used “bed of nails”
- SMT and BGA boards cannot easily contact pins
- Build capability of observing and controlling pins into each chip to make board test easier

Boundary Scan (IEEE 1149.1)
Boundary Scan Example

Boundary Scan Interface

- Boundary scan is accessed through five pins
 - TCK: test clock
 - TMS: test mode select
 - TDI: test data in
 - TDO: test data out
 - TRST*: test reset (optional)

- Chips with internal scan chains can access the chains through boundary scan for unified test strategy.
System View of Interconnect

Source: Bushnell and Agrawal

Boundary Scan Chain View

Source: Bushnell and Agrawal
Elementary Boundary Scan Cell

Source: Bushnell and Agrawal

SAMPLE / PRELOAD Instruction

Purpose:
1. Get snapshot of normal chip output signals
2. Put data on bound. scan chain before next instr.

Source: Bushnell and Agrawal
EXTEST Instruction

- **Purpose:** Test off-chip circuits and board-level interconnections

```
INPUT CELL
\[\text{ShiftDR, SO, Mode, DQ, CLK}\]
```

```
OUTPUT CELL
\[\text{ShiftDR, SO, Mode, DQ, CLK}\]
```

Component boundaries

Data transfer paths activated in EXTEST mode.

Source: Bushnell and Agrawal

INTEST Instruction

- **Purpose:**
 1. Shifts external test patterns onto component
 2. External tester shifts component responses out

```
INPUT CELL
\[\text{ShiftDR, SO, Mode, DQ, CLK}\]
```

```
OUTPUT CELL
\[\text{ShiftDR, SO, Mode, DQ, CLK}\]
```

Component boundaries

- Used for first phase of INTEST
- Used for second phase of INTEST
- Not used in the INTEST testing mode

Source: Bushnell and Agrawal
RUNBIST Instruction

- Purpose: Allows issue of BIST command to component through JTAG hardware
- Optional instruction
- Lets test logic control state of output pins
 1. Can be determined by pin boundary scan cell
 2. Can be forced into high impedance state
- BIST result (success or failure) can be left in boundary scan cell or internal cell
- § Shift out through boundary scan chain
- May leave chip pins in an indeterminate state (reset required before normal operation resumes)

Source: Bushnell and Agrawal

BYPASS Instruction

- Purpose: Bypasses scan chain with 1-bit register

![Bypass Diagram](attachment:image.png)

Source: Bushnell and Agrawal
Additional DFT Components

- Test source: Provides test vectors via on-chip LFSR, counter, ROM, or off-chip ATE.

- Test sink: Provides output verification using on-chip signature analyzer, or off-chip ATE.

- Test access mechanism (TAM): User-defined test data communication structure; carries test signals from source to module, and module to sink; tests module interconnects via test-wrappers; TAM may contain bus, boundary-scan and analog test bus components.

- Test controller: Boundary-scan test access port (TAP); receives control signals from outside; serially loads test instructions in test-wrappers.

Source: H. Kerkhoff

Test Wrapper for a Core

- Logic added around a core to provide test access to the embedded core

- Test-wrapper provides for each core input terminal
 - An external test mode – Wrapper element observes core input terminal for interconnect test
 - An internal test mode – Wrapper element controls state of core input terminal for testing the logic inside core

- For each core output terminal
 - A normal mode – Host chip driven by core terminal
 - An external test mode – Host chip is driven by wrapper element for interconnect test
 - An internal test mode – Wrapper element observes core outputs for core test

Source: H. Kerkhoff
A Test-Wrapper

- Wrapper elements
- Functional core inputs
- Functional core outputs
- Scan chain to/from TAP
- Wrapper test controller
- From/to External Test pins

Source: H. Kerkhoff

Goals of IEEE P1500

- Core test interface between embedded core and system chip
- Test reuse for embedded cores
- Testability guarantee for system interconnect and logic
- Improve efficiency of test between core users and core providers

Source: H. Kerkhoff
Set-up of P1500 Architecture

Source: H. Kerkhoff

Core including Wrapper Cells

Source: H. Kerkhoff
Built-In Self Test (BIST)

- Increasing circuit complexity, tester cost
 - Interest in techniques which integrate some tester capabilities on the chip
 - Reduce tester costs
 - Test circuits at speed (more thoroughly)

- Approach:
 - Compress test responses into “signature”
 - Pseudo-random (or pseudo-exhaustive) pattern generator (PRG) on the chip

- Integrating pattern generation and response evaluation on chip – BIST
Pseudo-Random Sequences

- **Linear Feedback Shift Register**
 - Shift register with input taken from XOR of state
 - *Pseudo-Random Sequence Generator*

<table>
<thead>
<tr>
<th>Step</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>010</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>001</td>
</tr>
<tr>
<td>6</td>
<td>011</td>
</tr>
<tr>
<td>7</td>
<td>111 (repeats)</td>
</tr>
</tbody>
</table>

Can also be used to **compress** test responses

Example of BIST

Technique called **STUMPS** (from IBM)
Why is Conventional Test Successful?

- Two innovations have allowed test to keep up with complex designs
- **The stuck-at fault model**
 - The model allows structural test generation, with a number of faults which is linear in the size of the circuit
- **Partitioning the circuit**
 - Partitioning the circuit (with scan latches for example), alleviates the test problem so that test generation does not have to deal with the entire circuit

- Do these two assumptions hold for Deep SubMicron (DSM) circuits?

IC Technology

Minimum Feature Size

- Human hair, 100 μm
- Amoeba, 15 μm
- Red blood cell, 7 μm
- AIDS virus, 0.1 μm
- Buckyball, 0.001 μm
Features Smaller than Wavelengths

Source: Raul Camposano, Synopsys

Optical Proximity Correction (OPC)

Source: Raul Camposano, Synopsys
Increased Leakage

SoC Design - ICS, Fall 2010
J. A. Abraham

Random Dopant Fluctuations

SoC Design - ICS, Fall 2010
J. A. Abraham
Defects in DSM Technologies

- Experiments on real chips (e.g., Stanford University)
 - Stuck-at tests do not detect some defects unless they are applied at speed
- Resistive opens comprise the bulk of test escapes in one production line
 - Likely in copper interconnect – cause delay faults
- Delay faults identified as the cause of most test escapes on another line
 - Speed differences of up to a factor of 1.5 can exist between fast and slow devices - problems with “speed binning”
- Increasing possibility of shorts and crosstalk

Effects on Chip?

- Change in delays of paths
- Effects could be distributed across paths

[At-Speed Functional vs. Structural Tests]

Solution:
- At-Speed tests
- Tester Cost
- Applied “Native Mode”?

Can use low-cost testers
Native-Mode Built-In Self Test

- Functional capabilities of processors can be used to replace BIST hardware – *(UT research, published in ITC 1998)*
- Application to self-test of processors at Intel – **FRITS** method applied to Pentium 4, Itanium (Published in ITC 2002)

```
for each data value D_i {
    Shift_Right_Through_Carry(S);
    if (Carry) { S = XOR(S, polynomial) }
    S = XOR(S, D_i)          }
```

Native-Mode Self Test for Processors

- Random instructions can be run from cache and results compressed into a signature
- Implementation in Intel FRITS system showed benefits for real chips (Pentium 4, Itanium)
- Technique can be used for self-test of an embedded processor in a System-on-Chip
- Is it possible to now use this processing capability to test other modules (digital, analog/mixed-signal and RF) on the SoC?
 – First, can the processor test be improved to detect realistic defects, e.g., small delays?
Are Random Tests Sufficient?

- Intel implementation involved code in the cache which generated random instruction sequences
- Interest in generating instructions targeting faults
- Possible to generate instruction sequences which will test for an internal stuck-at fault in a module (Gurumurthy, Vasudevan and Abraham, ITC 2006)
- In order to deal with defects in DSM technologies, need to target small delay defects
- Recent work: automatically generate instruction sequences which will target small delay defects in an internal module (Gurumurthy, Vemu, Abraham and Saab, European Test Symposium (ETS) 2007)

Hierarchical approach to instruction mapping

- Can take constraints from ISA
- Traditional test generation techniques
- Can be replaced when targeting different fault model
- Inefficient search
- Inefficient search
- Inefficient search

Instruction input

Processor

Processor outputs
Instruction mapping using bounded model checking

- Uses symbolic model verifier’s (SMV) bounded model checking option (BMC)
 - Provides verification result up to a given bound
 - Accepts properties written in linear temporal logic (LTL)
 - Generates a counterexample if property fails
- Expresses the controllability and observability constraints in LTL
- Extracts instruction sequence from the counterexample

Application to stuck-at faults

- Used a commercial ATPG engine at the module level
- Mapped sequences generated by the ATPG engine
- No feedback
 - No additional effort if the sequence generated for a fault is not mappable
- Targeted hard-to-detect faults with this approach
- Able to achieve 82% fault coverage
 - Up from 68% through random instructions
Test for Small Delay Defects

- Weighted random instructions will give good coverage for hard defects
- Need to test **paths** in the circuit to detect small delay defects
- However, the number of paths in a circuit can be exponential in the number of nodes
- Solution: **test the longest path through every node**
 - This will detect the smallest possible delay increase which will cause the circuit to fail
- Total number of tests linear in number of nodes

Automatic Generation of Instruction Sequences for Small Delay Defects

1. **Phase 1:** all paths above delay threshold
2. **Phase 2:** longest paths through all nodes

- **Delay-Based ATPG:** generate “TRUE” paths above given delay threshold
- **Functional mapping:** use verification engine
- **Feedback:** heuristics to speed up search
Functional Mapping - Illustrated

Opcode Constraints

- insn_input == `add
- OR insn_input == `sub

Path excitation constraints

- m \rightarrow \text{rising}
- o \rightarrow \text{rising}
- q \rightarrow \text{rising}

Robustness constraints

- p is stable zero

Lines L2 and L5 hold these constraints (Antecedent of the property)

Functional mapping - Illustrated

Observability constraints based on Boolean difference

- Model transformed to generate fault shadow logic
- Faulty value propagated through fault shadow logic
- 'prop' signal introduced to make sure faulty value is propagated only when path is excited
- Assertion expresses that outputs in original and fault shadow logic are always equal
Functional mapping - Illustrated

- Transformed model and property given to BMC
- Counterexample, if produced, satisfies the excitation, controllability and robustness constraints
- Fails the assertion \rightarrow some output is different between faulty and correct logic
- Values for ‘insn_input’ in counterexample trace gives the required instruction sequence

Feedback

- Many paths generated by DATPG are not functionally feasible
- Many non-functional paths have a common non-functional sub-path
- Process of identifying the maximal non-functional sub-path in a given path is time consuming - $O(n^2)$ iterations needed
- Fact - first few nodes in consecutive paths produced by DATPG are generally the same

```c
Find_subpath(path,N) {
    //Get sub-path starting at input half
    //The size of current sub-path 
    subpath = get_subpath(N/2);
    if (functionally_controllable(subpath) )
        return N;
    else {
        Find_subpath(N/2);
    }
}
```

Gives a non-functional sub-path in $O(log n)$ iterations
Experimental setup

- OR1200
 - Open source RISC processor
 - 5 stage pipeline
 - Source code and documentation available from www.opencores.org
 - Synthesized using TSMC’s 0.18u Artisan technology

<table>
<thead>
<tr>
<th>No. of instructions in OR1200 ISA</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of combinational</td>
<td>15878</td>
</tr>
<tr>
<td>No. of sequential elements</td>
<td>1594</td>
</tr>
</tbody>
</table>

Results

Phase 1: Threshold 80% of clock

<table>
<thead>
<tr>
<th>Paths</th>
<th>Yes</th>
<th>No</th>
<th>Timed out</th>
</tr>
</thead>
<tbody>
<tr>
<td>27424</td>
<td>15118</td>
<td>12106</td>
<td>200</td>
</tr>
</tbody>
</table>

Phase 2: Results for some modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Yes</th>
<th>No</th>
<th>Rejected Sub-paths</th>
<th>N(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctrl</td>
<td>1826</td>
<td>29191</td>
<td>68087</td>
<td>91</td>
</tr>
<tr>
<td>alu</td>
<td>1427</td>
<td>16985</td>
<td>2716</td>
<td>100</td>
</tr>
<tr>
<td>lsu</td>
<td>970</td>
<td>4077</td>
<td>3744</td>
<td>100</td>
</tr>
<tr>
<td>wbmux</td>
<td>1146</td>
<td>2285</td>
<td>2118</td>
<td>100</td>
</tr>
</tbody>
</table>

N \rightarrow Node coverage efficiency

Percentage of nodes for which mapping produced a test or rejected all paths given by DATPG

Yes – Functionally feasible

Not functionally feasible

Average mapping time: 18.85 seconds
Testing Cores in System

Example random pattern generator:
\[X_n = X_{n-24} + X_{n-55} \pmod{m} \]
(Lagged Fibonacci sequence)

Primitive polynomial:
\[X^{55} + X^{24} + 1 \]
Period: \(2^{(32-1)} \cdot (2^{55} - 1) \)

Source/Sink: Embedded Processor
Test access mechanism: System/Peripheral Bus
Test Access Interface (TAI): Core test wrapper

Test Access Mechanisms for SoC Test

- Non-functional access
 - Uses a kind of access to core not allowed during the normal functional operation
 - Generally based on scan chains or other design for test (DFT) structures
 - Can also use the embedded processor as the test source/sink \(\rightarrow \) Needs wrappers around the core under test

- Functional access
 - Embedded processor is the test source/sink \(\rightarrow \) No DFT structures or wrappers around the cores
Non-functional TAMs

- Boundary scan based
 - Uses the JTAG/boundary scan mechanism to load/capture the tests
 - Slow since the access is serial
- Direct access based
 - Direct access to core test pins given through external pins
 - Faster
 - High overhead to route the access pins and also multiple pins required

Functional TAMs for Testing Cores

- Software-Based Self Test: Use the intelligence of the embedded processor to test the SOC
- At-speed tests are possible
- Cores in the SOC can be of three kinds
 1. White box -- internals visible, structure changeable
 2. Grey box – all the internals visible, but structure of the core cannot be changed
 3. Black box – no internals visible, no change can be made on the core
- Any methodology for testing black box cores should not depend on knowledge of the core’s internals
Approach to Testing Cores

- Uses functional TAM
- Uses pre-existing vectors
- Generates software to be loaded on to the embedded processor

- Gurumurthy, Sambamurthy and Abraham, Int'l Test Synthesis Workshop (ITSW) 2008

Pre-Existing Vectors

- If using a core bought from vendor
 - Vectors might also be provided by the vendor
- Reusing a core
 - Vectors from the previous use
- Newly designed core
 - Validation vectors
- Only constraint: these vectors must be functional test patterns for the core
Reverse Driver

- Parses the vector sequence to generate the data set to be sent to the core being tested
- Is specific to each core – as many as the number of driver programs
- Only overhead involved
- Generates the output in a format readable by the driver program

Reverse Driver – Illustration

- Peripheral core communicating with external environment (send/receive 32-bit data)
- Five 8-bit registers addresses 0 – 4
 - Register 0 – Control
 - Registers 1 to 4 – Data

<table>
<thead>
<tr>
<th>Address</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0x07</td>
</tr>
<tr>
<td>0x01</td>
<td>0x54</td>
</tr>
<tr>
<td>0x02</td>
<td>0xDF</td>
</tr>
<tr>
<td>0x03</td>
<td>0x71</td>
</tr>
<tr>
<td>0x04</td>
<td>0x78</td>
</tr>
</tbody>
</table>

Reverse Driver
Send at speed rate 1
Data 0x0754DF7178
Software Generation

- Use the driver program associated with each core being tested
- Driver programs
 - Software code that actually talks with the non-processor cores
 - Know about the bus protocol
 - Generally able to take in the data to be sent to the core or read back data from the core
 - Developed as part of designing the SOC

Coverage Measurement

- Simulate the SOC using the software generated
 - Platform used SOC validation can be used
- Monitor the core boundaries to capture the pin data
- Fault simulate the core with the captured data
Experimental Setup

- Implemented a SOC containing ARM core, AES cryptographic core and a Wishbone bus interface (Verilog)
- AES 128-bit data/key encryption/decryption from www.opencores.org

Validation vectors:
Set of random values encrypted and decrypted

Experiment Results

Details about the synthesized AES core

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of inputs</td>
<td>69</td>
</tr>
<tr>
<td>No. of outputs</td>
<td>33</td>
</tr>
<tr>
<td>No. of sequential elements</td>
<td>9225</td>
</tr>
<tr>
<td>No. of combinational elements</td>
<td>1119</td>
</tr>
<tr>
<td>No. of stuck-at faults</td>
<td>64070</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Size (bytes)</th>
<th>Fault coverage</th>
<th>Original coverage</th>
<th>No. of cycles</th>
<th>Original cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test1</td>
<td>7808</td>
<td>90.01</td>
<td>90.26</td>
<td>6700</td>
<td>6373</td>
</tr>
<tr>
<td>Test2</td>
<td>9128</td>
<td>90.15</td>
<td>90.35</td>
<td>7816</td>
<td>7435</td>
</tr>
<tr>
<td>Test3</td>
<td>10432</td>
<td>90.20</td>
<td>90.44</td>
<td>8932</td>
<td>8496</td>
</tr>
</tbody>
</table>
Technology Roadmap

integration

technology scaling

speed

MEMs

Optics

SoCs

SoPs

Mixed-signal
digital

System-on-Chip Market Size

New test problem: dealing with embedded mixed-signal blocks
Testing Mixed-Signal SoCs

- Analog test issues
- Analog test bus
- “Alternate” tests
- System-level Built-In Self Test
- Testers and test application

Testing Analog/Mixed-Signal/RF Circuits

- Have to deal with continuous signals
- *Customers want a guarantee of specifications*
- A defect may or may not affect the desired behavior of a chip
- *Tests are for the specifications, not for defects*
- Similar trend in digital: testing for distributed path delays
- Test costs are very high if every specification has to be tested
 “Alternate Tests”
Analog Test Bus (IEEE 1149.4)

- **PROs:**
 - Usable with digital JTAG boundary scan
 - Adds analog testability – both controllability and observability
 - Eliminates large area needed for analog test points

- **CONs:**
 - May have a 5% measurement error
 - C-switch sampling devices couple all probe points capacitively, even with test bus off – requires more elaborate (larger) switches
 - Stringent limit on how far data can move through the bus before it must be digitized to retain accuracy

Source: Bushnell and Agrawal

Analog Test Bus Diagram

Source: Bushnell and Agrawal

Test bus interface circuit

Test control block

Test Access Port

Analog Test Access Port

Digital I/O

Mixed-signal circuitry

Control signals

TAP

TDI

TCK

TMS

ATAP

AB1

AB2

Source: Bushnell and Agrawal

Test Control Port -- 1149.1 TAP, Instruction reg., & decode

Source: Bushnell and Agrawal
Typical Mixed-Signal Test Program

- **Open-Shorts**
 - Detected wirebond and packaging issues
- **Leakage** - Test Input and Tri-State pads
- **DC Levels** - Vol, Voh, Vih, Vil of pads
- **Digital Tests:** SCAN Tests, Memory, Functional Test (@ speed, high speed IO)
- **Current tests** – Dynamic, Special Modes, Standby, Iddq
- **Mixed-Signal Test**
 - PLL, DAC, ADC, OpAmps, Filters, References, Mixers
 - Gain Stages, Impedance Match, PA, LNA . . .

Example Device

- **Cell-Phone Handset Baseband IC**
 - **Digital**
 - Flash, SRAM, Keypad, LCD, SIM Card, PC & LED interfaces
 - RISC Controller, DSP, Hardware Co-processors
 - Embedded SRAM
 - Embedded ROM
 - Transceiver and Power Management Control
 - **Control DAC/ADC**
 - PA, Transceiver
 - **Voice CODEC**
 - **Baseband DAC, ADC**
 - **PLL**
 - **Timer**
 - **Voltage References**
Single Site Test Program

- Tester: Teradyne Catalyst
- Capital Cost: $2.3 million
- Test Times: 10 Seconds
 - Test time profile:
 - DAC/ADCs: 35%
 - Digital & Memory: 30%
 - Idd: 17%
 - Leakage & O/S: 8%
 - Reference tests: 5%
 - PLL: 3%
 - Test overhead: 2%

Multi-Site Test

- Multi-Site Test – testing more than 1 device at a time
- Parallel Tests – testing of multiple devices simultaneously
 - Assumes no resource limitations
- Serial Tests – testing executed one site at a time because of resource limitations
Multi-Site Testing

- **Serial Testing**
 - AWG → Site 1 → DIG
 - AWG → Site 2

- **Parallel Testing**
 - AWG → Site 1 → DIG 1
 - AWG → Site 2 → DIG 2

Multisite Mixed-Signal Testing

- Multi-site Functional, Scan, Memory, leakage & continuity test efficiencies are typically high: 85-98%
 - Resource per-pin / site
 - Per Pin PMU - leakage & continuity
 - Functional pattern memory behind each pin
 - SCAN Capability, Memory Test Option (per site)

- Mixed-Signal efficiencies are typically driven by resource constraints
 - dedicated vs. shared instruments
 - which drive parallel vs. serial execution
Multi-Site Tester

- A single site tester
 - High Resolution AWG & Digitizer
 - Time Jitter Digitizer
 - High Bandwidth AWG & Digitizer
 - DMM
 - Digital Pins with PMU
 Memory

Test Coverage
- Voice Codec
- GP DACs & ADCs
- PLL
- BB codec
- References
- Digital & Leakage & OS

- Instrument requirements for quad site Parallel Testing
 - 4x if each resource is not shared
 - Costly purpose build tester, with instruments shared

Multi-Site Test Program

Test Time Profile

<table>
<thead>
<tr>
<th>Test</th>
<th>%TT</th>
<th>case 1</th>
<th>case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC/ADCs:</td>
<td>35%</td>
<td>shared</td>
<td>dedicated</td>
</tr>
<tr>
<td>Digital & memory</td>
<td>30%</td>
<td>dedicated</td>
<td>dedicated</td>
</tr>
<tr>
<td>Idd:</td>
<td>17%</td>
<td>dedicated</td>
<td>dedicated</td>
</tr>
<tr>
<td>Leakage & O/S:</td>
<td>8%</td>
<td>dedicated</td>
<td>dedicated</td>
</tr>
<tr>
<td>Reference tests:</td>
<td>5%</td>
<td>shared</td>
<td>shared</td>
</tr>
<tr>
<td>PLL:</td>
<td>3%</td>
<td>shared</td>
<td>shared</td>
</tr>
<tr>
<td>Test overhead:</td>
<td>2%</td>
<td>shared</td>
<td>shared</td>
</tr>
</tbody>
</table>
Multi-Site Productivity Improvement

<table>
<thead>
<tr>
<th>Test Time</th>
<th>Sites: Single</th>
<th>Dual</th>
<th>Quad</th>
<th>Dual Dedicated</th>
<th>Quad Dedicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 sec</td>
<td>10 sec</td>
<td>6 sec</td>
<td>4 sec</td>
<td>2 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>Sites:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resources:</td>
<td>Shared</td>
<td>Shared</td>
<td>Shared</td>
<td>Dedicated</td>
<td>Dedicated</td>
</tr>
</tbody>
</table>

- Single Site: 10 sec
- Dual Site non-shared: 6 sec (26% Savings)
- Quad Site non-shared: 4 sec (39% Savings)
- Dual Dedicated Site: 2 sec (43% Savings)
- Quad Dedicated Site: 0 sec (64% Savings)

Multi-Site efficiency goes up faster than tester cost.

Parallel Test

Cell Phone SOC (different device)

<table>
<thead>
<tr>
<th></th>
<th>Multi-Site Efficiency</th>
<th>Tester Cost</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single site</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Dual site non-shared</td>
<td>1.73</td>
<td>1.32</td>
<td>1.3</td>
</tr>
<tr>
<td>Qual site non-shared</td>
<td>3.00</td>
<td>2.16</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Multi-Site efficiency goes up faster than tester cost.
Hard Drive Read Channel Device

Typical device: DAC & ADC, AGC, Filters, Thermal Sensor, OpAmps, ROM, PLL, Digital Signal Processing, Small Memory

<table>
<thead>
<tr>
<th># Sites</th>
<th>Catalyst Efficiency</th>
<th>Tiger Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>3.19 sec</td>
<td>2.59 sec</td>
</tr>
<tr>
<td>Dual</td>
<td>3.86 sec 79.1%</td>
<td>2.99 sec 84.7%</td>
</tr>
<tr>
<td>Triple</td>
<td>4.53 sec 79.0%</td>
<td>3.40 sec 84.5%</td>
</tr>
<tr>
<td>Quad</td>
<td>5.18 sec 79.2%</td>
<td>3.80 sec 84.5%</td>
</tr>
</tbody>
</table>

Digital test: 169ms single site - Catalyst
Leakage test: 128ms single site - Catalyst
Idd test: 60ms single site - Catalyst
Signal Processing Overhead: 291ms single site - Catalyst
All other test mixed-signal in nature

Pipeline Test Example

<table>
<thead>
<tr>
<th>Site 1</th>
<th>O/S -PE</th>
<th>LKG -PE</th>
<th>Func -PE</th>
<th>PLL -TJD</th>
<th>DAC -Dig</th>
<th>ADC -AWG</th>
<th>Codec -LFAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 2</td>
<td>O/S -PE</td>
<td>LKG -PE</td>
<td>Func -PE</td>
<td>Codec -LFAC</td>
<td>PLL -TJD</td>
<td>DAC -Dig</td>
<td>ADC -AWG</td>
</tr>
<tr>
<td>Site 3</td>
<td>O/S -PE</td>
<td>LKG -PE</td>
<td>Func -PE</td>
<td>ADC -AWG</td>
<td>Codec -LFAC</td>
<td>PLL -TJD</td>
<td>DAC -Dig</td>
</tr>
<tr>
<td>Site 4</td>
<td>O/S -PE</td>
<td>LKG -PE</td>
<td>Func -PE</td>
<td>DAC -Dig</td>
<td>ADC -AWG</td>
<td>Codec -LFAC</td>
<td>PLL -TJD</td>
</tr>
</tbody>
</table>
Concurrent Test

(Device Parallelism)

- Maximize number of functional blocks tested simultaneously on a single die.

BBIC

- Memory Test
- BIST control
- TJD
- Register Control
- DSIO
- HF AWG / DIG

Logic

- Memory
- ClkDrv, VCXO
- PLL
- BB AFE
- Control
- ADC/DAC

SCAN / Functional Test

- DMM
- LF AWG / DIG
- Register Control

Memory Test

- BIST control
- TJD
- Register Control
- DSIO
- HF AWG / DIG

Test Time Savings

- Concurrent Testing
- Typical test time savings: 30-40%
 - Test scheduling not optimum
 - Signal Processing Overhead can't be pipelined
 - Sequencer limitations
Nonlinear Fault Effects Are Complex

Source: Chatterjee

How do we define a failure?

ANY COMBINATION OF CIRCUIT/PROCESS PARAMETERS THAT CAUSES ONE OR MORE OF THE CIRCUITS SPECIFICATIONS TO BE VIOLATED IS DEFINED TO BE A FAILURE
Conventional Serial Testing

Datasheet

Source: Chatterjee

Serial Test Process

New *Alternate Test* Approach

Replace

Expensive specification tests, fully or partially

With

Low-cost, easy-to-perform alternate tests

Such that

No yield loss

Same coverage as specification tests

Source: Chatterjee
Benefit: Eliminate Test Bottleneck

Source: Chatterjee

“Alternate Tests”

Mapping between measurement and specification spaces is derived using regression (MARS).

Source: Chatterjee
Transient Alternate Test

Test Stimulus $x(t)$

Circuit-under-test

Linear Process Model

ΔR_1
ΔC_1
ΔR_2

DC Gain Bandwidth

Specifications

$S^* = A.m$

$\delta_s = |S - S^*|$

Optimize $x(t)$ for minimum δ_s

Source: Chatterjee

Coverage Modeling: How Good is the Alternate Test?

BAD

$\text{Limit of } s_1$

$\text{Nominal value of } s_1$

GOOD

GOAL OF ATPG: MAXIMIZE SENS OF TEST TO PROC/CKT PARAMETERS AT SPEC BOUNDARIES

Source: Chatterjee

SPEC BOUNDARIES

Source: Chatterjee
Test Calibration Procedure

On an initial set of ICs, during Wafer sort and Final test

Perform alternate tests

Measure specifications

Alternate test calibration

Store Calibration coefficients and Go/No-go thresholds

Source: Chatterjee

Test Calibration Using Regression

Training set of k ICs

IC₁ → M₁₁, M₁₂, ..., M₁ₙ
IC₂ → M₂₁, M₂₂, ..., M₂ₙ
IC₃ → M₃₁, M₃₂, ..., M₃ₙ
ICₖ → Mₖ₁, Mₖ₂, ..., Mₖₙ

n alternate measurements

p regression functions

S₁₁, S₁₂, ..., S₁ₚ
S₂₁, S₂₂, ..., S₂ₚ
S₃₁, S₃₂, ..., S₃ₚ
Sₖ₁, Sₖ₂, ..., Sₖₚ

p specifications

Source: Chatterjee
Application 1: LM7101

Test Configuration

Signature Test Waveforms

4X test time reduction

Concurrent Signature Test: Performance

Source: Chatterjee

Source: Chatterjee
Application 2: Precision Opamp

>3X test time reduction

Source: Chatterjee

Comparison with standard tests

Source: Chatterjee
RF System Specifications

- **Transmitter**
 - System Gain, Gain Flatness, System IIP3, System NF, ACPR, Dynamic range, Modulation quality (Spectral mask), PA switching

- **Receiver**
 - System Gain, System IIP3, System NF, LO Stability, Sensitivity, BER/FER, EVM

Source: Chatterjee

Test setup: Gain and IIP3

- **Gain test setup**
 - Single tone input
 - Gain = \(20\log_{10}(A/a)\) dB

- **IIP3 test setup**
 - Two tone test
 - IIP3 = \(a\sqrt{A/b}\)
 - Non-linearity test for amplifiers, mixers
 - Also measured for complete systems

Source: Chatterjee
Test setup: Noise Figure

- SNR measurement
 - Signal to noise ratio
- Noise Figure = \(\frac{\text{SNR}_{\text{in}}}{\text{SNR}_{\text{out}}} \)
- Measure of noise added by the DUT

\[
\text{SNR}_{\text{in}}/\text{SNR}_{\text{out}}
\]

Source: Chatterjee

Other Specifications

- Conversion Gain (CG)
 - CG = (IF o/p power)/(RF I/p power) dB
- LO Rejection
 - Isolation of LO signal to IF output
- Phase noise
 - Measure of PSD
 - Measured in dBc/Hz
 (ratio w.r.t. carrier/BW)

Source: Chatterjee
Transmitter Specifications

- **Adjacent Channel Power Ratio (ACPR)**
 - Amount of energy spilled to adjacent bands
 - Non-linearity measure of transmitter
- **Dynamic Range**
 - Range of power within which transmitter operates reliably
- **Gain Flatness**
- **Modulation Quality**
 - The spectral shape of the modulated signal

Source: Chatterjee

Receiver Specifications

- **LO Stability**
 - Stability of LO frequency w.r.t. time and environment
- **Sensitivity**
 - Minimum signal level that the system can detect with acceptable SNR
- **BER/FER**
 - Error in received bits/frames
- **Error Vector Magnitude**
 - Quality of modulation
 - Denoted in %

Source: Chatterjee
Loopback-Based Self-Test

- Test several blocks at the same time using loopback
 - Measure the combined performance of path
- Advantages
 - Reduced test time
 - No performance degradation from insertion of test points
- Limitations
 - Combined response of non-functionally related paths
 - Distortion and noise of signal paths are additive
 - Fault masking
 - Misclassification
- Need to extract performance parameters of individual signal paths

Loopback + DFT Scheme

- Provide dynamic performance parameters of individual signal paths
 - Avoid yield loss due to fault masking
- DFT circuitry on loadboard or on chip
 - Implement analog filter and adder as DFT circuitry
 - Reduce silicon cost with minimal pin count (2 dedicated pins)
 - Compatible with existing loopback scheme
 - Characterize harmonic distortion and noise parameters
Performance Parameter Extraction

- Loopback response: sum of input/output channel performance
 - Loopback = performance (DAC) + performance (ADC)
- Excite ADC channel with unknown input (output of DAC)
 - Scaled by known filter magnitude response – by different scaling factors
 - Analyze correlation between the obtained loopback responses
 - Loopback I = scaling factor \(\alpha \) * performance (DAC) + performance (ADC)
 - Loopback II = scaling factor \(\beta \) * performance (DAC) + performance (ADC)

Validation: Hardware Measurements

- Broadband modem IC
 - Tx/Rx data rates up to 80MSPS
- Programmable 3-pole filter
 - Bypassed in normal mode
- Faults injected by
 - Reconfiguring Tx/Rx gain
 - Sweeping power supplies and input amplitude

<table>
<thead>
<tr>
<th></th>
<th>Prediction Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DAC channel</td>
</tr>
<tr>
<td>SNR</td>
<td>0.32dB</td>
</tr>
<tr>
<td>THD</td>
<td>0.31dB</td>
</tr>
<tr>
<td>SINAD</td>
<td>0.25dB</td>
</tr>
</tbody>
</table>

SINAD vs. Actual value (dB)

- (a) DAC channel
- (b) ADC channel
RF Built-In Test using Amplitude Detectors

- Alternate test methodology
- High input impedance (7.6KOhm@1GHz) for detector
- Detector output mapped to RF circuit specifications
- Low frequency output signal (sampling frequency of 10MHz for mixer test, DC for amplifier test)
- Strong correlations with RF circuit parameters

Die Photo of 940 Mhz Transceiver
(UMC 0.18µ CMOS)

10 MHz output from sensors used to predict specifications
Measurement Setup

- Agilent E8257D Signal Generator
- Agilent E4448A Spectrum Analyzer
- Tektronix DPO 7104 Digital Oscilloscope

- Many tuning knobs designed
- Almost every bias point can be adjusted to simulate real case chip variations (mismatch, supply drop etc.).

Test Procedure: Input Signal

- Two tone signal of 939.9MHz and 940.1MHz at -10dBm

- Tone signal selection is not limited to these values
- Depends on chip applications and specifications to be tested
Measurement Results: LNA in RX

<table>
<thead>
<tr>
<th></th>
<th>LNA Gain</th>
<th>LNA IIP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Error</td>
<td>0.09 dB</td>
<td>0.15 dBm</td>
</tr>
<tr>
<td>Relative Error</td>
<td>4.8%</td>
<td>4.4%</td>
</tr>
</tbody>
</table>

\[
\text{RMS}_{\text{error}} = \sqrt{\frac{1}{N} \sum (P_{\text{true}} - P_{\text{estimated}})^2}
\]

\[
\text{Relative}_{\text{error}} = \frac{\text{RMS}_{\text{error}}}{\text{Variation Range}}
\]

Measurements Results: Up Mixer in TX

<table>
<thead>
<tr>
<th></th>
<th>Mixer Gain</th>
<th>Mixer TOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Error</td>
<td>0.09 dB</td>
<td>0.61 dBm</td>
</tr>
<tr>
<td>Relative Error</td>
<td>6.3%</td>
<td>5.9%</td>
</tr>
</tbody>
</table>

\[
\text{RMS}_{\text{error}} = \sqrt{\frac{1}{N} \sum (P_{\text{true}} - P_{\text{estimated}})^2}
\]

\[
\text{Relative}_{\text{error}} = \frac{\text{RMS}_{\text{error}}}{\text{Variation Range}}
\]
Testing Non-Electrical Modules – MEMS

- Develop new ways of characterizing and testing MicroElectroMechanical (MEM) systems
 - Use gravity to provide mechanical input
- Reduce test time and cost by using electrical tests to characterize and test mechanical subsystem
 - Correlate electrical and mechanical tests
- Develop and validate approach with measurements on commercial MEM accelerometer
Target Accelerometer

- Analog Devices ADXL204
- Dual-axis
- Full scale reading of +/- 1.7 g, 0g => 1.65V
- Saturates beyond full scale – non-linear response
- MEM Capacitive Transducer

Capacitor Plates

- Distance between capacitive plates varies with acceleration
- C varies with $1/d$

Source: ADXL204 Product Manual, Analog Devices Inc.
Accelerometer Function

- Simple first-order model
- Variation in plate spacing due to displacement, d (caused by an applied acceleration), produces a voltage on output pin
- $\delta V / d$

Source: ADXL204 Product Manual, Analog Devices Inc.
Conventional Mechanical Stimulus

- “Shaker”: standardized acceleration generator
 - Compare output voltage with expected value from standard acceleration
 - Expensive
- Turn-table: centrifugal force
 - Centrifugal acceleration from rotation
 - Also expensive

Our Mechanical Stimulus

- Uses fact that the DUT is a dual axis device
- Tilt device to change acceleration due to gravity ($g=9.81\,\text{m/s}^2$) on different axes
 - 1.65 V when horizontal
Methodology

- Measure V_x and V_y for $\theta_x=0^\circ$, $\theta_y=0^\circ$
- Change the orientation of the DUT physically, imparting a gravitational acceleration component on it
 - $g_{x\text{, eff}} = g(\sin\theta_x + \cos\theta_x)$
 - $g_{y\text{, eff}} = g(\sin\theta_y + \cos\theta_y)$
- Obtain marker points and interpolate to obtain a curve

Mechanical System Calibration
Error in Mechanical Stimulus

Calibration using Electrical Test

- Unit has test input pin connected to capacitor elements
- Applied electrical signal produces electrostatic force, producing displacement
- Resulting change in output voltage
- Measurements of result of input step
 - 10,000 runs for each DUT
 - National Instruments platform
Averaged Results of Input Step

Test Input versus Angular Tilt
Electrical vs. Mechanical Tests

Average Deviation from Input Test Signal

DUT1, DUT3, DUT5, DUT6, DUT4

Average Deviation from Input Test Signal

Standard Deviation for Mechanical Test

SoC Design - ICS, Fall 2010
November 13, 2010
J. A. Abraham
SoC Manufacturing Test
November 13, 2010