
EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 1

EE382V-ICS:
System-on-a-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 7 – Models of Computation

Sources:
Prof. Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 2

Lecture 7: Outline

• Introduction

• Embedded systems

• Design process

• HW/SW co-design

• Specification and modeling

• Models of Computation

• Summary

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 2

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 3

Embedded Systems
• Ubiquitous computing

• Signal processing systems
– Radar, sonar, real-time video, set-top boxes, DVD players, medical equipment

• Mission critical systems
– Avionics, space-craft control, nuclear plant control

• Distributed control
– Network routers, mass transit systems, elevators in large buildings, sensors

• “Small” systems
– Cellphones, appliances, toys, MP3 players, PDAs, digital cameras, smart badges

 Part of a larger system - masquerading as non-computers
• Not a “computer with keyboard, display, etc.”

 Application-specific – not general-purpose
• Application is known a priori

 Reactive – not transformative / interactive
• Interact (sense, manipulate, communicate) with the external world
• Never terminate (ideally)

 Constrained
• Timing: latency, throughput (real time)
• Power, size, weight, heat, reliability, etc.
• Increasingly high-performance (DSP) & networked

© Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 4

Productivity Gaps

Capability of
Technology
2x/18 Months

Gates/Chip
Gates/Day

Software
Productivity
2x/5 years

log

time

19
81

19
85

19
89

19
93

19
97

20
01

20
05

20
09

LoC SW/Chip

Average HW + SW
Design Productivity

LoC/Day

Additional SW
required for HW
2x all 10 months

Moore’s Law

Silicon System
Design Gap

HW Design
Gap

HW Design
Productivity
1.6x/18 Months

Source: W. Ecker, W. Müller, R. Dömer, Hardware-dependent Software - Principles and Practice, Springer 2009.

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 3

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 5

Embedded System Design

• Computer-Aided Design (CAD)
Electronic Design Automation (EDA)

• Tools take care of HW fairly well (at least in relative terms)

• Productivity gap emerging

• Situation in SW is worse

• HLLs such as C help, but can’t cope with exponential
increase in complexity and performance constraints

Holy Grail for Tools People: HW-like synthesis & verification from a
behavior description of the whole system at a high level of

abstraction using formal computation models

© Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 6

Desirable Design Methodology

• Design should be based on the use of one or more formal
models to describe the behavior of the system at a high
level of abstraction
• Such behavior should be captured on an unbiased way,

that is, before a decision on its decomposition into
hardware and software components is taken

• The final implementation of the system should be
generated as much as possible using automatic
synthesis from this high level of abstraction
• To ensure implementations that are “correct by

construction”
• Validation (through simulation or verification) should be

done as much as possible at the higher levels of
abstraction

© Margarida Jacome, UT Austin

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 4

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 7

can no longer
be serialized

System SpecificationSystem Specification

Requirements DefinitionRequirements Definition

System Architecture DevelopmentSystem Architecture Development

Sw Development
• Application Sw
• Compilers, etc.
• RTOSs

Sw Development
• Application Sw
• Compilers, etc.
• RTOSs

Interface Design
• Sw driver
• Hw interface synthesis

Interface Design
• Sw driver
• Hw interface synthesis

Hw Design
• Hw architecture design
• Hw synthesis
• Physical design

Hw Design
• Hw architecture design
• Hw synthesis
• Physical design

Integration and testIntegration and test

Embedded System Design Process

© Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 8

Lecture 7: Outline

 Introduction

Embedded systems

• Design process

• HW/SW co-design

• Specification and modeling

• Models of Computation

• Summary

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 5

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 9

Embedded System Design

• The design of an embedded system consists of correctly
implementing a specific set of functions while satisfying
constraints on

• Performance

• Dollar cost

• Energy consumption, power dissipation

• Weight, etc.

The choice of a system architecture impacts whether designers will
implement a function as custom hardware or as (embedded) software
running on a programmable component (processor).

The choice of a system architecture impacts whether designers will
implement a function as custom hardware or as (embedded) software
running on a programmable component (processor).

© Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 10

Design Problems

• Design a heterogeneous multiprocessor architecture that
satisfies the design requirements.

• Use computational unit(s) dedicated to some functions
– Processing elements (PE): hardwired logic, CPU

• Program the system

• A significant part of the design problem is deciding which
parts should be in SW on programmable processors, and
which in specialized HW

• Deciding the HW/SW architecture

• Ad-hoc approaches today

• Based on earlier experience with similar products

• HW/SW partitioning decided a priori, designed separately

© Margarida Jacome, UT Austin

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 6

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 11

HW/SW Co-Design

• Concurrent design & joint optimization of mixed HW/SW
systems

• Specification
– Modeling

– Performance analysis

• Synthesis
– HW/SW partitioning (resource allocation & binding)

– Scheduling

• HW & SW implementation
– SW compilation

– HW synthesis

• Validation
– Integration, verification & debugging

© Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 12

Reliability and Safety

• Embedded systems often are used in life critical
situations, where reliability and safety are more important
criteria than performance

• Today, embedded systems are designed using a
somewhat ad hoc approach that is heavily based on earlier
experience with similar products and on manual design

• Formal verification and automated synthesis are the
surest ways to guarantee safety

• Both, formal verification and synthesis from high levels of
abstraction have been demonstrated only for small,
specialized languages with restricted semantics

 Insufficient, given the complexity and heterogeneity found
in typical embedded systems

© Margarida Jacome, UT Austin

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 7

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 13

Heterogeneity, Complexity

• Managing complexity and heterogeneity challenge
• Mix of hardware design with software design
• Mixes design styles within each of these categories
• Mix of abstraction/detail/specificity

• Different specification and modeling techniques
• Rigorous and unambiguous

• Formal models for analysis and synthesis are key
• It requires reconciling

– Simplicity of modeling required by verification and synthesis
– Complexity and heterogeneity of real world design

Key need  understanding which formal models are more appropriate to
capture/express the various types of behavior at different abstraction levels,
and how those diverse formal models interact.

© Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 14

Lecture 7: Outline

 Introduction

Embedded systems

Design process

• HW/SW co-design

• Specification and modeling

• Models of Computation

• Summary

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 8

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 15

Formal Model of a Design

• Most tools and designers describe the behavior of a
design as a relation between a set of inputs and a set of
outputs

• This relation may be informal, even expressed in natural
language

• Such informal, ambiguous specifications may result in
unnecessary redesigns…

• A formal model of a design should consist of the following
components:

• Functional specification

• Set of properties

• Set of performance indices

• Set of constraints on performance indices

© Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 16

Formal Model of a Design (2)

• A functional specification, given as a set of explicit or implicit relations
which involve inputs, outputs and possibly internal (state) information

• A set of properties that the design must satisfy

• A set of performance indices that evaluate the quality of the design in
terms of cost, reliability, speed, size, etc.

• A set of constraints on performance indices, specified as a set of
inequalities

Fully characterizes the operation of a systemFully characterizes the operation of a system

Bound the cost of a systemBound the cost of a system

Redundant: in a properly constructed system, the functional specification satisfies
these properties. Yet properties are simpler / more abstract compared to the
functional specification.

Redundant: in a properly constructed system, the functional specification satisfies
these properties. Yet properties are simpler / more abstract compared to the
functional specification.

© Margarida Jacome, UT Austin

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 9

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 17

Properties

• A property is an assertion about the behavior, rather than
a description of the behavior

• It is an abstraction of the behavior along a particular axis

• Examples:

• Liveness property: when designing a network protocol, one
may require that the design never deadlocks

• Fairness property: when designing a network protocol, one
may require that any request will eventually be satisfied

The above properties do not completely specify the behavior of the
protocol, they are instead properties we require the protocol to have

The above properties do not completely specify the behavior of the
protocol, they are instead properties we require the protocol to have

© Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 18

Properties & Models

• Properties can be classified in three groups:

1. Properties that are inherent to the model (i.e., that can be
shown formally to hold for all specifications described
using that model)

2. Properties that can be verified syntactically for a given
specification (i.e., that can be shown to hold with a simple,
usually polynomial-time analysis of the specification)

3. Properties that must be verified semantically for a given
specification (i.e., that can be shown to hold by executing,
at least implicitly, the specification for all inputs that can
occur)

© Margarida Jacome, UT Austin

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 10

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 19

Model Validation

• By construction

• property is inherent

• By verification

• property is provable syntactically

• By simulation

• check behavior for all inputs

• By intuition

• property is true, I just know it is…

better be higher
in this list…

© Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 20

Model of Computation (MoC)

• A MoC is a framework in which to express what actions
must be taken to complete a computation

• Objects and their relationships

• MoCs need to

• Be powerful/expressive enough for the application domain

• Have appropriate synthesis and validation semantics

• Why different models?

• Different models  different properties

• Turing complete models are too powerful!

• Imperative programming models are poor match
– Reactive instead of transformation systems

© Margarida Jacome, UT Austin

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 11

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 21

Consider a Simple Example

“The Observer pattern defines a one-to-many dependency
between a subject object and any number of observer
objects so that when the subject object changes state, all
its observer objects are notified and updated
automatically.”

Eric Gamman Richard Helm, Ralph Johnson, John Vlissides: Design Patterns, Addision-
Wesley, 1995

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 22

Example: Observer Pattern in Java

public void addListener(listener) {…}

public void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}

Will this work in a multithreaded context?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 12

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 23

Observer Pattern with Mutexes

public synchronized void addListener(listener)
{…}

public synchronized void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}

Javasoft recommends against this.
What’s wrong with it?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 24

Mutexes using Monitors are Minefields

public synchronized void addListener(listener)
{…}

public synchronized void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}

• valueChanged() may attempt to acquire
a lock on some other object and stall.

• If the holder of that lock calls
addListener(): deadlock!

x calls addListener

valueC
hanged

requests

lock

he
ld

 b
y

x

mutex

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 13

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 25

Observer Pattern Gets Complicated

public synchronized void addListener(listener) {…}

public void setValue(newValue) {

synchronized (this) {

myValue=newValue;

listeners=myListeners.clone();

}

for (int i=0; i<listeners.length; i++) {

listeners[i].valueChanged(newValue)
}

}

while holding lock, make a copy of
listeners to avoid race conditions

notify each listener outside of the
synchronized block to avoid deadlock

This still isn’t right. What’s wrong with it?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 26

How to Make it Right?

public synchronized void addListener(listener) {…}

public void setValue(newValue) {

synchronized (this) {

myValue=newValue;

listeners=myListeners.clone();

}

for (int i=0; i<listeners.length; i++) {

listeners[i].valueChanged(newValue)
}

}

Suppose two threads call setValue(). One of them will set the value last,
leaving that value in the object, but listeners may be notified in the opposite
order. The listeners may be alerted to the value-changes in the wrong order!

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 14

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 27

Problems with Thread-Based Concurrency

• Nontrivial software written with threads, semaphores, and
mutexes is incomprehensible to humans

• Nondeterministic, best effort
– Explicitly prune away nondeterminism

• Poor match for embedded systems
– Lack of timing abstraction

• Termination in reactive systems
– Composability?

 Search for non-thread-based models: which are the
requirements for appropriate specification techniques?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 28

MoCs for Reactive Systems

• Consider essential aspects of reactive systems:
• Time/synchronization
• Concurrency
• Heterogeneity

• Classify models based on
• How to specify behavior
• How to specify communication
• Implementability
• Composability
• Availability of tools for validation and synthesis

© Margarida Jacome, UT Austin

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 15

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 29

Main MoCs for Reactive Systems

• Programming models

• Imperative & declarative

• Synchronous/reactive

• Process-based models

• Discrete event

• Kahn Process Networks (KPNs)

• (Synchronous) Dataflow models ((S)DF)

• State-based models

• Finite State Machines (FSM)

• Hierarchical, Concurrent State Machines (HCFSM)

• Petri Nets

© Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 30

Kahn Process Network (KPN) [Kahn74]

• C-like processes communicating via FIFO channels
• Unbounded, uni-directional, point-to-point queues

– Sender (send()) never blocks
– Receiver (wait()) blocks until data available

 Deterministic
• Behavior does not depend on scheduling strategy
• Focus on causality, not order (implementation

independent)

P1 P3

P2 P4

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 16

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 31

Kahn Process Network (KPN) (2)

• Determinism

• Process can’t peek into channels and can only wait on one
channel at a time

• Output data produced by a process does not depend on
the order of its inputs

 Terminates on global deadlock: all process blocked on
wait()

• Formal mathematical representation

• Process = continuous function mapping input to output
streams

• Turing-complete, undecidable (in finite time)

• Terminates?

• Can run in bounded buffers (memory)?

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 32

KPN Scheduling

• Scheduling determines memory requirements

• Data-driven scheduling

• Run processes whenever they are ready:

Always emit tokens

Only consumes
tokens from P1

Tokens will
accumulate

here

P1

P2

P3

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 17

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 33

Demand-Driven Scheduling

• Only run a process whose outputs are being solicited

• Synchronous, unbuffered message-passing

• However...

Always
consume

tokens

Always
produce
tokens

P1

P2

P3

P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 34

KPN Scheduling

• Inherent tradeoffs
• Completeness

• Run processes as long as they are ready
 Might require unbounded memory

• Boundedness
• Block senders when reaching buffer limits
 Potentially incomplete, artificial deadlocks and early termination

 Data driven: completeness over boundedness
 Demand driven: boundedness over completeness and

even non-termination

 Hybrid approach [Parks95]
• Start with smallest bounded buffers
• Schedule with blocking send() until (artificial) deadlock
• Increase size of smallest blocked buffer and continue

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 18

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 35

Kahn Process Networks (KPN)

• Difficult to implement

• Size of infinite FIFOs in limited physical memory?

• Dynamic memory allocation, dependent on schedule

• Boundedness vs. completeness vs. non-termination
(deadlocks)

• Dynamic context switching

• Parks’ algorithm

• Non-terminating over bounded over complete execution

 Does not find every complete, bounded schedule

 Does not guarantee minimum memory usage

 Deadlock detection?

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 36

Dataflow

• Breaking processes down into network of actors
• Atomic blocks of computation, executed when firing
• Fire when required number of input tokens are available

– Consume required number of tokens on input(s)
– Produce number of tokens on output(s)

 Separate computation & communication/synchronization
 Actors (indivisible units of computation) may fire simultaneously, any order
 Tokens (units of communication) can carry arbitrary pieces of data

• Directed graph of infinite FIFO arcs between actors
• Boundedness, completeness, non-termination?

 Signal-processing applications

f1() f3()f2()

f4()

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 19

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 37

Synchronous Dataflow (SDF) [Lee86]

• Fixed number of tokens per firing
• Consume fixed number of inputs
• Produce fixed number of outputs

 Can be scheduled statically
 Flow of data through system does not depend on values

 Find a repeated sequence of firings
 Run actors in proportion to their rates
 Fixed buffer sizes, no under- or over-flow

a cb

d

1 2 1
2

2

2 1 8

1

2
Initialization
 Delay
 Prevent deadlock

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 38

SDF Scheduling (1)

• Solve system of linear rate equations
• Balance equations per arc

– 2a = b
– 2b = c
– b = d
– 2d = c

 4a = 2b = c = 2d

• Inconsistent systems
– Only solvable by setting rates to zero
– Would otherwise (if scheduled dynamically) accumulate tokens

• Underconstrained systems
– Disjoint, independent parts of a design

 Compute repetitions vector
 Linear-time depth-first graph traversal algorithm

a cb

d

1 2 1
2

2

2 1 8

1

2

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 20

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 39

SDF Scheduling (2)

• Periodically schedule actors in proportion to their rates

• Smallest integer solution
– 4a = 2b = c = 2d

 a = 1, b = 2, c = 4, d = 2

• Symbolically simulate one iteration
of graph until back to initial state

– Insert initialization tokens to avoid deadlock

 adbccdbcc = a(2db(2c))

 a(2db)(4c)

 Schedule determines memory requirements
 a(2db(2c)): 2 token slots on each arc for total of 8 token buffers

 a(2db)(4c): extra initialization tokens, 12 token buffers

 Single appearance schedule to reduce code size
 Looped code generation and compiler optimizations

a cb

d

1 2 1
2

2

2 1 8

1

2

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 40

Process-Based MoCs

HSDF

SDF

CSDF

BDF

DDF

KPN

RPN

RPN Reactive Process Network

KPN Kahn Process Network

DDF Dynamic Dataflow

BDF Boolean Dataflow

CSDF Cyclo-Static Dataflow

SDF Synchronous Dataflow

HSDF Homogeneous SDF

Yellow: Turing complete

Source: T. Basten, MoCC 2008.

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 21

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 41

State-Based Models

 Status and reactivity (control flow)

• Explicit enumeration of computational states
• State represents captured history

• Explicit flow of control
• Transitions in reaction to events

 Stepwise operation of a machine
 Cycle-by-cycle hardware behavior
 Finite number of states

 Not Turing complete

 State-oriented imperative representation
 State only implicit in control/data flow (CDFG)

 Formal analysis
 Reachability, equivalence, …

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 42

Finite State Machines

• Finite State Machine (FSM)
• Basic model for describing control and automata

– Sequential circuits

• States S, inputs/outputs I/O, and state transitions
– FSM: <S, I, O, f, h>
– Next state function f: S  I → S
– Non-deterministic: f is multi-valued

• Output function h
– Mealy-type (input-based), h: S  I → O
– Moore-type (state-based), h: S → O
 Convert Mealy to Moore by splitting states per output

• Finite State Machine with Data (FSMD)
• Computation as control and expressions

– Controller and datapath of RTL processors

• FSM plus variables V
– FSMD: <S, I, O, V, f, h>
– Next state function f: S  V  I → S  V
– Output function h: S  V  I → O

v := v + 1

v := 0

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 22

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 43

Hierarchical & Concurrent State Machines

• Superstate FSM with Data (SFSMD)

• Hierarchy to organize and reduce complexity
– Superstates that contain complete state machines each

– Enter into one and exit from any substate

• Hierarchical Concurrent FSM (HCFSM)

• Hierarchical and parallel state composition
– Lock-step concurrent composition and execution

• Communication through global
variables, signals and events

– Synchronous: zero time

 Graphical notation
[StateCharts]

r

d / es1

s2

s3

d / e

s
v:=0

r

d / es1

s2

s3

s4d / e

s

c / v:=v+1

v:=0

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 44

Lecture 7: Outline

 Introduction

Embedded systems

Design process

 HW/SW co-design

Specification and modeling

Models of Computation

• Summary

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 7

© 2010 A. Gerstlauer 23

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 45

Design Process

• Sequence of steps that transforms a set of requirements
described informally into a detailed description that can
be used for manufacturing
• Intermediate steps with transformation from a more

abstract description to a more detailed one (refinement)
• A designer can perform step-by-step refinement

• The “input” description is a specification
• The final description of the design is an implementation

 Take a model of the design at a level of abstraction and
refine it to a lower one (level of detail ).
• Ensure that the properties at the lower level of abstraction

are verified, and that the performance indices are
satisfactory

• Thus, refinement process involves mapping constraints,
performance indices and properties to the lower level, so
that they can be computed for the next level down

© Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 46

Design Synthesis

Imperative FSMs Dataflow Discrete event

Partitioning

High-Level
synthesis

Software
synthesis

Logic
synthesis

Compiler

Specification
(MoC)

Refinement

Implementation
Logic
model

Processor
model

Processor
model

Logic
model

Target architecture model

Executable functional modelC (language) VHDL (language)

© Margarida Jacome, UT Austin

