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Embedded Systems
• Ubiquitous computing

• Signal processing systems
– Radar, sonar, real-time video, set-top boxes, DVD players, medical equipment

• Mission critical systems
– Avionics, space-craft control, nuclear plant control

• Distributed control
– Network routers, mass transit systems, elevators in large buildings, sensors

• “Small” systems
– Cellphones, appliances, toys, MP3 players, PDAs, digital cameras, smart badges

 Part of a larger system - masquerading as non-computers
• Not a “computer with keyboard, display, etc.”

 Application-specific – not general-purpose
• Application is known a priori

 Reactive – not transformative / interactive
• Interact (sense, manipulate, communicate) with the external world
• Never terminate (ideally)

 Constrained
• Timing: latency, throughput (real time)
• Power, size, weight, heat, reliability, etc.
• Increasingly high-performance (DSP) & networked

© Margarida Jacome, UT Austin
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Embedded System Design

• Computer-Aided Design (CAD)
Electronic Design Automation (EDA) 

• Tools take care of HW fairly well (at least in relative terms)

• Productivity gap emerging

• Situation in SW is worse

• HLLs such as C help, but can’t cope with exponential 
increase in complexity and performance constraints

Holy Grail for Tools People: HW-like synthesis & verification from a 
behavior description of the whole system at a high level of 

abstraction using formal computation models

© Margarida Jacome, UT Austin
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Desirable Design Methodology

• Design should be based on the use of one or more formal 
models to describe the behavior of the system at a high 
level of abstraction
• Such behavior should be captured on an unbiased way, 

that is, before a decision on its decomposition into 
hardware and software components is taken

• The final implementation of the system should be 
generated as much as possible using automatic 
synthesis from this high level of abstraction
• To ensure implementations that are “correct by 

construction”
• Validation (through simulation or verification) should be 

done as much as possible at the higher levels of 
abstraction

© Margarida Jacome, UT Austin
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can no longer
be serialized

System SpecificationSystem Specification

Requirements DefinitionRequirements Definition

System Architecture DevelopmentSystem Architecture Development

Sw Development
• Application Sw
• Compilers, etc.
• RTOSs

Sw Development
• Application Sw
• Compilers, etc.
• RTOSs

Interface Design
• Sw driver
• Hw interface synthesis

Interface Design
• Sw driver
• Hw interface synthesis

Hw Design
• Hw architecture design
• Hw synthesis
• Physical design

Hw Design
• Hw architecture design
• Hw synthesis
• Physical design

Integration and testIntegration and test

Embedded System Design Process

© Margarida Jacome, UT Austin
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Embedded System Design

• The design of an embedded system consists of correctly 
implementing a specific set of functions while satisfying 
constraints on 

• Performance

• Dollar cost

• Energy consumption, power dissipation 

• Weight, etc.

The choice of a system architecture impacts whether designers  will 
implement a function as custom hardware or as (embedded) software 
running on a programmable component (processor). 

The choice of a system architecture impacts whether designers  will 
implement a function as custom hardware or as (embedded) software 
running on a programmable component (processor). 

© Margarida Jacome, UT Austin
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Design Problems

• Design a heterogeneous multiprocessor architecture that 
satisfies the design requirements.

• Use computational unit(s) dedicated to some functions
– Processing elements (PE): hardwired logic, CPU

• Program the system

• A significant part of the design problem is deciding which 
parts should be in SW on programmable processors, and 
which in specialized HW

• Deciding the HW/SW architecture

• Ad-hoc approaches today

• Based on earlier experience with similar products

• HW/SW partitioning decided a priori, designed separately

© Margarida Jacome, UT Austin



EE382V-ICS: System-on-Chip (SoC) 
Design

Lecture 7

© 2010 A. Gerstlauer 6

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 11

HW/SW Co-Design

• Concurrent design & joint optimization of mixed HW/SW 
systems

• Specification
– Modeling

– Performance analysis

• Synthesis
– HW/SW partitioning (resource allocation & binding)

– Scheduling

• HW & SW implementation
– SW compilation

– HW synthesis

• Validation
– Integration, verification & debugging

© Margarida Jacome, UT Austin
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Reliability and Safety

• Embedded systems often are used in life critical 
situations, where reliability and safety are more important 
criteria than performance

• Today, embedded systems are designed using a 
somewhat ad hoc approach that is heavily based on earlier 
experience with similar products and on manual design

• Formal verification and automated synthesis are the 
surest ways to guarantee safety

• Both, formal verification and synthesis from high levels of 
abstraction have been demonstrated only for small, 
specialized languages with restricted semantics

 Insufficient, given the complexity and heterogeneity found 
in typical embedded systems

© Margarida Jacome, UT Austin
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Heterogeneity, Complexity

• Managing complexity and heterogeneity challenge
• Mix of hardware design with software design
• Mixes design styles within each of these categories
• Mix of abstraction/detail/specificity

• Different specification and modeling techniques
• Rigorous and unambiguous 

• Formal models for analysis and synthesis are key
• It requires reconciling 

– Simplicity of modeling required by verification and synthesis
– Complexity and heterogeneity of real world design

Key need  understanding which formal models are more appropriate to 
capture/express the various types of behavior at different abstraction levels, 
and how those diverse formal models interact. 

© Margarida Jacome, UT Austin
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Formal Model of a Design

• Most tools and designers describe the behavior of a 
design as a relation between a set of inputs and a set of
outputs

• This relation may be informal, even expressed in natural 
language 

• Such informal, ambiguous specifications may result in 
unnecessary redesigns…

• A formal model of a design should consist of the following 
components:

• Functional specification

• Set of properties

• Set of performance indices

• Set of constraints on performance indices

© Margarida Jacome, UT Austin
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Formal Model of a Design (2)

• A functional specification, given as a set of explicit or implicit relations 
which involve inputs, outputs and possibly internal (state) information

• A set of properties that the design must satisfy

• A set of performance indices that evaluate the quality of the design in 
terms of cost, reliability, speed, size, etc.

• A set of constraints on performance indices, specified as a set of 
inequalities

Fully characterizes the operation of a systemFully characterizes the operation of a system

Bound the cost of a systemBound the cost of a system

Redundant: in a properly constructed system, the functional specification satisfies
these properties. Yet properties  are simpler / more abstract compared to the 
functional specification. 

Redundant: in a properly constructed system, the functional specification satisfies
these properties. Yet properties  are simpler / more abstract compared to the 
functional specification. 

© Margarida Jacome, UT Austin
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Properties

• A property is an assertion about the behavior, rather than 
a description of the behavior

• It is an abstraction of the behavior along a particular axis

• Examples:

• Liveness property: when designing a network protocol, one 
may require that the design never deadlocks

• Fairness property: when designing a network protocol, one 
may require that any request will eventually be satisfied

The above properties do not completely specify the behavior of the 
protocol, they are instead properties we require the protocol to have

The above properties do not completely specify the behavior of the 
protocol, they are instead properties we require the protocol to have

© Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 7 © 2010 A. Gerstlauer 18

Properties & Models

• Properties can be classified in three groups:

1. Properties that are inherent to the model (i.e., that can be 
shown formally to hold for all specifications described 
using that model) 

2. Properties that can be verified syntactically for a given 
specification (i.e., that can be shown to hold with a simple, 
usually polynomial-time analysis of the specification)

3. Properties that must be verified semantically for a given 
specification (i.e., that can be shown to hold by executing, 
at least implicitly, the specification for all inputs that can 
occur)

© Margarida Jacome, UT Austin
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Model Validation

• By construction

• property is inherent 

• By verification

• property is provable syntactically

• By simulation

• check behavior for all inputs

• By intuition

• property is true, I just know it is…

better be higher
in this list…

© Margarida Jacome, UT Austin
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Model of Computation (MoC)

• A MoC is a framework in which to express what actions 
must be taken to complete a computation

• Objects and their relationships

• MoCs need to 

• Be powerful/expressive enough for the application domain

• Have appropriate synthesis and validation semantics

• Why different models?

• Different models  different properties

• Turing complete models are too powerful!

• Imperative programming models are poor match
– Reactive instead of transformation systems

© Margarida Jacome, UT Austin
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Consider a Simple Example

“The Observer pattern defines a one-to-many dependency 
between a subject object and any number of observer 
objects so that when the subject object changes state, all 
its observer objects are notified and updated 
automatically.”

Eric Gamman Richard Helm, Ralph Johnson, John Vlissides: Design Patterns, Addision-
Wesley, 1995

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007
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Example: Observer Pattern in Java

public void addListener(listener) {…}

public void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}

Will this work in a multithreaded context?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007
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Observer Pattern with Mutexes

public synchronized void addListener(listener) 
{…}

public synchronized void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}

Javasoft recommends against this.
What’s wrong with it?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007
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Mutexes using Monitors are Minefields

public synchronized void addListener(listener) 
{…}

public synchronized void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}

• valueChanged() may attempt to acquire 
a lock on some other object and stall. 

• If the holder of that lock calls 
addListener(): deadlock!

x calls addListener

valueC
hanged

requests

lock

he
ld

 b
y 

x

mutex

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007
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Observer Pattern Gets Complicated

public synchronized void addListener(listener) {…}

public void setValue(newValue) {

synchronized (this) {

myValue=newValue;

listeners=myListeners.clone();

}

for (int i=0; i<listeners.length; i++) {

listeners[i].valueChanged(newValue)
}

}

while holding lock, make a copy of 
listeners to avoid race conditions

notify each listener outside of the 
synchronized block to avoid deadlock

This still isn’t right. What’s wrong with it?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007
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How to Make it Right?

public synchronized void addListener(listener) {…}

public void setValue(newValue) {

synchronized (this) {

myValue=newValue;

listeners=myListeners.clone();

}

for (int i=0; i<listeners.length; i++) {

listeners[i].valueChanged(newValue)
}

}

Suppose two threads call setValue(). One of them will set the value last, 
leaving that value in the object, but listeners may be notified in the opposite 
order. The listeners may be alerted to the value-changes in the wrong order!

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007
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Problems with Thread-Based Concurrency

• Nontrivial software written with threads, semaphores, and 
mutexes is incomprehensible to humans

• Nondeterministic, best effort
– Explicitly prune away nondeterminism

• Poor match for embedded systems
– Lack of timing abstraction

• Termination in reactive systems
– Composability?

 Search for non-thread-based models: which are the 
requirements for appropriate specification techniques?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007
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MoCs for Reactive Systems

• Consider essential aspects of reactive systems:
• Time/synchronization
• Concurrency
• Heterogeneity

• Classify models based on
• How to specify behavior
• How to specify communication
• Implementability
• Composability
• Availability of tools for validation and synthesis

© Margarida Jacome, UT Austin
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Main MoCs for Reactive Systems

• Programming models

• Imperative & declarative

• Synchronous/reactive

• Process-based models

• Discrete event

• Kahn Process Networks (KPNs)

• (Synchronous) Dataflow models ((S)DF)

• State-based models

• Finite State Machines (FSM)

• Hierarchical, Concurrent State Machines (HCFSM)  

• Petri Nets

© Margarida Jacome, UT Austin
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Kahn Process Network (KPN) [Kahn74]

• C-like processes communicating via FIFO channels
• Unbounded, uni-directional, point-to-point queues 

– Sender (send()) never blocks
– Receiver (wait()) blocks until data available

 Deterministic
• Behavior does not depend on scheduling strategy
• Focus on causality, not order (implementation 

independent)

P1 P3

P2 P4
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Kahn Process Network (KPN) (2)

• Determinism

• Process can’t peek into channels and can only wait on one 
channel at a time

• Output data produced by a process does not depend on 
the order of its inputs

 Terminates on global deadlock: all process blocked on 
wait()

• Formal mathematical representation

• Process = continuous function mapping input to output 
streams

• Turing-complete, undecidable (in finite time)

• Terminates?

• Can run in bounded buffers (memory)?
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KPN Scheduling

• Scheduling determines memory requirements

• Data-driven scheduling

• Run processes whenever they are ready:

Always emit tokens

Only consumes 
tokens from P1

Tokens will 
accumulate 

here

P1

P2

P3

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.
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Demand-Driven Scheduling

• Only run a process whose outputs are being solicited

• Synchronous, unbuffered message-passing

• However...

Always 
consume 

tokens

Always 
produce 
tokens

P1

P2

P3

P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.
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KPN Scheduling

• Inherent tradeoffs
• Completeness

• Run processes as long as they are ready
 Might require unbounded memory

• Boundedness
• Block senders when reaching buffer limits
 Potentially incomplete, artificial deadlocks and early termination

 Data driven: completeness over boundedness
 Demand driven: boundedness over completeness and 

even non-termination

 Hybrid approach [Parks95]
• Start with smallest bounded buffers
• Schedule with blocking send() until (artificial) deadlock
• Increase size of smallest blocked buffer and continue
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Kahn Process Networks (KPN)

• Difficult to implement

• Size of infinite FIFOs in limited physical memory?

• Dynamic memory allocation, dependent on schedule

• Boundedness vs. completeness vs. non-termination 
(deadlocks)

• Dynamic context switching 

• Parks’ algorithm

• Non-terminating over bounded over complete execution

 Does not find every complete, bounded schedule

 Does not guarantee minimum memory usage

 Deadlock detection?
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Dataflow

• Breaking processes down into network of actors
• Atomic blocks of computation, executed when firing
• Fire when required number of input tokens are available

– Consume required number of tokens on input(s)
– Produce number of tokens on output(s)

 Separate computation & communication/synchronization
 Actors (indivisible units of computation) may fire simultaneously, any order
 Tokens (units of communication) can carry arbitrary pieces of data

• Directed graph of infinite FIFO arcs between actors
• Boundedness, completeness, non-termination?

 Signal-processing applications

f1() f3()f2()

f4()
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Synchronous Dataflow (SDF) [Lee86]

• Fixed number of tokens per firing
• Consume fixed number of inputs
• Produce fixed number of outputs

 Can be scheduled statically
 Flow of data through system does not depend on values

 Find a repeated sequence of firings
 Run actors in proportion to their rates
 Fixed buffer sizes, no under- or over-flow

a cb

d

1 2 1
2

2

2 1 8

1

2
Initialization
 Delay
 Prevent deadlock
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SDF Scheduling (1)

• Solve system of linear rate equations
• Balance equations per arc

– 2a = b
– 2b = c
– b   = d
– 2d = c

 4a = 2b = c = 2d

• Inconsistent systems
– Only solvable by setting rates to zero
– Would otherwise (if scheduled dynamically) accumulate tokens

• Underconstrained systems
– Disjoint, independent parts of a design

 Compute repetitions vector
 Linear-time depth-first graph traversal algorithm

a cb

d

1 2 1
2

2

2 1 8

1

2
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SDF Scheduling (2)

• Periodically schedule actors in proportion to their rates

• Smallest integer solution
– 4a = 2b = c = 2d

 a = 1, b = 2, c = 4, d = 2  

• Symbolically simulate one iteration 
of graph until back to initial state

– Insert initialization tokens to avoid deadlock

 adbccdbcc = a(2db(2c))

 a(2db)(4c)

 Schedule determines memory requirements
 a(2db(2c)): 2 token slots on each arc for total of 8 token buffers

 a(2db)(4c): extra initialization tokens, 12 token buffers

 Single appearance schedule to reduce code size
 Looped code generation and compiler optimizations

a cb

d

1 2 1
2

2

2 1 8

1

2
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Process-Based MoCs

HSDF

SDF

CSDF

BDF

DDF

KPN

RPN

RPN Reactive Process Network

KPN Kahn Process Network

DDF Dynamic Dataflow

BDF Boolean Dataflow

CSDF Cyclo-Static Dataflow

SDF Synchronous Dataflow

HSDF Homogeneous SDF

Yellow: Turing complete

Source: T. Basten, MoCC 2008.
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State-Based Models

 Status and reactivity (control flow)

• Explicit enumeration of computational states
• State represents captured history

• Explicit flow of control
• Transitions in reaction to events 

 Stepwise operation of a machine
 Cycle-by-cycle hardware behavior
 Finite number of states

 Not Turing complete

 State-oriented imperative representation
 State only implicit in control/data flow (CDFG)

 Formal analysis
 Reachability, equivalence, …
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Finite State Machines

• Finite State Machine (FSM)
• Basic model for describing control and automata

– Sequential circuits

• States S, inputs/outputs I/O, and state transitions
– FSM: <S, I, O, f, h>
– Next state function f: S  I → S
– Non-deterministic: f is multi-valued

• Output function h
– Mealy-type (input-based), h: S  I → O
– Moore-type (state-based), h: S → O
 Convert Mealy to Moore by splitting states per output

• Finite State Machine with Data (FSMD)
• Computation as control and expressions

– Controller and datapath of RTL processors

• FSM plus variables V
– FSMD: <S, I, O, V, f, h>
– Next state function f: S  V  I → S  V
– Output function h: S  V  I → O

v := v + 1

v := 0
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Hierarchical & Concurrent State Machines

• Superstate FSM with Data (SFSMD)

• Hierarchy to organize and reduce complexity
– Superstates that contain complete state machines each

– Enter into one and exit from any substate

• Hierarchical Concurrent FSM (HCFSM)

• Hierarchical and parallel state composition
– Lock-step concurrent composition and execution

• Communication through global 
variables, signals and events

– Synchronous: zero time

 Graphical notation 
[StateCharts]

r

d / es1

s2

s3

d / e

s
v:=0

r

d / es1

s2

s3

s4d / e

s

c / v:=v+1

v:=0
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Design Process

• Sequence of steps that transforms a set of requirements 
described informally into a detailed description that can 
be used for manufacturing
• Intermediate steps with transformation from a more 

abstract description to a more detailed one (refinement)
• A designer can perform step-by-step refinement

• The “input” description is a specification
• The final description of the design is an implementation

 Take a model of the design at a level of abstraction and 
refine it to a lower one (level of detail ).
• Ensure that the properties at the lower level of abstraction 

are verified, and that the performance indices are 
satisfactory

• Thus, refinement process involves mapping constraints, 
performance indices and properties to the lower level, so 
that they can be computed for the next level down
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Design Synthesis

Imperative FSMs Dataflow Discrete event

Partitioning

High-Level
synthesis

Software 
synthesis

Logic 
synthesis

Compiler

Specification
(MoC)

Refinement

Implementation
Logic 
model

Processor 
model

Processor 
model

Logic 
model

Target architecture model

Executable functional modelC (language) VHDL (language)
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