UVM Basics

Nagesh Loke
ARM CPU Verification Lead/Manager

The Architecture for the Digital World® ARM

What to expect ...

= This lecture aims to:

= demonstrate the need for a verification methodology
= provide an understanding of some of the key components of a UVM testbench
= cover some basic features of UVM

2 ARM

ARM CCN-512 SoC Framework

ARM’s CCN-512 Mixed Traffic Infrastructure SoC Framework

Virpualized Interruprs

Lp to 4

COres per
cluster

Comec-AST

Upw I2

coherent [==8 —_II —_’I

e AS]
clusters

Hemory
Controlber
|n1_|:_:gn|l!r_:|;] M-S0
L3 cache S 7
. CDRAIEG
A
Up to Quad -
-
channel o

DDR3/4 x72

=l |

oo Ah §

Memory
Controller
DC-510

Er]

. DOR4.3I00

Heterogeneous processors — CPU, GPU, D5P and
accelerators

r T <
4 i "1

g

Cartax DL
o LHIl
maATer

Corpei-al]

I-33HB L esche

Memary
Controllar
DC-520

Erd
DR 4. 3200

ar CHI

Canrtat CPU
e CHI

e

CPU N Coroes P
e CHI
frldbEr

Corelink™ CCM-512 Cacha Cobsrant Merwork

Memory
Cantroller
DHC-530

Err]

DOA4-1200

Ll v 24 1O
coherent
interfaces for

accelerators
and /D

- ’.F
I C-408)),

i Virgualisstios Corelink FMLI-S00

N N I N I -‘

"
e

Srasop Fileer

Peripheral address space

ARM

What are the challenges of verifying complex systems?

= Typical processor development from scratch could be 100s of engineering years

= Requires parallel developments across multiple sites, and it takes a large team to verify a
processor

= The typical method is to divide and conquer, partitioning the whole CPU into smaller
units and verify those units, then reuse the checkers and stimulus at a higher level

* The challenges are numerous

= Reuse of code becomes an absolute key to avoid duplication of work

= |t is essential to have the ability to integrate an external IP

= This requires rigorous planning, code structure, & lockstep development
= Standardization becomes a key consideration

= UVM can help solve this!

4 ARM

What is UVM and why use it!

= Stands for Universal Verification Methodology
= Benefits:

= supports and provides framework for modular and layered verification components

= Enables:
reuse
clear functional definition for each component
configuration of components to be used in a variety of contexts

= is maintained and released by Accellera committee
= source code is fully available

= is a mature product

= significant amount of training and support available

5 ARM

Key components of a UVM testbench

UVM Sequence ltem & Sequence Inheritance tree

uvm_void

%

uym_object

JII N

uvm_report_object

B

uvm_component

usar COmponeni

uvm_transacton I

i T

UV Seq umm_itamJ
'Hu IR

usar saguance item

L —

uvm_sequence base

T ['Req mse |

UVM Sequence [~

:

ARM

UVM Component

Pre-defined Components = Basic bU|Id|ng block for all
“‘*’"-fbjem components that exercise
vm_report_object control over testbench or

Manage transactions

uvm_component

= They all have a time consuming

— | REQ.RSP |
wvm_driver — run() task
avm_em |'REQ, RSP | .
uvm_push_driver ~] — = They exist as long as the test
uvm_sgent exists
uvm_sequencer _base
uvm_monitor o MREG, RSP |
UVM_sequencer param base |— -
uvm_scoreboard T I ﬁET},_RgP-] I IREQR gp..l
uvm_sequTan_r.:ﬁT ~ |uvm_push_sequencer |

1
uvm_subscriber ~ |

371
uvm_random_stimulus|

: ARM

UVM Sequence ltem & Sequence

class alu xn extends u seql C : . .
THatrm extends tm_sequence stem = Sequence Item is the same as a transaction

“uvm _object utils (alu trxn)

= |t’s the basic building block for all types of data in
‘ao-o, UVM

SUB=1,
s’ = Collection of logically related items that are
0R=5

XOR=6., shared between testbench components

XNOR=7

- = Examples: packet, AXI transaction, pixel

OPTYPE;

rand logic [7:8] a, b; - Common Supported methOdS:
rand logic [15:0] out;
rand OPTYPE op; -

typedef enum

create, copy, print, compare

function JTrlnq convert2string;

t2string()) ;
", op.nmame, a, b);

-||1Tu|| tio ||

= UVM Sequence is a collection/list of UVM
endfunction 7/ do print e O sequence items

function do_print (uvm_printer printer);

function bit do compare(uvm _object rhs, uvm comparer comparer); [] UVM Sequence usua"y has smarts to Populate

alu_trxn txn;

o T,Tmf”‘_*'}b,‘ 1; the sequence but sometimes this is separated
s us &= supe compare(rhs, c er) ; .
tatis & (2 - tnca); into a UVM generator
status &= :
stgtl_:s &= (op == 1'rn DpJ
return status;
endfunction // do_compare

Key components of a UVM testbench

Driver

UVM Sequencer & Driver

class alu driver extends uvm driver #(alu trxn);

“uvm_component _utils(alu driver)

'/ Data members
virtual interface alu intf alu if;

task run_phase(uvm_phase phase);
forever begin
seq_ltem port.try next item(req);

1T (req != null) begin
'/ Wiggle pins
seq_ltem port.item done();
@ alu 1f.ch;
alu 1f.cb.opcode <= req.op;
alu if.ch.A <= req.a;
alu if.ch.B <= req.b;

end

end
endtask // run phase

endclass // alu driver

A UVM sequencer connects a UVM sequence
to the UVM driver

It sends a transaction from the sequence to the
driver

It sends a response from the driver to the
sequence

Sequencer can also arbitrate between multiple
sequences and send a chosen transaction to the
driver

Provides the following methods:

= send_request (), get_response ()

A UVM driver is responsible for decoding a
transaction obtained from the sequencer

It is responsible for driving the DUT interface
signals

It understands the pin level protocol and the
timing relationships

ARM

UVM Monitor

ass alu_monitor extends uvm_monitor;
“uvm_component_utils(alu monitor)

uvm_analysis port#(alu trxn) a_port;
// Data members

virtual interface alu intf alu if;
alu trxn trxn;

function new(string name, uvm component parent);

super.new(name, parent);
endfunction: new

function void build_phase(uvm_phase phase);
super.build phase(phase) ;

/ Get a virtual interface handle from the resource db

vold' (uvm_resource db#(virtual alu intf)::
read by name(
.scope({"alu interface"),
"alu if"),
wval(alu if))
)i

a_port = new(.name("a_port"), .parent{this));

endfunction: build phase

a_port.write(trxn);
'/ post code

.+ run_phase
ss // alu_monitor

Monitor’s responsibility is to observe
communication on the DUT interface

A monitor can include a protocol checker that
can immediately find any pin level violations of
the communication protocol

UVM Monitor is responsible for creating a
transaction based on the activity on the
interface

This transaction is consumed by various
testbench components for checking and
functional coverage

Monitor communicates with other testbench
components using UVM Analysis ports

ARM

Key components of a UVM testbench

UVM Agent

class alu agent extends uvm_agent;

“uvm_component_utils (alu agent);
uvm analysis port #(alu trxn) a_port;

alu_sequencer m_sequencer;
alu driver m_driver;|]
alu monitor m monitor;

function new(string name, uvm_component parent);
super.new(name, parent);
endfunction // new

function void build_phase(uvm_phase phase);

if (get_is_active() == UVM_ACTIVE)
begin
m_sequencer
m driver
end

m_monitor = alu monitor::type_id::create("m monitor", this);

_phase(uvm_phase phase);
(get_is active() == UVM ACTIVE)
m_driver.seq_item_ ce
m_monitor.a_port
endfunction //

virtual function uvm_active_passive_enum get_1is actiwve();
eturn uvm_active passive enum'(m config.is active);
endfunction // get_is_active

endclass // alu agent

alu sequencer::type id::create("m_sequencer", this);
alu driver :type_id::create("m driver", this);

UVM Agent is responsible for
connecting the sequencer, driver and
the monitor

It provides analysis ports for the
monitor to send transactions to the
scoreboard and coverage

It provides the ability to disable the
sequencer and driver; this will be
useful when an actual DUT is
connected

ARM

UVM Scoreboard

= Scoreboard is one of the trickiest and most important verification components
= Scoreboard is an independent implementation of specification

= |t takes in transactions from various monitors in the design, applies the inputs to the
independent model and generates an expected output

= |t then compares the actual and the expected outputs

= A typical scoreboard is a queue implementation of the modeled outputs resulting in a
pop of the latest result when the actual DUT output is available

= A scoreboard also has to ensure that the timing of the inputs and outputs is well
managed to avoid false fails

. ARM

UVM Environment

class alu env extends uvm env; u The environment iS
‘uvm_component_utils (alu env) responSibIe for managing
// analysis port . .
|_1'-Jm_|61r1a13;;15|_;1ért # (alu_ trxn) a_port; various ComPOnentS N the
/ ALU Agent testbench
alu agent m _agent;
/ Constructor * |t instantiates and connects:
// Build Phase _ = all the agents
function void build phase (uvm phase phase);
a_port = new ("a_port", this); [a” the Scoreboards

m agent = alu agent::type _1id::create ("m agent", this);
endfunction // build phase

= all the functional coverage
models

function void connect_phase (uvm_phase phase);
endfunction // connect phase

function void run_phase (uvm_phase phase);

endfunction // run_phase

endclass // alu_env

. ARM

UVM Test

= uvm_test is responsible for
= creating the environment
= controlling the type of test you want to run
= providing configuration information to all the components through the environment

; ARM

Key components of a UVM testbench

UVM TLM

TLM port is a mechanism to transport data or messages
It is implemented using a SV mailbox mechanism
It typically carries a whole transaction

In some cases a broadcast of a transaction is necessary (one-many); this is achieved
using an analysis port

A testbench component implemented using TLM ports is more modular and reusable

ARM

C
<
<
U
>
7
S
0Q

Create components and allocate memory

Hook up components; key step to plumbing

Print banners, topology etc.

Time consuming tasks

* Reset the design

* Configure the design

* Main test stimulus

* Stop the stimulus and provide time for
checking/draining existing transactions, replays or
restarts

Do end of test checks (all queues empty, all responses received)

Provide reporting, pass/fail status

Complete the test

h ARM

What we learned today ...

= Discussed what a verification methodology is and the need for it

" Looked at block diagrams with key components in a UVM testbench
= Covered UVM and some of it’s basic features

21

ARM

Useful pointers

= https://verificationacademy.com/

= Accelera: http://accellera.org/downloads/standards/uvm
* Recommend watching short videos on UVM introduction on YouTube

22

ARM

http://accellera.org/downloads/standards/uvm
http://accellera.org/downloads/standards/uvm

