
Verification of Digital Systems, Spring 2020
5. Finite Automata and Temporal Logic 1

5. Finite Automata and Temporal Logic

Jacob Abraham

Department of Electrical and Computer Engineering
The University of Texas at Austin

Verification of Digital Systems
Spring 2020

February 6, 2020

ECE Department, University of Texas at Austin Lecture 5. Finite Automata and Temporal Logic Jacob Abraham, February 6, 2020 1 / 61

Designs with Memory Elements

At a particular point in time the states of memory elements
form a PRESENT STATE of the sequential circuit

Any INPUT stimulus can change the status of some of the
memory elements. This new status is called the NEXT STATE

Different inputs may cause the PRESENT STATE to respond
differently, to become different NEXT STATES; and
associated with these responses, different OUTPUTS

The change of states and production of outputs corresponding
to a set of inputs is consistent and is predictable

The sequential circuit of this kind is referred to as a Finite
State Machine (FSM)

Fundamentals of FSMs will be illustrated using simple examples in
the following slides

It is very important to note that only simple FSMs can be verified
by enumerating all the states; techniques for analyzing large FSMs
without explicit enumeration of the states will be discussed later
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Illustration of State Table and State Diagram

Some of the inputs, outputs or transitions may not be specified,
resulting in an Incompletely Specified FSM
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Example of a Finite-State Machine

One input, one output,
four states

0 1
A A,0 B,0
B C,0 D,1
C B,0 A,0
D D,1 B,1

One implementation (state assignment)
using two D-flip-flops

q1a q2a

A 0 0
B 0 1
C 1 0
D 1 1

Output function for circuit (Ca) is
za = Za(x, q1a, q2a) = xq2a + q1aq2a

The next state functions are
Q1a = Na

1 (x, q1a, q2a) = q̄1aq2a + x̄q2a

Q2a = Na
2 (x, q1a, q2a) = x̄q1a+xq̄1a+xq2a

A different state assignment (flip-flop encodings to symbolic
states) would result in a different implementation of the same FSM

For example, another implementation could use four D-flops (with
a one-hot assignment), resulting in different hardware
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Another Implementation of the FSM

q1b q2b

A 1 1
B 0 0
C 0 1
D 1 0

The output function for Cb is
zb = Zb(x, q1b, q2b) = q1bq̄2b + xq̄2b

and the next state functions for Cb are
Q1b = N b

1(x, q1b, q2b) = x̄q1b + xq̄1b

and
Q2b = N b

2(x, q1b, q2b) =
x̄q̄1bq̄2b + xq̄1bq2b + x̄q1bq2b.
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BDD for Output Functions of the Two FSMs
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Equivalent States in Two FSMs

q1a q2a q1b q2b state of Ca state of Cb

0 0 1 1 A A

1 0 0 1 C C

0 1 0 0 B B

1 1 1 0 D D
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BDD Representing Sets of Equivalent States
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Characteristic Functions

Given two sets A and B, with B ⊆ A, a characteristic function
with respect to B for an element x is defined to be True if x is in
B and False otherwise

Characteristic functions can be represented by BDDs

For the AND gate of the previous example given by the relation,
y ↔ (x1 ∧ x2), the set B of gate consistent valuations is given by
B = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)}, ordered by y, x1, x2
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Formal Definition of FSM

A Finite-State Machine (FSM) is a 5-tuple (S, I,O, δ, θ), where

S – finite set of States

I – finite set of Inputs

O – finite set of Outputs

δ – Next-State Function, δ : S × I → S

θ – Output Function, θ : S × I → O

In verification, it is common to specify a set of Initial States (in
contrast with manufacturing test, where a fault should ideally be
detected when the FSM starts from an arbitrary state) – Why?
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Finite Automata

A finite deterministic automaton M is a 6-tuple
M := (Q,Σ,∆, δ, λ, q0), where
Q is the finite set of states
Σ is the input alphabet
∆ is the output alphabet
δ is the transition function, δ : Q× Σ→ Q
λ is the output function, λ : Q× Σ→ ∆
q0 is the initial state

Two states q and q’ are equivalent,
q ∼ q′ :⇐⇒ ∀a, a ∈ Σ.λ(q, a) = λ(q′, a).δ(q, a) ∼ δ′(q′, a)

Two automata are equivalent if their initial states are equivalent

The product automaton of two automata are the state pairs of
both, and a transition between two state pairs is only possible if
the components make a corresponding transition to the respective
states of the target pair with the same input
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Finite State Acceptor

Acceptors determine if a given input sequence has a certain
property

The set of all input sequences which satisfy a given property is
called the accepted language

A deterministic finite acceptor (DFA) Ma is a 5-tuple
Ma := (Q,Σ, δ, q0, F ), where
Q is the finite set of states
Σ is the input alphabet
δ is the state transition function, δ : Q× Σ→ Q, q0 is the initial
state
F ⊆ Q is the set of final (accepting) states

A finite sequence ~a is accepted by Ma if δ∗(q0,~a) ∈ F
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Automata for Infinite Sequences

Have to change the notion of final states in order to deal with
infinite sequences

If a Finite Automaton accepts arbitrarily long strings (called an
ω automaton), there must be a substring that can be repeated
(“pumping lemma”)

An automaton can accept an infinite input sequence exactly when
there is a resulting path on which an accepting state occurs
infinitely often

Example, a Büchi automaton accepts infinite sequences (ω regular
languages)

Other automata:

Müller auotmata
Streett automata
Rabin automata
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Kripke Structures

A nondeterministic FSM representing the behavior of a system

A graph whose nodes represent the reachable states of the
system and whose edges represent state transitions

A labeling function maps each node to a set of properties that
hold in the corresponding state

Temporal logics are traditionally interpreted in terms of Kripke
structures

Let P be a set of atomic propositions.
A Kripke (or temporal) structure M := (S, I,R, L) consists of
1. A finite set of states, S
2. A set of initial states, I ⊆ S
3. A transition relation R ⊆ S × S, with
∀s ∈ S ∃s′ ∈ S . (s, s′) ∈ R (i.e., R is total)
4. A labeling (or interpretation) function L : S → 2P
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Example of Kripke Structure

Transition s1 to s2 is represented as: (a ∧ b ∧ a′ ∧ ¬b′)

The Kripke structure is a disjunction of the three transitions
(a ∧ b ∧ a′ ∧ ¬b′) ∨ (a ∧ ¬b ∧ a′ ∧ ¬b′) ∨ (a ∧ ¬b ∧ a′ ∧ b′)

This can be encoded as a BDD (or other function representation)
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Equivalent States

States Si and Sj are equivalent iff every possible input
sequence causes the machine to produce the same output
sequence when the initial state is Si as it does when the initial
state Sj

A machine in which no two states are equivalent is a reduced
machine

Two states are k-distinguishable iff there exists an input
sequence of length k that yields one output sequence when
the machine is started in one state, and a different output
sequence when it is started in the other state

States that are not distinguishable by any experiment of
length k or less are called k-equivalent
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Determining k-Equivalence

Form partitions of the set of states, Pk of k-equivalent sets
P1 iff states produce identical output symbols for each possible
input symbol
P2 on each of the partitions of P1, etc.

0 1
A B 1 C 0
B C 1 D 0
C B 1 D 0
D E 0 C 1
E D 0 A 1

P1 = (A, B, C)(D,E)
P2 = (A)(B, C)(D,E)
P3 = (A)(B, C)(D)(E)
P4 = (A)(B, C)(D)(E)

Two states are in the same block of Pk iff, for each input value σ,
their σ-successors lie in a single block of Pk−1

In the example, B and C are equivalent states

ECE Department, University of Texas at Austin Lecture 5. Finite Automata and Temporal Logic Jacob Abraham, February 6, 2020 16 / 61

Finding an Input Sequence to Distinguish States
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Acceptance and Recognition

FSMs can be viewed as devices for classifying or transforming
input sequences
If a machine is supplied with an arbitrarily long input
sequence, the output sequence must ultimately become
periodic

This property is useful only for small FSMs (such as small
controllers)

One means of classifying FSMs involves the last symbol in the
output sequence that results from a given input sequence

If, in conjunction with the last input symbol, the machines
produces a specific output symbol (generally take as a “1”), it
is said to have accepted the given input sequence

The set composed of all sequences that are accepted by a
given machine is called the set that is recognized by the
machine
If a machine only has output symbols 0 and 1, specifying the
recognized set is equivalent to specifying the input-output
transformation that it performs
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Mealy and Moore Machines
Machines in which the outputs depend on the transitions are called
Mealy machines
If outputs can be associated only with states (i.e., all transitions
entering a state are assigned the same output value), the machine
is called a Moore machine

Mealy machines can be transformed into Moore machines by
splitting states that do not have the same output value assigned to
all the incoming transitions
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State Transition Graphs

Representation of FSM (when viewing it as describing sets of
sequences)
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Examples of (Non-Deterministic) Transition Graphs

Graph that recognizes the set of strings that end with two
consecutive 1s

Graph that recognizes the set of strings that contain at least one 1
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Example: Converting Non-Deterministic Transition Graphs
to Deterministic Form

Any set of strings that can be recognized by a finite
non-deterministic transition graph can also be recognized by a
finite deterministic graph, and hence by a finite-state machine
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Example: Design a Machine from Specifications

Machine which accepts an input sequence iff that sequence ends in
either the subsequence 0101 or the subsequence 110

Derive design from specifications
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Example: Design a Machine from Specifications, Cont’d

Start with a non-deterministic graph, convert to deterministic

Non-deterministic graph which recognizes sequences

Allowing arbitrary number of symbols to precede desired strings
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Sequences Relating to FSMs

A Synchronizing Sequence is one which forces the FSM into a
specific final state

A sequence X is a Homing Sequence iff knowing the output
sequence produced in response to X is always sufficient to
uniquely determine the final state

A Distinguishing Sequence is one which will produce a
different output sequence for each initial state

Given an upper bound on the number of states in a machine,
an experiment which determines whether the machine
corresponds to a given state description (specification) is
called a Checking Experiment

Used also to test for faults in machines
First studied by Moore in 1956
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Regular Expressions and Sets

Let A = {σ1, . . . , σk} be a finite set of symbols. Then

(a) Each of the expressions σ1, . . . , σk is a regular expression on
A, as are λ (the null string) and φ (the empty set)

(b) If P and Q are regular expressions on A, then so is their union
P +Q and their concatenation (P )(Q)

(c) If P is a regular expression on A, then so is its closure (P)*

(d) Only those expressions that can be obtained by a finite
number of applications of (a), (b) and (c) are regular
expressions on A

The set A is usually called the alphabet of the expressions based
on it

Regular expressions are used to represent sets of strings

Can you think of a set of strings that cannot be described by
regular expressions?
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Example Regular Expressions on the Alphabet {a, b, c}
Regular Members of Set Examples of Examples of
Expression R Represented by R Strings in Set Strings Not in Set
ab the single string “ab” ab a, ba abb, cccb, λ
a+b strings “a” and “b” a, b aa, ab, c, λ
a* strings containing λ, a, aaaa b, aaaca, baaa

only a’s
ab* strings beginning with a, ab, abbbbb abab, bbbb,

one a, followed by b’s aabbb, λ
(ab)* strings consisting λ, ab, abab abba, aabb, ababc

of repetitions of ab ababababab
(a+b)* strings not λ, abbbaba, aaaaaac, abababc,

containing c’s bbbaaba, a
(a+b+c)* all strings λ, a, bcaac, cab (none)
(a+b+c)*a strings ending with a a, cbbaca, aaaa λ, abcabc, bbbb
(a+bc)* every b followed by c, λ, abcbcaabc, abcb, acbc,

every c preceded by b bc, bcbcabca, aa abcbabc
(a+b)*c(a+b)* strings containing c, abac, cbbab, λ, aacbc, abbaaa

exactly one c aabacbabbb
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Examples of Regular Expressions

From the set {a, b, c}, what is the expression for strings
containing an even number of c’s?

What set does this regular expression describe?
1*+1*00(0+11*00)*(λ+11*)

What about
0*10*(10*10*)*
and (0*10*1)*0*10*

Some identities

α(βα)∗ = (αβ)∗α

αβ + αγ = α(β + γ)

α∗ = λ+ αα∗ = λ+ α+

(α+ β)∗ = (α∗β∗)∗

(α∗β)∗ = λ+ (α+ β)∗β
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Eample of Representing Circuits Using ROBDDs

Consider a synchronous modulo–8 counter, and let
V = v0, v1, v2 and V ′ = v′0, v

′
1, v
′
2

The transitions of the modulo–8 counter are given by the
following equations:

v′0 = ¬v0

v′1 = v0 ⊕ v1

v′2 = (v0 ∧ v1)⊕ v2

The above equations can be used to define the relations

N0(V, V ′) = (v′0 ⇔ ¬v0)

N1(V, V ′) = (v′1 ⇔ v0 ⊕ v1)

N2(V, V ′) = (v′2 ⇔ (v0 ∧ v1)⊕ v2)

Transition relation is given by

N(V, V ′) = N0(V, V ′) ∧N1(V, V ′) ∧N2(V, V ′)

.
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Reachability

Reachable state computations are at the heart of any formal
verification approach for sequential circuits
States reachable from S0

S1 = S0 ∪ {s′|∃s[s ∈ S0 ∧ (s, s′) ∈ N ]}
Using ROBBDs:
S1(V ′) = S0(V ′) ∨ ∃v∈V ∪Σ[S0(V ) ∧N(V, V ′,Σ)]

States reachable in at most k + 1 steps are represented by

Sk+1(V ′) = S0(V ′) ∨ ∃v∈V ∪Σ[Sk(V ) ∧N(V, V ′,Σ)]

Computations can be viewed as finding a least fixed point
Predicate transformer F :
F (S) = S0 ∪ {s′|∃s[s ∈ S ∧ (s, s′) ∈ N ]}

Using ROBDDs we have:
F (S)(V ′) = S0(V ′) ∨ ∃v∈V ∪Σ[S(V ) ∧N(V, V ′,Σ)]
we have F (Si)(V

′) = Si+1(V ′)
the sequence of state sets 0, F (0), F 2(0), etc., converges to
the least fixed point of F under the set containment ordering,
and the fixed point is exactly the set of reachable states
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Image Operators

Given a set Z ⊆ S, define the following operators:

Image(N,Z) = {v|∃u[u ∈ Z ∧N(u, v)]}

PreImage(N,Z) = {u|∃v[v ∈ Z ∧N(u, v)]}
BackImage(N,Z) = {u|∀v[N(u, v)⇒ v ∈ Z]}

Using ROBDDs

Image:
T (V ′) = ∃v∈V ∪Σ[S(Z) ∧N(V, V ′,Σ)]

IN,Z(V ) = ∀v′∈V ′ [∃v∈V [(v ⇔ v′) ∧ T (V ′)]]

PreImage :

T (V ′) = ∀v∈V [∃v′∈V ′ [(v ⇔ v′) ∧ S(Z)]]

T1(V,Σ) = ∀v′∈V [T (V ′)⊗Ni(V, V ′,Σ)]

PIN,Z(V ) = ∃σ∈Σ[T1(V,Σ)]
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Image Operators, Cont’d

BackImage:

T (V ′) = ∀v∈V [∃v′∈V ′ [(v ⇔ v′) ∧ S(Z)]]

T1(V,Σ) = ∀v′∈V [T (V ′)⊗Ni(V, V
′,Σ)]

PIN,Z(V ) = ∀σ∈Σ[T1(V,Σ)]

BackImage(N,Z) = ¬PreImage(N,¬Z)
BackImage(N,Y ∧ Z) =
BackImage(N,Y ) ∧BackImage(N,Z).

Intuition

Image gives the set of states that can be reached in one
transition from a state in Z

PreImage gives the set of states that in one transition can
reach a state in Z

BackImage gives the set of states that in one transition must
end up in Z.
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Example(s)
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Verification Methodology

Three requirements for Invariant Checking:

The initial state(s) is contained in G
All states reachable from G are contained in G
G and Z0 are disjoint

Forward traversal:

Initialize R0 to the set of the initial states
Compute Ri+1 = R0 ∨ Image(N,Ri).

Backward traversal:

Initialize G0 = G
Compute Gi+1 = G0 ∧BackImage(N,Gi).

A Third Method

Start from the set of states Z0 rather than S0

By reverse reachability analysis compute the set of states Z
from which some state in Z0 can be reached
Thus Z is the set of states that can reach a “bad” state
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Design Verification

If the specification is not formal, how do we verify the
correctness of the design?

derive properties the design should have, based on the
specification
check if the design satisfies the properties

Temporal logic and variations have been used to specify
properties for design verification

Digital systems similar to reactive programs

Digital systems receive inputs and produce outputs in a
continuous interaction with their environment

Behavior of digital systems is concurrent because each gate in
the system simultaneously evaluating its output as a function
of its inputs
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Design Verification

Properties need to be specified formally, but general enough to be
applicable to a wide variety of designs

Check Properties of Design

Since specification is usually not formal, check design for
properties that would be consistent with the specification

Safety “something bad will never happen”

Liveness Property: “something good will eventually happen”

Temporal Logic and variations commonly used to specify
properties

Example: Linear Temporal Logic (LTL) or Computation Tree
Logic (CTL)
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Introduction to Temporal Logic

Operators of temporal propositional logic augmented by tense
operators
Tense operators used to form assertions about changes in time
Temporal system provides a complete set of axioms and
inference rules for providing all validities in the logic for a
given model of time
Models of time: partially ordered time, linearly ordered time,
branching time, etc.
Temporal logic can define semantics for programs for
Floyd-Hoare style program proving
Temporal logic can also prove properties like termination,
possible termination and termination under fair scheduling of
concurrent processes

For instance using this logic one can express the assertion that
if proposition p holds in the present, then proposition q holds
at some instant in the future
Temporal modalities can be combined to express complex
statements about the past, present and the future
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Modeling Time in Different Ways

Ref: Kropf, Introduction to Formal Hardware Verification, Springer, 1999
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Example of Computation Tree

Traffic light controller
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Computation Tree Logic (CTL)

CTL is a subset of modal branching time
logic defined by Clarke and Emerson

Temporal operators occur in pairs
consisting of A or E followed by F , G, U
or X

Past time operators are not allowed

Tense operators cannot be combined
directly with the propositional connectives

A and E are called path quantifiers and
Fp,Gp,Xp and pUq are called path
formulas from Propositional Linear
Temporal Logic (PLTL)
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Illustration of Some CTL Operators

ECE Department, University of Texas at Austin Lecture 5. Finite Automata and Temporal Logic Jacob Abraham, February 6, 2020 41 / 61

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
5. Finite Automata and Temporal Logic 22

Kripke Structure and Infinite Computation Tree

The labeling denotes which variables are true at each time instance
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Formulas of CTL

Every temporal operator, F, G, X and U must be directly preceded
by a path quantifier A or E, and every path quantifier must be
followed by a temporal operator

Thus, only formulas like AXφ or E(φ U ψ) are allowed, but NOT
A(X φ ∨ Fψ)

AXφ↔ ¬EX(¬φ)

AGφ↔ ¬EF (¬φ)

AFφ↔ ¬EG(¬φ)

EFφ↔ E(true U φ)

A(φ U ψ)↔ ¬E(¬ψ U ¬φ ∧ ¬ψ) ∧ ¬EG(¬ψ)
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Examples of CTL Formulas for Verification

It is possible to reach a state in which φ holds, but not ψ

EF (φ ∧ ¬ψ)

When a request req occurs, then it will be eventually
acknowledged by ack

AG(req → AF ack)

The right for a computation granted holds infinitely often on
every computation

AG(AF granted)

The reset state is reachable from every state

AG(EF reset)

Fairness Constraints

In many cases a CTL formula should be considered only with
regard to a restricted set of paths – fair paths
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Linear Time Propositional Temporal Logic – LTL

Logic with regard to single, non-branching paths (proper subset of
CTL*)

Semantics of the LTL Operators
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Expressiveness of CTL*, CTL and LTL

CTL* formula A(FGφ) ∨AG(EFφ) not contained in CTL or LTL

CTL formula AG(p→ ((AXq)∨)AX¬q) cannot be expressed in
LTL (used in database transactions)

LTL formula FGp cannot be precisely expressed in CTL
AF AG p is stronger, and AF EG p is weaker
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Clarity and Complexity of CTL versus LTL

CTL is more expressive than LTL – but this does not mean
that it is more clear and intuitive

Most properties written are very simple – safety properties
relating to bad states, for example
LTL more intuitive for most people

FXp and XFp mean the same thing

AFAXp and AXAFp do not

CTL model checking algorithms run in O(nm) time, where n
is the size of the transition system and m is the size of the
temporal formula

LTL model checking algorithms run in n.2O(m) time
(m << n)
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Comparison between CTL and LTL, Continued

Better error traces from LTL

CTL is branching time, and if some properties are disproved,
there is no linear trace
All LTL property failures can produce a single linear trace

More difficult to do Semiformal Verification (combining formal
verification and simulation) with CTL

Practical verification is necessarily semiformal

Compositional verification works more easily with LTL

Abstractions can be mapped to language containment, which
LTL can handle

To verify if a design P1 is a refinement of P2, just have to
check L(P1) ⊆ L(P2)

LTL is not able to express all assumptions about the
environment in modular verification

Commercial assertion languages and verification tools are
primarily based on LTL
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Power of Reachability Computations

Map CTL Operators to Reachability

Safety Properties can be checked with Reachability analysis

Industry verification tends to focus on reachability

ATPG algorithms (test for a stuck-at fault) can be used to
check reachability

Can transform liveness checking problems to safety checking
problems*

Industry Verification

Temporal logic formulas are the basis for assertions used in
industry

Example, System Verilog Assertions

* Biere, Artho and Shuppan, “Liveness Checking as Safety
Checking,” Electronic Notes in Theoretical Computer Science, vol.
66, no. 2 (2002).
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Temporal Logic Assertions in Practise: System Verilog

A hardware description and verification language

Superset of Verilog

Extensive set of enhancements to IEEE 1364 Verilog-2001
standards

Developed originally by Accellera to improve productivity in
the design of large gate-count, IP-based, bus-intensive chips
Features inherited from Verilog-HDL, C++, etc.
Targeted primarily at the chip implementation and verification
flow, with links to system-level design flow
Adds several new keywords to Verilog =⇒ use compatibility
switches to avoid errors with identifiers

Web resources

www.eda.org/sv/

www.asic-world.com/systemverilog/index.html

Focus on verification aspects in this course
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Capabilities of System Verilog

New data types (e.g., logic)

Object-oriented programming support

Constrained randomization

Easy C model integration

Assertions

Coverage support

Narrows the gap between design and verification engineer
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Relaxed Data Type Rules in System Verilog

Verilog

Strict about usage of
wire, reg data type

Variable types are 4 state
0,1,X,Z

System Verilog

Logic data type can be used so
no need to worry about reg, wire

2 state data type added – 0, 1
state

2 state variable can be used in
test benches, where X,Z are not
required

2 state variable in RTL model
may enable simulators to be
more efficient
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Memory Management

Verilog

Memories in verilog are
static in nature

Example:
reg[7:0] X[0:127];

128 bytes of memory

System Verilog

Memories are dynamic in nature

Allocated at runtime

Better memory management
(for queues, for example)

Example:
Logic[3:0] length[$];
an empty queue with an
unbounded size of logic data
type
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Verilog

Uses always to represent

Sequential logic

Combinational logic

Latched logic

Ports are connected using
either named instance or
positional instance

System Verilog

Uses three new procedures

always ff – sequential logic

always comb – combinational
logic

always latch – latched logic

Ports are connected using
Design DUT(.*);

which means: connect all port
to variables or nets with the
same name as the ports

Currently, limited synthesis support for System Verilog; it can be
used for verification, but not design
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Data Types and Implication

reg r; // 4-state Verilog-2001

logic w; // 4-valued logic, see below

bit b; // 2-state bit 0 or 1

integer i; // 4-state, 32-bits, signed Verilog-2001

byte b8; // 8 bit signed integer

int i; // 2-state, 32-bit signed integer

shortint s; // 2-state, 16-bit signed integer

longint l; // 2-state, 64-bit signed integer

logic has a single driver (procedural assignments or a continuous
assignment), can replace reg and single driver wire

$rose(start) |-> ##2 $rose(done); // Overlapping

$rose(start) |=> ##1 $rose(done); // Non-Overlapping

// Two cycles after start, signal done must be high
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Initial

Begin

Clk = 0;

#5

Fork

#5a = 0;

#10b = 0;

Join

Clk = 1; //Clk is 1 at t=15

end

fork/join any: Clk becomes 1 at t=10

fork/join none: Clk becomes 1 at t=5

ECE Department, University of Texas at Austin Lecture 5. Finite Automata and Temporal Logic Jacob Abraham, February 6, 2020 56 / 61

System Verilog Concepts

Tasks and Functions

No begin end required

Return can be used in task

Function return values can have a “void return type”

Functions can have any number of inputs, outputs and inouts
including none

Direct Programming Interface (DPI)

DPIs are used to call C, C++, System C functions

System Verilog has a built in C interface

Simple to use as compared to PLIs

Values can be passed directly
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Example: USB code (usbf utmi ls.v)

module usbf_utmi_ls( clk, rst,

resume_req, ... )

// UTMI Interface

...

// Main State Machine

//

always @(state or mode_hs or ...)

begin

next_state = state;

...

case(state)

RESUME: begin

suspend_clr = 1’b1;

if(ls_se0)

...

end

RESUME_REQUEST: begin

suspend_clr = 1’b1;

if(T2_wakeup)

...

end

...
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Sample Property for the Main State Machine

Description: if the suspend bit is not cleared, then the
machine is not resuming from the SUSPEND state in the
main state machine

Formula: P4 : G(¬(suspend clr) =⇒ X((state =
¬RESUME) ∧ (state = ¬RESUME REQUEST )))

System Verilog Asseriton for P4

module assertions (

//signals for p4

input p4_suspend_clr,

input[14:0] p4_state,

input p4_clk,

input p4_rst

);
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System Verilog Assertion for P4, Cont’d

parameter [14:0] // synopsys enum state1

POR = 15’b000_0000_0000_0001,

NORMAL = 15’b000_0000_0000_0010,

RES_SUSP = 15’b000_0000_0000_0100,

SUSPEND = 15’b000_0000_0000_1000,

RESUME = 15’b000_0000_0001_0000,

RESUME_REQUEST = 15’b000_0000_0010_0000,

RESUME_WAIT = 15’b000_0000_0100_0000,

RESUME_SIG = 15’b000_0000_1000_0000,

ATTACH = 15’b000_0001_0000_0000,

RESET = 15’b000_0010_0000_0000,

SPEED_NEG = 15’b000_0100_0000_0000,

SPEED_NEG_K = 15’b000_1000_0000_0000,

SPEED_NEG_J = 15’b001_0000_0000_0000,

SPEED_NEG_HS = 15’b010_0000_0000_0000,

SPEED_NEG_FS = 15’b100_0000_0000_0000;
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System Verilog Assertion for P4, Cont’d

p4: assert property (

@(posedge p4_clk) disable iff (!p4_rst)

(!p4_suspend_clr) |=> ((p4_state != RESUME)

&& (p4_state != RESUME_REQUEST)));

endmodule: assertions

module bindings;

//binding for p4

bind usbf_utmi_ls assertions req4 (

.p4_state(state),

.p4_suspend_clr(suspend_clr),

.p4_clk(clk),

.p4_rst(rst)

);

endmodule
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