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Introduction
Model Checking

• Does a given state machine M satisfy a property P? 
• Check for all possible behaviors of the state machine 
• If not, produce a trace showing the violation
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Properties

• Safety properties: something bad will never happen 
• e.g. we should never write to a full buffer 

• Liveness properties: something good will eventually happen 
• e.g. all requests to an arbiter will eventually be granted



Model Checking

Graph Reachability 
Symbolic Model Checking 
Proof by Induction

Model Checking

Graph Reachability 
Symbolic Model Checking 
Proof by Induction
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State Machines

• A state machine M = (S, I, T) 
• S is a set of states 
• I ⊆ S is the set of initial states 
• T ⊆ S × S is a transition relation
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Example
State Machines

S = {s0, s1, s2, s3} 
 
I = {s2} 
 
T = {(s0,s0), (s0,s1), (s0,s2), (s1,s0), (s1,s1), (s2,s0), (s2,s2), (s3,s0)} 
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Example
State Machines

S = {s0, s1, s2, s3} 
 
I = {s2} 
 
T = {(s0,s0), (s0,s1), (s0,s2), (s1,s0), (s1,s1), (s2,s0), (s2,s2), (s3,s0)} 

s0

s1 s3

s2
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Examples
Checking Safety Properties

s0

s1 s3

s2s0

s1 s3

s2

Bad = {s1, s3} Bad = {s3}

Can we reach a bad state from an initial state?
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Examples
Checking Safety Properties

s0

s1 s3

s2s0

s1 s3

s2

Bad = {s1, s3} Bad = {s3}

Can we reach a bad state from an initial state?

Yes: Path s2, s0, s1
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Examples
Checking Safety Properties

s0

s1 s3

s2s0

s1 s3

s2

Bad = {s1, s3} Bad = {s3}

Can we reach a bad state from an initial state?

Yes: Path s2, s0, s1 No path from s2 to s3
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Explicit-state Model Checking

CHECK (M, Bad)                                                       // M = (S, I, T), Bad ⊆S 

   if (∃s ∈ I. s ∈ Bad)                                                // Is there a bad initial state? 
        return Fail 
 
   Seen ⟵ I                                                              // Mark the Initial states as Seen 
   while (∃(s,s’) ∈ T.  s ∈ Seen  and s’ ∉ Seen)   // Find a reachable unseen state s’? 
        if (s’ ∈ Bad)                                                      // Is s’ a bad state?  
            return Fail 
       Seen ⟵ Seen ⋃ {s’}                                       // Mark s’ as seen 
   end 
   return Pass                                                  // Cannot reach a bad state
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Example
Checking Liveness properties

• Infinite loops (Deadlocks and Livelocks) in state machines 
S = {s0, s1, s2, s3, s4} 
 
I = {s2} 
 
T = {(s0,s0), (s0,s1), (s0,s2), (s1,s0), (s1,s1), (s1,s4), (s2,s0), (s2,s2), (s3,s0), (s4,s4)} 

s0

s1 s3

s2

s4

Can you reach a state where you cannot exit from and return to any good state?

Good = {s0, s1, s2}
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Example
State-space Explosion

• The number of reachable states in systems is often too large to enumerate 
• Consider a system which orders n things 

• e.g. Arbitration, Out-of-order processing, … 

• Number of orderings is given by n!

n n!

4 24

8 40,320

16 20,922,789,888,000

Model Checking

Graph Reachability 
Symbolic Model Checking 
Proof by Induction
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Symbolic Representation of States

• States can be encoded using Boolean variables V

State Encoding with V= {x,y}

s0 00

s1 01

s2 10

s3 11
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Symbolic Representation of States

• States can be encoded using Boolean variables V 
• State sets can be represented by Boolean functions over V

Boolean Function State Set

true {00, 01, 10, 11}

false {}

x∙¬y {10}

x∙y {11}

y {01, 11}
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Symbolic Representation of States

• States can be encoded using Boolean variables V 
• State sets can be represented by Boolean functions over V 
• State relations can be encoded by Boolean functions over two sets of variables, V and V’ 

• V for current state 
• V’ for next state

Boolean Function Relation

¬x∙¬y∙x’∙¬y’ {00→10}

¬x∙¬y∙(¬x’ ∣ ¬y’) {00→00, 00→10, 00→01}
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Example
Symbolic Encoding for FSMs

00

01 11

1000

01 11

10

I  = x∙¬y 
T = ¬x∙¬x’ ∣ ¬y∙¬y’ ∣ ¬x’∙¬y’ 
Bad = y Bad = x∙y
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Symbolic Representation for Circuits

module toy (input clock,  input reset, 
                       input cx,  input cy, 
                       output x, output y); 

   logic x; logic y; 

   always @(posedge clock) 
      if (reset) begin 
         x <= 1'b1; 

         y <= 1'b0; 
      end else begin 
         x <= !y && cx; 

         y <= !x && !cx && cy; 
      end 
 
    // Mutex property 

   assert property (!(x && y)); 
endmodule

Initial (reset) State: 
I(V) = x∙¬y

State Variables: 
V = {x, y}

Transition Functions: 
x’ = ¬y∙cx 
y’ = ¬x∙¬cx∙cy

Property: 
Bad = x∙y
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Synthesized Circuit

AND
NOT

NOT
AND
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cy

NOT
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y
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reset

reset

module toy (input clock,  input reset, 

                       input cx,  input cy, 
                       output x, output y); 

   logic x; logic y; 
   always @(posedge clock) 

      if (reset) begin 
         x <= 1'b1; 
         y <= 1'b0; 

      end else begin 
         x <= !y && cx; 
         y <= !x && !cx && cy; 

      end 
 
    // Mutex property 
   assert property (!(x && y)); 

endmodule

Initial (reset) State: 
I(V) = x∙¬y

State Variables: 
V = {x, y}

Transition Functions: 
x’ = ¬y∙cx 
y’ = ¬x∙¬cx∙cy

Property: 
Bad = x∙y
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Example
Transition Function and Transition Relation

• Transition function: 
x’ = ¬x ∙ cx 

• Transition relation (with input variables): 
T̃(x, cx, x’) = (x’ ⟷ ¬x ∙ cx) 

0

1

0

10,1
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Example
Transition Function and Transition Relation

• Transition function: 
x’ = ¬x ∙ cx 

• Transition relation (with input variables): 
T̃(x, cx, x’) = (x’ ⟷ ¬x ∙ cx) 

• Transition Relation (without input variables): 
T(x, x’) = ∃cx.(x’ ⟷ ¬x ∙ cx)  
             = (¬x ∣ ¬x’)

0

1



UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Example
Transition Functions and Transition Relation

• Transition function: 
x’ = ¬y∙cx 
y’ = ¬x∙¬cx∙cy 

• Transition relation (with input variables): 
T̃(V, cx, cy, V’) = (x’ ⟷ ¬y ∙ cx) ∧ (y’ ⟷ ¬x∙¬cx∙cy) 

• Transition Relation: 
T(V, V’) = ∃cx, cy. T̃(V, cx, cy, V’)  
             = (¬x∙¬x’ ∣ ¬y∙¬y’ ∣ ¬x’∙¬y’)
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Verilog, Circuit and FSM
Symbolic Representation

module toy (input clock,  input reset, 

                       input cx,  input cy, 
                       output x, output y); 

   logic x; logic y; 
   always @(posedge clock) 

      if (reset) begin 
         x <= 1'b1; 
         y <= 1'b0; 

      end else begin 
         x <= !y && cx; 
         y <= !x && !cx && cy; 

      end 
 
    // Mutex property 
   assert property (!(x && y)); 

endmodule

00

01 11

10

AND
NOT

NOT
AND

AND

cx

cy

NOT

x

y

1

0

reset

reset

V = {x,y} 
I(V) = x∙¬y  
T(V,V’) = ¬x∙¬x’ ∣ ¬y∙¬y’ ∣ ¬x’∙¬y’ 
Bad(V) = x∙y
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Symbolic Set Operations

Symbolic Expression Boolean Formula Corresponding Set Set Expression

 true {00, 01,10,11} S

A  x {10,11} SA

B  y {01,11} SB

A ∨ B  x ∣ y {01,10,11} SA ∪ SB

A ∧ B  x∙y {11} SA ∩ SB

¬A  ¬x {00,01} S ∖ SA
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Image Computation

• Given states R(V) and transition relation T(V,V’) 
• Let F(V’)= ∃V. R(V) ∧ T(V,V’), 

• Let F(V) be obtained by renaming V’ to V in F(V’) 
• Then F(V) is the set of all states reachable in one step from states in R 
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Image Computation

• Given states R(V) and transition relation T(V,V’) 
• Let F(V’)= ∃V. R(V) ∧ T(V,V’), 

• Then F(V) is the set of all states reachable in one step from states in R 

R(V) = I(V) = x∙¬y 

T(V,V’) = ¬x∙¬x’ ∣ ¬y∙¬y’ ∣ ¬x’∙¬y’ 

F(V’) = ¬y’ 
F(V)  = ¬y 00

01 11

10
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Image Computation

• Given states R(V) and transition relation T(V,V’) 
• Let F(V’)= ∃V. R(V) ∧ T(V,V’), 

• Then F(V) is the set of all states reachable in one step from states in R 

R(V) = ¬y 
T(V,V’) = ¬x∙¬x’ ∣ ¬y∙¬y’ ∣ ¬x’∙¬y’ 

F(V) = ¬x ∣ ¬y

00

01 11

10
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Image Computation

• Given states R(V) and transition relation T(V,V’) 
• Let F(V’)= ∃V. R(V) ∧ T(V,V’), 

• Then F(V) is the set of all states reachable in one step from states in R 

• We write Img(R,T) for the above image computation

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Forward Reachability Algorithm
Symbolic Model Checking

CHECK (M, Bad)                                       // M = (S, I, T), Bad ⊆S 

   Prev  ⟵ false                                      // No states have been seen as yet 
   Seen ⟵ I                                              // Mark Initial States as Seen 
   while (Seen ≠ Prev)                          // Have we seen any new states? 
        if (Seen ∧ Bad ≠false)                 // Have we seen a bad state? 
            return Fail  
        Prev  ⟵ Seen                                 // Update previously seen states 
       Seen ⟵ Prev ∨ Img(Prev,T)        // Mark states in the image of Prev as seen 
   end 
   return Pass                                    // No Bad state reachable
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Satisfiability Solvers

• Given a Boolean formula Q, 
• Is there a satisfying assignment to the variables in Q?
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Example
Satisfiability Solvers

• SAT((x ∣ y) ∙ (x ∣ z) ∙ (¬x ∣ ¬z) ∙ (y ∣ z))?   

Yes. 
Satisfying assignment: x=1, y=1, z=0 
Satisfying assignment: x=0, y=1, z=1  

• SAT((x ∣ ¬y) ∙ (¬x ∣ y) ∙ (x ∣ z) ∙ (¬x ∣ ¬z) ∙ (y ∣ ¬z) ∙ (¬y ∣ z))?  

No. 
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Bounded Model Checking

• Bounded Model Checking: Can we reach a bad state in k cycles? 
 
 
 
 
 V T(V,V’)

clock
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Bounded Model Checking

• Bounded Model Checking: Can we reach a bad state in k cycles? 
• Unroll the circuit k times 
 
 
 
 
 

V0 T(V0,V1) V1 T(V1,V2) Vk-1 T(Vk-1,Vk) Vk…

Initial Bad
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Bounded Model Checking

• Bounded Model Checking: Can we reach a bad state in k cycles? 
• Unroll the circuit k times 
 
 
 
 
 
 

• Badk = I(V0) ∧T(V0,V1) ∧ … ∧ T(Vk-1, Vk) ∧ Bad(Vk) 

• Unsatisfiable? No failure in k cycles 
• Satisfiable? Satisfying assignment is a k-length counterexample

V0 T(V0,V1) V1 T(V1,V2) Vk-1 T(Vk-1,Vk) Vk…

Initial Bad
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Iterative BMC
Bounded Model Checking

CHECK (M, Bad)                             // M = (S, I, T), Bad ⊆S 

   k  ⟵ 0                                                     
   while (true)                                         
        if SAT(Badk)                            // k-BMC 
           return Fail 
       k  ⟵ k+1                               // Increment k 
   end

When does the loop terminate for an N-bit state machine?



Model Checking

Graph Reachability 
Symbolic Model Checking 
Proof by Induction

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Natural Induction

• To Prove:  
1 + 2 + … + n = (n * (n+1)) /2  

• Base Step: 
Show that the equation holds for n = 1 
1 = (1 * 2) / 2 = 1 

• Induction: 
Assume equation holds for n = i,  
then show that it holds for n = (i+1) 
1 + 2 + … + i               =  (i*(i+1))/2                    // Assumption 
1 + 2 + … + i + (i+1) = (i*(i+1))/2 + (i+1)       
                                        = (i*(i+1) + 2*(i+1))/2  
                                        = ((i+1) * (i+2))/2
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Induction for FSM Properties

• Given Bad states, all the other states are Good 
Good(V) = ¬Bad(V) 

• To show that an FSM never reaches a Bad state 
• Prove that the FSM always stays in a Good state 
i.e. Good is an invariant for the system 
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Induction for FSM Properties

• Given Bad states, all the other states are Good 
Good(V) = ¬Bad(V) 

• To show that an FSM never reaches a Bad state 
• Prove that the FSM always stays in a Good state 

• Show that the following are valid: 
I(V) ⇒ Good(V)                                (Base step)  
Good(V) ∧ T(V,V’) ⇒ Good(V’)      (Induction) 

00

01 11

10

Bad    = x ∙ y  
Good = ¬x ∣ ¬y
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Not all valid properties are inductive
Induction for FSM Properties

V = {x,y,z} 
I = x ∙ ¬y ∙ z 

T = (x’ ⟷ ¬x) ∙ (y’ ⟷ y) ∙ (z ⟷ (x ∣ z)) 

Bad = x∙y 
Good = ¬(x∙y) Not inductive

001

011 111

101000

010 110

100
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Inductive Invariants

• An inductive invariant for a state machine is any property 𝛷(V) such that: 
I(V) ⇒ 𝛷(V) 

𝛷(V) ∧ T(V,V’) ⇒ 𝛷(V’) 

• To prove that FSM always stays in Good: 
Find an inductive invariant 𝛷(V) 
Show that 𝛷(V) ⇒  Good(V)
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Model Checking and Induction

• The set Reach of all reachable states is, by definition, inductive 
• The initial states are in Reach 
• From Reach, you can only reach states in Reach
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Model Checking and Induction

• The set Reach of all reachable states is, by definition, inductive 
• The initial states are in Reach 
• From Reach, you can only reach states in Reach 

• Reach is the strongest invariant for the state machine 

• Given any other invariant 𝛷(V),  
Reach(V) ⇒ 𝛷(V)
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Model Checking and Induction

• The set Reach of all reachable states is, by definition, inductive 
• The initial states are in Reach 
• From Reach, you can only reach states in Reach 

• Reach is the strongest invariant for the state machine 

• Given any invariant 𝛷(V),  
Reach(V) ⇒ 𝛷(V) 

• Alternate algorithms attempt to find weaker invariants: 
• Interpolation 
• Property Directed Reachability (PDR)

V = {x,y,z} 
I = x∙¬y∙z 

T = (x’ ⟷ ¬x) ∙ (y’ ⟷ y) ∙ (z ⟷ (x ∣ z)) 

Bad = x∙y 
Good = ¬(x∙y) Not inductive 
Reach = ¬y∙z   Inductive 
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The set of reachable states is inductive
Model Checking and Induction
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011 111

101000

010 110

100



V = {x,y,z} 
I = x∙¬y∙z 

T = (x’ ⟷ ¬x) ∙ (y’ ⟷ y) ∙ (z ⟷ (x ∣ z)) 

Bad = x∙y 
Good = ¬(x∙y) Not inductive 
Reach = ¬y∙z   Inductive 

𝛷 = ¬y              Inductive 
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Alternate Inductive Invariant 
Model Checking and Induction
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011 111

101000

010 110

100

V = {x,y,z} 
I = x∙¬y∙z 

T = (x’ ⟷ ¬x) ∙ (y’ ⟷ y) ∙ (z ⟷ (x ∣ z)) 

Bad = x∙y 
Good = ¬(x∙y) Not inductive 
Reach = ¬y∙z   Inductive 

𝛷 = ¬y              Inductive 

 
Invariant Strength: Reach ⇒ 𝛷 ⇒ Good
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Invariant Strength
Model Checking and Induction
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Summary
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Summary

• Model Checking is an effective static analysis method for verification 
• Enables validation of complex System-on-a-Chip designs (SoC’s), including CPU’s and GPU’s 
• Results in robust design micro-architecture specifications and implementations 
• Unit-level formal analysis must seamlessly dovetail into product design methodologies  

• Core Ideas 
• Graph Reachability 
• Symbolic representation 
• Induction 

• Plenty of scope for creative work and careers in hardware verification 
• Tools, flows, and methodologies to tackle hard verification “puzzles” in industry 
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