Model Checking

Verification complexity
Exponential

States

Total number of particles in the universe (2266)

. 2017
Time

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Simulation
Emulation

FPGA’s
Formal Verification

Model Checking

Introduction

* Does a given state machine M satisfy a property P?
+ Check for all possible behaviors of the state machine

* If not, produce a trace showing the violation

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

UT Austin

Properties

- Safety properties: something bad will never happen

- e.g. we should never write to a full buffer

- Liveness properties: something good will eventually happen

- e.g. all requests to an arbiter will eventually be granted

College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Graph Reachability
Symbolic Model Checking
Proof by Induction

Graph Reachability

State Machines

* A state machine M= (S, 1, T)
- Sis a set of states
* | € Sis the set of initial states

* TC SxSisa transition relation

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

State Machines
Example

S=1{s0,51,52 53}
I ={s5}

T ={(s0,50), (50,51), (50,52), (51,50), (51,51), (52,50), (52,52), (53,50)}

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

State Machines
Example

S=1{s0, 51,52 53}

I ={s2} 6 e

T =1{(s0,50), (50,51), (50,52), (51,50), (51,51), (52,50), (52,52), (53,50)}

e.) >

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Checking Safety Properties

Examples
Bad = {s3, s3} Bad = {s3}

3
0.) > 0.) >

Can we reach a bad state from an initial state?

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Checking Safety Properties

Examples
Bad = {s;, s3} Bad = {s3}

o

Yes: Path s, sq, 571

Can we reach a bad state from an initial state?

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Checking Safety Properties

Examples
Bad = {s3, s3} Bad = {s3}

9

Yes: Path s, sq, 57 No path from s to s;3

Can we reach a bad state from an initial state?

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Explicit-state Model Checking

CHECK (M, Bad) //M=(S,1T)Bad cS

if (3s € l.s € Bad) // Is there a bad initial state?
return Fail

Seen «— | // Mark the Initial states as Seen

while (3(s,s") € T. s € Seen and s’ & Seen) // Find a reachable unseen state s’?
if (s"e Bad) // |s s’a bad state?

return Fail

Seen «— Seen U {5’} // Mark s’ as seen

end

return Pass // Cannot reach a bad state

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Checking Liveness properties

Good = {s, 51,52}
Example

y:

* Infinite loops (Deadlocks and Livelocks) in state machines

S={s0,51,52 53 54} 6
| ={s5}

T=1{(50,50), (50,51), (50,52), (51,50), (51,51), (51,54), (52,50), (52,52), (53,50), (54,54)}

Q.) >

Can you reach a state where you cannot exit from and return to any good state?

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

State-space Explosion
Example

* The number of reachable states in systems is often too large to enumerate
* Consider a system which orders n things
* e.g. Arbitration, Out-of-order processing, ...

- Number of orderings is given by n!

n n!

4 24

8 40,320

16 20,922,789,888,000

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Symbolic Model Checking

Symbolic Representation of States

* States can be encoded using Boolean variables V

State Encoding with V= {x,y}
So 00
S1 o1
2 10
S3 11

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Symbolic Representation of States

- States can be encoded using Boolean variables V

- State sets can be represented by Boolean functions over V

Boolean Function

State Set

true {00, 01, 10, 11}
false {}

xemy (10}

X-y {11}

y 01, 11}

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Symbolic Representation of States

* States can be encoded using Boolean variables V
- State sets can be represented by Boolean functions over V

- State relations can be encoded by Boolean functions over two sets of variables, V and V'’

-/ for current state

V' for next state

Boolean Function Relation
XXy’ {00 10}
~x-y-(~x1) {00—00, 00— 10, 00— 01}

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Symbolic Encoding for FSMs
Example
[=x—y

T = —x-—x’| —ly-—|y’| —|X’-—|y/
Bad =y

: ;

Bad = x-y

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Symbolic Representation for Circuits

module toy (input clock, input reset,
input cx, input cy,
output x, output y);

State Variables:
V=1{xy}

logic x; logic y;
always @(posedge clock)

if begi ..
if (reset) begin Initial (reset) State:

x<=1b1; I(V) =Xy
y <= 1'b0;
end else begin
x<=ly && cx; Transition Functions:
y <= Ix && lcx && cy; X'="y-cx
end y’=xex-cy
// Mutex property
assert property (!(x && y)); Property:
endmodule Bad = Xy
UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Synthesized Circuit

module toy (input clock, input reset,

input cx, input cy,

output x, output y);
o State Variables:
logic x; logic y; v { }
always @(posedge clock) =Y.
if (reset) begin Initial (reset) State:
x <=1b1; I(V) =Xy
y <= 1'b0;
end else begin
X <=ly && cx; Transition Functions:
y <= Ix && lcx && cy; X'="y-ex
’
end y’=—xexecy
// Mutex property
assert property (/(x && y)); Property:
endmodule Bad = xy

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Transition Function and Transition Relation
Example

- Transition function: 0
X'=-x-cx
- Transition relation (with input variables):

. 0,1
T(x, cx, x') = (X' e —x - cx)

= (=)

Transition Function and Transition Relation
Example

7

« Transition function: 0
X =-x-cx

- Transition relation (with input variables):
T(x, cx, X)) = (X e —x - cx)

- Transition Relation (without input variables):
T(x, x’) = Acx.(x" > —x - ¢x)
= (x| X))

(=

Transition Functions and Transition Relation
Example

* Transition function:

X'=y-cx

y'=—x-—ex-cy
* Transition relation (with input variables):

T(V, cx, cy, V') = (X' <= =y - cx) A (y' <> —x-—ex-cy)
- Transition Relation:

T(V, V') =3cx, cy. T(V, cx, ¢y, V)

= (ﬂx-ﬂxll ﬂy-ﬂyll —|X/-—|y/)

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Symbolic Representation V=txyl

: : ; I(V) = x—y
Verilog, Circuit and FSM TV = o’ =y’ X'y’

Bad(V) = x-y

module toy (input clock, input reset,

input cx, input cy,
output x, output y);

logic x; logic y;
always @(posedge clock)
if (reset) begin
x<=1b1;
y <= 1'b0;

end else begin

x <=ly && cx;

y <= Ix && lcx && cy;

end

// Mutex property

assert property (!(x && y));

endmodule

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Symbolic Set Operations

Symbolic Expression |Boolean Formula Corresponding Set |Set Expression

true {00, 01,10,11} S
A X {10,11} Sa
B y {01,11} Ss
AvB Xy {01,10,11} Sau Sg
AAB Xy {11} San Sg
-A X {00,017} SN\ Sa

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Image Computation

- Given states R(V) and transition relation T(V.V’)
«Let F(V)=3V.R(V) AT(VV),
* Let F(V) be obtained by renaming V'to Vin F(V’)

- Then F(V) is the set of all states reachable in one step from states in R

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Image Computation

* Given states R(V) and transition relation T(V,V’)
*Let F(V)=3V.R(V) AT(V,V),
- Then F(V) is the set of all states reachable in one step from states in R

[\

R(V) =I(V) =x-—y @
T(VV) = ~x-=x"1 =y’ | =x =y’
F(V) ==y’

e @.) >

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Image Computation

« Given states R(V) and transition relation T(V.V)
«Let F(V)=3V.R(V) AT(VV),

* Then F(V) is the set of all states reachable in one step from states in R

R(V) ==y G

T(VV) = ~x-=x"1 =y=y’ | =x"=y’
F(V)==x1-y

@. >

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Image Computation

* Given states R(V) and transition relation T(V.V)

*Let F(V')=3V.R(V) AT(VV),

- Then F(V) is the set of all states reachable in one step from states in R

- We write Img(R,T) for the above image computation

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

CHECK (M, Bad)

Prev «— false
Seen «— |
while (Seen # Prev)
if (Seen A Bad #false)
return Fail
Prev «— Seen
Seen «— Prev v Img(Prev,T)

end
return Pass

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Symbolic Model Checking
Forward Reachability Algorithm

/I M=(S,1,T),Bad cS

// No states have been seen as yet
// Mark Initial States as Seen

// Have we seen any new states?
// Have we seen a bad state?

// Update previously seen states
// Mark states in the image of Prev as seen

// No Bad state reachable

Satisfiability Solvers

* Given a Boolean formula Q,

* Is there a satisfying assignment to the variables in Q?

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Satisfiability Solvers
Example

*SAT((x1y) - (x12) - (=x1=2)-(y12)?

Yes.
Satisfying assignment: x=1, y=1, z=0

Satisfying assignment: x=0, y=1, z=1
* SAT((x | =y) - (=x1y) - (x12) - (=x1=2)-(y1 =z)- (my12)?
No.

JT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Bounded Model Checking

* Bounded Model Checking: Can we reach a bad state in k cycles?

clock

Bounded Model Checking

- Bounded Model Checking: Can we reach a bad state in k cycles?

- Unroll the circuit k times

Vo @ @ h _’

Vi1

Initial

Vi

Bad

Bounded Model Checking

-Bounded Model Checking: Can we reach a bad state in k cycles?

«Unroll the circuit k times

Initial Bad
«Badi = I(Vo) AT(Vo,Vi) A ... AT(Vi1, Vi) A Bad(Vi)

- Unsatisfiable? No failure in k cycles

- Satisfiable? Satisfying assignment is a k-length counterexample

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Bounded Model Checking
Iterative BMC

CHECK (M, Bad) //M=(S,IT) Bad cS
k «—0
while (true)
if SAT(Badk) // k-BMC
return Fail
k «— k+1 // Increment k
end

When does the loop terminate for an N-bit state machine?

Proof by Induction

Natural Induction

« To Prove:
1+2+...+n=(n*(n+1)) /2

- Base Step:
Show that the equation holds forn=1
1=(1%2)/2=1

* Induction:
Assume equation holds for n =},
then show that it holds for n = (i+17)

T+2+ ... +i = (i*(i+1))/2 // Assumption
T+2+...+i+(+1)=(*i+1))/2 + (i+]1)
= (i*(i+1) + 2*%(i+1))/2

= ((i+1) *(i+2))/2

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Induction for FSM Properties

* Given Bad states, all the other states are Good
Good(V) =-Bad(V)

+ To show that an FSM never reaches a Bad state

- Prove that the FSM always stays in a Good state
i.e. Good is an invariant for the system

Induction for FSM Properties

- Given Bad states, all the other states are Good
Good(V) =-Bad(V)

« To show that an FSM never reaches a Bad state

- Prove that the FSM always stays in a Good state

- Show that the following are valid:
I(V) = Good(V) (Base step)

Good(V) AT(VV)) = Good(V’) (Induction)

.

@.) >

Bad =x-y
Good =—x | =y

Induction for FSM Properties
Not all valid properties are inductive

V=1{xyz}

I=x-=y-z

T=(X)Yy (2 (x12)
Bad = xy

Good = —(x-y) Not inductive

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Inductive Invariants

- An inductive invariant for a state machine is any property @(V) such that:
(V)= ®(V)

D(V) AT(V,V) = D(V)

- To prove that FSM always stays in Good:
Find an inductive invariant @(V)

Show that @(V) = Good(V)

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Model Checking and Induction

* The set Reach of all reachable states is, by definition, inductive
- The initial states are in Reach

* From Reach, you can only reach states in Reach

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Model Checking and Induction

- The set Reach of all reachable states is, by definition, inductive
- The initial states are in Reach
* From Reach, you can only reach states in Reach

« Reach is the strongest invariant for the state machine

- Given any other invariant @(V),
Reach(V) = @(V)

JT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Model Checking and Induction

* The set Reach of all reachable states is, by definition, inductive
* The initial states are in Reach
* From Reach, you can only reach states in Reach

* Reach is the strongest invariant for the state machine

- Given any invariant @(V),
Reach(V) = ®(V)

- Alternate algorithms attempt to find weaker invariants:

* Interpolation
* Property Directed Reachability (PDR)

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Model Checking and Induction
The set of reachable states is inductive

V=1{xyz}

I=x-yz S S
T=Xex)-(y ey (2o x2)
Bad = x-y

Good = —(x-y) Not inductive T

Reach = —y-z Inductive 000 @
Y \199)

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Model Checking and Induction

Alternate Inductive Invariant

V=1{xyz}

| =x-—yz

T=(X)Yy (2 (x12)
Bad = xy

Good = —(x-y) Not inductive

Reach = —y-z Inductive

D=y Inductive

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Model Checking and Induction

Invariant Strength

V=1{xyz}

[=x-y-z

T=(%)Yy (2 (x12)
Bad = x-y

Good = —(x-y) Not inductive

Reach = —y:z Inductive

D=~y Inductive

Invariant Strength: Reach = & = Good

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

Summary

Summary

- Model Checking is an effective static analysis method for verification
* Enables validation of complex System-on-a-Chip designs (SoC’s), including CPU’s and GPU'’s
* Results in robust design micro-architecture specifications and implementations
+ Unit-level formal analysis must seamlessly dovetail into product design methodologies
* Core Ideas
+ Graph Reachability
+ Symbolic representation
* Induction
* Plenty of scope for creative work and careers in hardware verification

+ Tools, flows, and methodologies to tackle hard verification “puzzles”in industry

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

References

References

+ Model Checking

+ E. A. Emerson and E. M. Clarke, “Characterizing Correctness Properties of Parallel Programs as Fixpoints| Proceedings
of the Seventh International Colloquium on Automata, Languages, and Programming, LNCS, Vol. 85, 1981.

+ E.M. Clarke, E. A. Emerson and A. P. Sistla, “Automatic verification of finite-state concurrent systems using temporal
logic specifications,” ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

* J-P.Queille and J. Sifakis, “Specification and Verification of Concurrent Systems,” CESAR International Symposium on
Programming, LNCS, Vol. 137, 1982

*BDDs and Symbolic Model Checking

+ R.E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,” [EEE Transactions on Computers, Vol. C -
35, No. 8, August, 1986

* 0. Coudert, C. Berthet and J.C. Madre, “Verification of Synchronous Sequential Machines Based on Symbolic
Execution,” International Workshop on Automatic Verification Methods for Finite State Systems, 1989

* JR.Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang, “Symbolic model checking: 1020 states and beyond,”
5th Ann. Symposium on Logic in Computer Science, June 1990

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

References

- Satisfiability and Bounded Model Checking

* Niklas Eén and Niklas Sérensson, “An Extensible SAT-solver,” 6th International Conference on Theory
and Applications of Satisfiability Testing, 2003

- A. Biere, A. Cimatti, E. M. Clarke and Y. Zhu, “Symbolic Model Checking without BDDs,” 5th
International Conference on Tools and Algorithms for Construction and Analysis of Systems, 1999

«Induction and other SAT-based methods

* M. Sheeran, S. Singh and G. Stalmark, “Checking Safety Properties using Induction and a SAT-
solver,” Formal Methods in Computer-Aided Design, 2000

- K.L. McMillan, “Craig Interpolation and Reachability Analysis,” 10th International Symposium on
Static Analysis, 2003

- A.R. Bradley, “SAT-based Model Checking without Unrolling,” 12th International Conference on
Verification, Model Checking, and Abstract Interpretation, 2011

UT Austin College of ECE - EE382M Verification of Digital Systems, 5th March 2020

References

- Textbooks
* E.M. Clarke, O. Grumberg and D.A. Peled, “Model Checking,” MIT Press, 1999

- T. Kropf, “Introduction to Formal Hardware Verification; Springer-Verlag, 1999

Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

