Model Checking

Amit Goel

(c) Copyright Apple 2017

amitgoel@apple.com

Model Checking Introduction

- Does a given state machine *M* satisfy a property *P*?
- \cdot Check for **all** possible behaviors of the state machine
- If not, produce a trace showing the violation

Properties

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

- Safety properties: something bad will never happen
- $\boldsymbol{\cdot}$ e.g. we should never write to a full buffer
- Liveness properties: something good will eventually happen
- \cdot e.g. all requests to an arbiter will eventually be granted

Model Checking

Graph Reachability Symbolic Model Checking Proof by Induction

Model Checking

Graph Reachability Symbolic Model Checking Proof by Induction

State Machines

- A state machine M = (S, I, T)
- S is a set of states
- $I \subseteq S$ is the set of initial states
- $T \subseteq S \times S$ is a transition relation

State Machines Example

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

 $S = \{s_0, s_1, s_2, s_3\}$

 $I = \{S_2\}$

 $T = \{(s_0, s_0), (s_0, s_1), (s_0, s_2), (s_1, s_0), (s_1, s_1), (s_2, s_0), (s_2, s_2), (s_3, s_0)\}$

 $S = \{s_0, s_1, s_2, s_3\}$

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

 $I = \{S_2\}$

 $T = \{(s_0, s_0), (s_0, s_1), (s_0, s_2), (s_1, s_0), (s_1, s_1), (s_2, s_0), (s_2, s_2), (s_3, s_0)\}$

Can you reach a state where you cannot exit from and return to any good state?

State-space Explosion Example

- The number of reachable states in systems is often too large to enumerate
- Consider a system which orders *n* things
- \cdot e.g. Arbitration, Out-of-order processing, \ldots
- Number of orderings is given by n!

n	n!
4	24
8	40,320
16	20,922,789,888,000

Model Checking

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 20

Graph Reachability Symbolic Model Checking Proof by Induction

(Symbolic Representation of States				
• States can be encoded using Boolean variables V					
2	State	Encoding with <i>V</i> = { <i>x</i> , <i>y</i> }			
-	50	00			
2	51	01			
	52	10			
-	53	11			
UT Austin Colle	ege of ECE - EE382M Verification of Digital Systems, 5th March 2020				

Symbolic Representation of States

- States can be encoded using Boolean variables V
- State sets can be represented by Boolean functions over V

Boolean Function	State Set
true	{00, 01, 10, 11}
false	Ð
x•¬y	{10}
х•у	{11}
у	{01, 11}

Symbolic Representation for Circuits module toy (input clock, input reset, input cx, input cy, output x, output y); **State Variables:** logic x; logic y; $V = \{x, y\}$ always @(posedge clock) if (reset) begin Initial (reset) State: x <= 1'b1; $I(V) = x \cdot \neg y$ y <= 1'b0; end else begin **Transition Functions:** x <= !y && cx; $x' = \neg y \cdot cx$ y <= !x && !cx && cy; $y' = \neg x \cdot \neg cx \cdot cy$ end // Mutex property **Property:** assert property (!(x && y)); $Bad = x \cdot y$ endmodule UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Transition Function and Transition Relation Example

- Transition function: $x' = \neg x \cdot cx$
- Transition relation (with input variables): $\tilde{T}(x, cx, x') = (x' \leftrightarrow \neg x \cdot cx)$
- Transition Relation (without input variables): $T(x, x') = \exists cx.(x' \leftrightarrow \neg x \cdot cx)$ $= (\neg x \mid \neg x')$

Transition Functions and Transition Relation Example

• Transition function: $x' = \neg y \cdot cx$ $y' = \neg x \cdot \neg cx \cdot cy$

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

- Transition relation (with input variables): $\tilde{T}(V, cx, cy, V') = (x' \leftrightarrow \neg y \cdot cx) \land (y' \leftrightarrow \neg x \cdot \neg cx \cdot cy)$
- Transition Relation: $T(V, V') = \exists cx, cy. \tilde{T}(V, cx, cy, V')$ $= (\neg x \cdot \neg x' | \neg y \cdot \neg y' | \neg x' \cdot \neg y')$

ymbolic Set Operations				
Symbolic Expression	Boolean Formula	Corresponding Set	Set Expression	
	true	{00, 01, 10, 11}	S	
A	X	{10,11}	S _A	
В	У	{01,11}	S _B	
$A \lor B$	x I y	{01,10,11}	S _A ∪ S _B	
A ∧ B	х-у	{11}	$S_A \cap S_B$	
¬A	¬ <i>X</i>	{00,01}	$S \setminus S_A$	

Image Computation

- Given states R(V) and transition relation T(V,V')
- Let $F(V') = \exists V. R(V) \land T(V,V')$,
- Let F(V) be obtained by renaming V' to V in F(V')
- Then F(V) is the set of all states reachable in one step from states in R

Symbolic Model Checking Forward Reachability Algorithm

Снеск (*M*, *Bad*)

 $Prev \leftarrow false$ $Seen \leftarrow I$ while (Seen \neq Prev)
if (Seen \land Bad \neq false)
return Fail $Prev \leftarrow Seen$ $Seen \leftarrow Prev \lor Img(Prev,T)$ end
return Pass

$//M = (S, I, T), Bad \subseteq S$

// No states have been seen as yet
// Mark Initial States as Seen
// Have we seen any new states?
// Have we seen a bad state?

// Update previously seen states// Mark states in the image of Prev as seen

// No Bad state reachable

Satisfiability Solvers

- Given a Boolean formula Q,
- Is there a satisfying assignment to the variables in Q?

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 20.

Satisfiability Solvers Example

• SAT $((x | y) \cdot (x | z) \cdot (\neg x | \neg z) \cdot (y | z))$?

Yes. Satisfying assignment: x=1, y=1, z=0Satisfying assignment: x=0, y=1, z=1

• SAT $((x | \neg y) \cdot (\neg x | y) \cdot (x | z) \cdot (\neg x | \neg z) \cdot (y | \neg z) \cdot (\neg y | z))$? No.

Bounded Model Checking Iterative BMC				
Снеск (<i>M</i> , <i>Bad</i>)	$//M = (S, I, T), Bad \subseteq S$			
$k \leftarrow 0$ while (true) if SAT(Bad_k) return Fail	// k-BMC			
$k \leftarrow k+1$ end	// Increment k			
When does the loop terminate for an N-bit state machine?				
	20			

Model Checking

Graph Reachability Symbolic Model Checking Proof by Induction

Natural Induction

- To Prove: 1+2+...+n = (n * (n+1)) /2
- Base Step: Show that the equation holds for n = 11 = (1 * 2) / 2 = 1

• Induction: Assume equation holds for n = i, then show that it holds for n = (i+1) $1+2+\ldots+i = (i^*(i+1))/2$ // Assumption $1+2+\ldots+i+(i+1) = (i^*(i+1))/2 + (i+1)$ $= (i^*(i+1) + 2^*(i+1))/2$ $= ((i+1)^*(i+2))/2$

Induction for FSM Properties

- Given *Bad* states, all the other states are *Good* $Good(V) = \neg Bad(V)$
- To show that an FSM never reaches a Bad state
- Prove that the FSM always stays in a Good state
- Show that the following are valid: $l(V) \Rightarrow Good(V)$ (Base step) $Good(V) \land T(V,V') \Rightarrow Good(V')$ (Induction)

Induction for FSM Properties Not all valid properties are inductive

Inductive Invariants

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

• An inductive invariant for a state machine is any property $\varPhi(V)$ such that:

$$l(V) \Rightarrow \Phi(V)$$

$$\Phi(V) \wedge T(V,V') \Rightarrow \Phi(V')$$

• To prove that FSM always stays in *Good*: Find an inductive invariant $\Phi(V)$ Show that $\Phi(V) \Rightarrow Good(V)$

Model Checking and Induction

- The set Reach of all reachable states is, by definition, inductive
- The initial states are in *Reach*
- From Reach, you can only reach states in Reach
- Reach is the strongest invariant for the state machine
- Given any other invariant $\Phi(V)$, $Reach(V) \Rightarrow \Phi(V)$

Model Checking and Induction The set of reachable states is inductive $V = \{x, y, z\}$ $I = x \cdot \neg y \cdot z$ (010) 110 011 $T = (x' \longleftrightarrow \neg x) \cdot (y' \longleftrightarrow y) \cdot (z \longleftrightarrow (x \mid z))$ $Bad = x \cdot y$ $Good = \neg(x \cdot y)$ Not inductive $Reach = \neg y \cdot z$ Inductive (001 (000) 100 101

Summary

Summary

- · Model Checking is an effective static analysis method for verification
- Enables validation of complex System-on-a-Chip designs (SoC's), including CPU's and GPU's
- Results in robust design micro-architecture specifications and implementations
- Unit-level formal analysis must seamlessly dovetail into product design methodologies
- Core Ideas
- Graph Reachability
- Symbolic representation
- \cdot Induction
- Plenty of scope for creative work and careers in hardware verification
- \cdot Tools, flows, and methodologies to tackle hard verification "puzzles" in industry

References

References

- Model Checking
 - E. A. Emerson and E. M. Clarke, "Characterizing Correctness Properties of Parallel Programs as Fixpoints", Proceedings of the Seventh International Colloquium on Automata, Languages, and Programming, LNCS, Vol. 85, 1981.
 - E.M. Clarke, E. A. Emerson and A. P. Sistla, "Automatic verification of finite-state concurrent systems using temporal logic specifications," ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.
 - J-P. Queille and J. Sifakis, "Specification and Verification of Concurrent Systems," CESAR International Symposium on Programming, LNCS, Vol. 137, 1982
- BDDs and Symbolic Model Checking
- R.E. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation," IEEE Transactions on Computers, Vol. C 35, No. 8, August, 1986
- O. Coudert, C. Berthet and J.C. Madre, "Verification of Synchronous Sequential Machines Based on Symbolic Execution," International Workshop on Automatic Verification Methods for Finite State Systems, 1989
- J.R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang, "Symbolic model checking: 10²⁰ states and beyond," *5th Ann. Symposium on Logic in Computer Science*, June 1990

References

- · Satisfiability and Bounded Model Checking
- Niklas Eén and Niklas Sörensson, "An Extensible SAT-solver," 6th International Conference on Theory and Applications of Satisfiability Testing, 2003
- A. Biere, A. Cimatti, E. M. Clarke and Y. Zhu, "Symbolic Model Checking without BDDs," 5th International Conference on Tools and Algorithms for Construction and Analysis of Systems, 1999
- Induction and other SAT-based methods
- M. Sheeran, S. Singh and G. Stalmark, "Checking Safety Properties using Induction and a SATsolver," Formal Methods in Computer-Aided Design, 2000
- K.L. McMillan, "Craig Interpolation and Reachability Analysis," 10th International Symposium on Static Analysis, 2003
- A.R. Bradley, "SAT-based Model Checking without Unrolling," 12th International Conference on Verification, Model Checking, and Abstract Interpretation, 2011

References

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

- Textbooks
- E.M. Clarke, O. Grumberg and D.A. Peled, "Model Checking," MIT Press, 1999
- T. Kropf, "Introduction to Formal Hardware Verification", Springer-Verlag, 1999