
amitgoel@apple.com

Model Checking
Amit Goel

(c) Copyright Apple 2017

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Exponential
Verification complexity

Total number of particles in the universe (2266)

Total number of states in an SoC (2????????)

Simulation
Emulation
FPGA’s
Formal Verification

St
at

es

Time
2017

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Introduction
Model Checking

• Does a given state machine M satisfy a property P?
• Check for all possible behaviors of the state machine
• If not, produce a trace showing the violation

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Properties

• Safety properties: something bad will never happen
• e.g. we should never write to a full buffer

• Liveness properties: something good will eventually happen
• e.g. all requests to an arbiter will eventually be granted

Model Checking

Graph Reachability
Symbolic Model Checking
Proof by Induction

Model Checking

Graph Reachability
Symbolic Model Checking
Proof by Induction

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

State Machines

• A state machine M = (S, I, T)
• S is a set of states
• I ⊆ S is the set of initial states
• T ⊆ S × S is a transition relation

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Example
State Machines

S = {s0, s1, s2, s3}

I = {s2}

T = {(s0,s0), (s0,s1), (s0,s2), (s1,s0), (s1,s1), (s2,s0), (s2,s2), (s3,s0)}

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Example
State Machines

S = {s0, s1, s2, s3}

I = {s2}

T = {(s0,s0), (s0,s1), (s0,s2), (s1,s0), (s1,s1), (s2,s0), (s2,s2), (s3,s0)}

s0

s1 s3

s2

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Examples
Checking Safety Properties

s0

s1 s3

s2s0

s1 s3

s2

Bad = {s1, s3} Bad = {s3}

Can we reach a bad state from an initial state?

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Examples
Checking Safety Properties

s0

s1 s3

s2s0

s1 s3

s2

Bad = {s1, s3} Bad = {s3}

Can we reach a bad state from an initial state?

Yes: Path s2, s0, s1

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Examples
Checking Safety Properties

s0

s1 s3

s2s0

s1 s3

s2

Bad = {s1, s3} Bad = {s3}

Can we reach a bad state from an initial state?

Yes: Path s2, s0, s1 No path from s2 to s3

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Explicit-state Model Checking

CHECK (M, Bad) // M = (S, I, T), Bad ⊆S

 if (∃s ∈ I. s ∈ Bad) // Is there a bad initial state?
 return Fail

 Seen ⟵ I // Mark the Initial states as Seen
 while (∃(s,s’) ∈ T. s ∈ Seen and s’ ∉ Seen) // Find a reachable unseen state s’?
 if (s’ ∈ Bad) // Is s’ a bad state?
 return Fail
 Seen ⟵ Seen ⋃ {s’} // Mark s’ as seen
 end
 return Pass // Cannot reach a bad state

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Example
Checking Liveness properties

• Infinite loops (Deadlocks and Livelocks) in state machines
S = {s0, s1, s2, s3, s4}

I = {s2}

T = {(s0,s0), (s0,s1), (s0,s2), (s1,s0), (s1,s1), (s1,s4), (s2,s0), (s2,s2), (s3,s0), (s4,s4)}

s0

s1 s3

s2

s4

Can you reach a state where you cannot exit from and return to any good state?

Good = {s0, s1, s2}

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Example
State-space Explosion

• The number of reachable states in systems is often too large to enumerate
• Consider a system which orders n things

• e.g. Arbitration, Out-of-order processing, …

• Number of orderings is given by n!

n n!

4 24

8 40,320

16 20,922,789,888,000

Model Checking

Graph Reachability
Symbolic Model Checking
Proof by Induction

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Symbolic Representation of States

• States can be encoded using Boolean variables V

State Encoding with V= {x,y}

s0 00

s1 01

s2 10

s3 11

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Symbolic Representation of States

• States can be encoded using Boolean variables V
• State sets can be represented by Boolean functions over V

Boolean Function State Set

true {00, 01, 10, 11}

false {}

x∙¬y {10}

x∙y {11}

y {01, 11}

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Symbolic Representation of States

• States can be encoded using Boolean variables V
• State sets can be represented by Boolean functions over V
• State relations can be encoded by Boolean functions over two sets of variables, V and V’

• V for current state
• V’ for next state

Boolean Function Relation

¬x∙¬y∙x’∙¬y’ {00→10}

¬x∙¬y∙(¬x’ ∣ ¬y’) {00→00, 00→10, 00→01}

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Example
Symbolic Encoding for FSMs

00

01 11

1000

01 11

10

I = x∙¬y
T = ¬x∙¬x’ ∣ ¬y∙¬y’ ∣ ¬x’∙¬y’
Bad = y Bad = x∙y

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Symbolic Representation for Circuits

module toy (input clock, input reset,
 input cx, input cy,
 output x, output y);

 logic x; logic y;

 always @(posedge clock)
 if (reset) begin
 x <= 1'b1;

 y <= 1'b0;
 end else begin
 x <= !y && cx;

 y <= !x && !cx && cy;
 end

 // Mutex property

 assert property (!(x && y));
endmodule

Initial (reset) State:
I(V) = x∙¬y

State Variables:
V = {x, y}

Transition Functions:
x’ = ¬y∙cx
y’ = ¬x∙¬cx∙cy

Property:
Bad = x∙y

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Synthesized Circuit

AND
NOT

NOT
AND

AND

cx

cy

NOT

x

y

1

0

reset

reset

module toy (input clock, input reset,

 input cx, input cy,
 output x, output y);

 logic x; logic y;
 always @(posedge clock)

 if (reset) begin
 x <= 1'b1;
 y <= 1'b0;

 end else begin
 x <= !y && cx;
 y <= !x && !cx && cy;

 end

 // Mutex property
 assert property (!(x && y));

endmodule

Initial (reset) State:
I(V) = x∙¬y

State Variables:
V = {x, y}

Transition Functions:
x’ = ¬y∙cx
y’ = ¬x∙¬cx∙cy

Property:
Bad = x∙y

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Example
Transition Function and Transition Relation

• Transition function:
x’ = ¬x ∙ cx

• Transition relation (with input variables):
T̃(x, cx, x’) = (x’ ⟷ ¬x ∙ cx)

0

1

0

10,1

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Example
Transition Function and Transition Relation

• Transition function:
x’ = ¬x ∙ cx

• Transition relation (with input variables):
T̃(x, cx, x’) = (x’ ⟷ ¬x ∙ cx)

• Transition Relation (without input variables):
T(x, x’) = ∃cx.(x’ ⟷ ¬x ∙ cx)
 = (¬x ∣ ¬x’)

0

1

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Example
Transition Functions and Transition Relation

• Transition function:
x’ = ¬y∙cx
y’ = ¬x∙¬cx∙cy

• Transition relation (with input variables):
T̃(V, cx, cy, V’) = (x’ ⟷ ¬y ∙ cx) ∧ (y’ ⟷ ¬x∙¬cx∙cy)

• Transition Relation:
T(V, V’) = ∃cx, cy. T̃(V, cx, cy, V’)
 = (¬x∙¬x’ ∣ ¬y∙¬y’ ∣ ¬x’∙¬y’)

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Verilog, Circuit and FSM
Symbolic Representation

module toy (input clock, input reset,

 input cx, input cy,
 output x, output y);

 logic x; logic y;
 always @(posedge clock)

 if (reset) begin
 x <= 1'b1;
 y <= 1'b0;

 end else begin
 x <= !y && cx;
 y <= !x && !cx && cy;

 end

 // Mutex property
 assert property (!(x && y));

endmodule

00

01 11

10

AND
NOT

NOT
AND

AND

cx

cy

NOT

x

y

1

0

reset

reset

V = {x,y}
I(V) = x∙¬y
T(V,V’) = ¬x∙¬x’ ∣ ¬y∙¬y’ ∣ ¬x’∙¬y’
Bad(V) = x∙y

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Symbolic Set Operations

Symbolic Expression Boolean Formula Corresponding Set Set Expression

 true {00, 01,10,11} S

A x {10,11} SA

B y {01,11} SB

A ∨ B x ∣ y {01,10,11} SA ∪ SB

A ∧ B x∙y {11} SA ∩ SB

¬A ¬x {00,01} S ∖ SA

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Image Computation

• Given states R(V) and transition relation T(V,V’)
• Let F(V’)= ∃V. R(V) ∧ T(V,V’),

• Let F(V) be obtained by renaming V’ to V in F(V’)
• Then F(V) is the set of all states reachable in one step from states in R

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Image Computation

• Given states R(V) and transition relation T(V,V’)
• Let F(V’)= ∃V. R(V) ∧ T(V,V’),

• Then F(V) is the set of all states reachable in one step from states in R

R(V) = I(V) = x∙¬y

T(V,V’) = ¬x∙¬x’ ∣ ¬y∙¬y’ ∣ ¬x’∙¬y’

F(V’) = ¬y’
F(V) = ¬y 00

01 11

10

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Image Computation

• Given states R(V) and transition relation T(V,V’)
• Let F(V’)= ∃V. R(V) ∧ T(V,V’),

• Then F(V) is the set of all states reachable in one step from states in R

R(V) = ¬y
T(V,V’) = ¬x∙¬x’ ∣ ¬y∙¬y’ ∣ ¬x’∙¬y’

F(V) = ¬x ∣ ¬y

00

01 11

10

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Image Computation

• Given states R(V) and transition relation T(V,V’)
• Let F(V’)= ∃V. R(V) ∧ T(V,V’),

• Then F(V) is the set of all states reachable in one step from states in R

• We write Img(R,T) for the above image computation

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Forward Reachability Algorithm
Symbolic Model Checking

CHECK (M, Bad) // M = (S, I, T), Bad ⊆S

 Prev ⟵ false // No states have been seen as yet
 Seen ⟵ I // Mark Initial States as Seen
 while (Seen ≠ Prev) // Have we seen any new states?
 if (Seen ∧ Bad ≠false) // Have we seen a bad state?
 return Fail
 Prev ⟵ Seen // Update previously seen states
 Seen ⟵ Prev ∨ Img(Prev,T) // Mark states in the image of Prev as seen
 end
 return Pass // No Bad state reachable

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Satisfiability Solvers

• Given a Boolean formula Q,
• Is there a satisfying assignment to the variables in Q?

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Example
Satisfiability Solvers

• SAT((x ∣ y) ∙ (x ∣ z) ∙ (¬x ∣ ¬z) ∙ (y ∣ z))?

Yes.
Satisfying assignment: x=1, y=1, z=0
Satisfying assignment: x=0, y=1, z=1

• SAT((x ∣ ¬y) ∙ (¬x ∣ y) ∙ (x ∣ z) ∙ (¬x ∣ ¬z) ∙ (y ∣ ¬z) ∙ (¬y ∣ z))?

No.

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Bounded Model Checking

• Bounded Model Checking: Can we reach a bad state in k cycles?

 V T(V,V’)

clock

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Bounded Model Checking

• Bounded Model Checking: Can we reach a bad state in k cycles?
• Unroll the circuit k times

V0 T(V0,V1) V1 T(V1,V2) Vk-1 T(Vk-1,Vk) Vk…

Initial Bad

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Bounded Model Checking

• Bounded Model Checking: Can we reach a bad state in k cycles?
• Unroll the circuit k times

• Badk = I(V0) ∧T(V0,V1) ∧ … ∧ T(Vk-1, Vk) ∧ Bad(Vk)

• Unsatisfiable? No failure in k cycles
• Satisfiable? Satisfying assignment is a k-length counterexample

V0 T(V0,V1) V1 T(V1,V2) Vk-1 T(Vk-1,Vk) Vk…

Initial Bad

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Iterative BMC
Bounded Model Checking

CHECK (M, Bad) // M = (S, I, T), Bad ⊆S

 k ⟵ 0
 while (true)
 if SAT(Badk) // k-BMC
 return Fail
 k ⟵ k+1 // Increment k
 end

When does the loop terminate for an N-bit state machine?

Model Checking

Graph Reachability
Symbolic Model Checking
Proof by Induction

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Natural Induction

• To Prove:
1 + 2 + … + n = (n * (n+1)) /2

• Base Step:
Show that the equation holds for n = 1
1 = (1 * 2) / 2 = 1

• Induction:
Assume equation holds for n = i,
then show that it holds for n = (i+1)
1 + 2 + … + i = (i*(i+1))/2 // Assumption
1 + 2 + … + i + (i+1) = (i*(i+1))/2 + (i+1)
 = (i*(i+1) + 2*(i+1))/2
 = ((i+1) * (i+2))/2

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Induction for FSM Properties

• Given Bad states, all the other states are Good
Good(V) = ¬Bad(V)

• To show that an FSM never reaches a Bad state
• Prove that the FSM always stays in a Good state
i.e. Good is an invariant for the system

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Induction for FSM Properties

• Given Bad states, all the other states are Good
Good(V) = ¬Bad(V)

• To show that an FSM never reaches a Bad state
• Prove that the FSM always stays in a Good state

• Show that the following are valid:
I(V) ⇒ Good(V) (Base step)
Good(V) ∧ T(V,V’) ⇒ Good(V’) (Induction)

00

01 11

10

Bad = x ∙ y
Good = ¬x ∣ ¬y

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Not all valid properties are inductive
Induction for FSM Properties

V = {x,y,z}
I = x ∙ ¬y ∙ z

T = (x’ ⟷ ¬x) ∙ (y’ ⟷ y) ∙ (z ⟷ (x ∣ z))

Bad = x∙y
Good = ¬(x∙y) Not inductive

001

011 111

101000

010 110

100

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Inductive Invariants

• An inductive invariant for a state machine is any property 𝛷(V) such that:
I(V) ⇒ 𝛷(V)

𝛷(V) ∧ T(V,V’) ⇒ 𝛷(V’)

• To prove that FSM always stays in Good:
Find an inductive invariant 𝛷(V)
Show that 𝛷(V) ⇒ Good(V)

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Model Checking and Induction

• The set Reach of all reachable states is, by definition, inductive
• The initial states are in Reach
• From Reach, you can only reach states in Reach

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Model Checking and Induction

• The set Reach of all reachable states is, by definition, inductive
• The initial states are in Reach
• From Reach, you can only reach states in Reach

• Reach is the strongest invariant for the state machine

• Given any other invariant 𝛷(V),
Reach(V) ⇒ 𝛷(V)

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Model Checking and Induction

• The set Reach of all reachable states is, by definition, inductive
• The initial states are in Reach
• From Reach, you can only reach states in Reach

• Reach is the strongest invariant for the state machine

• Given any invariant 𝛷(V),
Reach(V) ⇒ 𝛷(V)

• Alternate algorithms attempt to find weaker invariants:
• Interpolation
• Property Directed Reachability (PDR)

V = {x,y,z}
I = x∙¬y∙z

T = (x’ ⟷ ¬x) ∙ (y’ ⟷ y) ∙ (z ⟷ (x ∣ z))

Bad = x∙y
Good = ¬(x∙y) Not inductive
Reach = ¬y∙z Inductive

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

The set of reachable states is inductive
Model Checking and Induction

001

011 111

101000

010 110

100

V = {x,y,z}
I = x∙¬y∙z

T = (x’ ⟷ ¬x) ∙ (y’ ⟷ y) ∙ (z ⟷ (x ∣ z))

Bad = x∙y
Good = ¬(x∙y) Not inductive
Reach = ¬y∙z Inductive

𝛷 = ¬y Inductive

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Alternate Inductive Invariant
Model Checking and Induction

001

011 111

101000

010 110

100

V = {x,y,z}
I = x∙¬y∙z

T = (x’ ⟷ ¬x) ∙ (y’ ⟷ y) ∙ (z ⟷ (x ∣ z))

Bad = x∙y
Good = ¬(x∙y) Not inductive
Reach = ¬y∙z Inductive

𝛷 = ¬y Inductive

Invariant Strength: Reach ⇒ 𝛷 ⇒ Good

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Invariant Strength
Model Checking and Induction

001

011 111

101000

010 110

100

Summary

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

Summary

• Model Checking is an effective static analysis method for verification
• Enables validation of complex System-on-a-Chip designs (SoC’s), including CPU’s and GPU’s
• Results in robust design micro-architecture specifications and implementations
• Unit-level formal analysis must seamlessly dovetail into product design methodologies

• Core Ideas
• Graph Reachability
• Symbolic representation
• Induction

• Plenty of scope for creative work and careers in hardware verification
• Tools, flows, and methodologies to tackle hard verification “puzzles” in industry

References

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

References

• Model Checking
• E. A. Emerson and E. M. Clarke, “Characterizing Correctness Properties of Parallel Programs as Fixpoints”, Proceedings

of the Seventh International Colloquium on Automata, Languages, and Programming, LNCS, Vol. 85, 1981.
• E.M. Clarke, E. A. Emerson and A. P. Sistla, “Automatic verification of finite-state concurrent systems using temporal

logic specifications,” ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.
• J-P. Queille and J. Sifakis, “Specification and Verification of Concurrent Systems,” CESAR International Symposium on

Programming, LNCS, Vol. 137, 1982
• BDDs and Symbolic Model Checking

• R.E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,” IEEE Transactions on Computers, Vol. C -
35, No. 8, August, 1986

• O. Coudert, C. Berthet and J.C. Madre, “Verification of Synchronous Sequential Machines Based on Symbolic
Execution,” International Workshop on Automatic Verification Methods for Finite State Systems, 1989

• J.R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang, “Symbolic model checking: 1020 states and beyond,”
5th Ann. Symposium on Logic in Computer Science, June 1990

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

References

• Satisfiability and Bounded Model Checking
• Niklas Eén and Niklas Sörensson, “An Extensible SAT-solver,” 6th International Conference on Theory

and Applications of Satisfiability Testing, 2003
• A. Biere, A. Cimatti, E. M. Clarke and Y. Zhu, “Symbolic Model Checking without BDDs,” 5th

International Conference on Tools and Algorithms for Construction and Analysis of Systems, 1999
• Induction and other SAT-based methods

• M. Sheeran, S. Singh and G. Stalmark, “Checking Safety Properties using Induction and a SAT-
solver,” Formal Methods in Computer-Aided Design, 2000

• K.L. McMillan, “Craig Interpolation and Reachability Analysis,” 10th International Symposium on
Static Analysis, 2003

• A.R. Bradley, “SAT-based Model Checking without Unrolling,” 12th International Conference on
Verification, Model Checking, and Abstract Interpretation, 2011

UT Austin College of ECE - EE382M.Verification of Digital Systems, 5th March 2020

References

• Textbooks
• E.M. Clarke, O. Grumberg and D.A. Peled, “Model Checking,” MIT Press, 1999
• T. Kropf, “Introduction to Formal Hardware Verification”, Springer-Verlag, 1999

