14. Term Rewriting Systems

Jacob Abraham

Department of Electrical and Computer Engineering
The University of Texas at Austin
Verification of Digital Systems
Spring 2017
March 2, 2017

Outline

- Term Rewriting Systems (TRS)
 - How a term can be rewritten/transformed into another
- Term rewriting for equivalence checking
- SMT solvers and application to verification and test
- Using term rewriting systems to design and verify processors
Term Rewriting Systems – Greatest Common Divisor

Euclid’s Algorithm

- Terms are functions of integers
- Four rules

Rules:

- Rule R_1: $\text{Gcd}(a, b)$ if $b \neq 0 \Rightarrow \text{Gcd}(b, \text{Rem}(a, b))$
- Rule R_2: $\text{Gcd}(a, 0) \Rightarrow a$
- Rule R_3: $\text{Rem}(a, b)$ if $a < b \Rightarrow a$
- Rule R_4: $\text{Rem}(a, b)$ if $a \geq b \Rightarrow \text{Rem}(a-b, b)$

Example:

$\text{Gcd}(2, 4) \xrightarrow{R_1} \text{Gcd}(4, \text{Rem}(2, 4)) \xrightarrow{R_3} \text{Gcd}(4, 2) \xrightarrow{R_4} \text{Gcd}(2, \text{Rem}(0, 2)) \xrightarrow{R_3} \text{Gcd}(2, 0) \xrightarrow{R_1} 2$

Simple Arithmetic Rewriting

Terms

- integer, variable, (,), +, *
- (Note: no evaluation rules defined)

Rules

- Rule1: $\langle \text{op} \ a \ b \rangle \rightarrow \langle \text{op} \ b \ a \rangle$ if $(b < a)$ and $\text{op} \in \{+, *\}$
- Rule2: $\langle * (+ \ a \ b) \ c \rangle \rightarrow (+ * \ a \ c) (\ * \ b \ c)$
- Rule3: $(+ a a) \rightarrow (* a 2)$
- Rule4: $\langle \text{op} \ (\text{op} \ a \ b) \ c \rangle \rightarrow \langle \text{op} \ (\text{op} \ a \ c) \ b \rangle$ if $(a < c$ & $c < b)$ and $\text{op} \in \{+, *\}$
- Rule5: $(\text{op} \ a \ (\text{op} \ b \ c)) \rightarrow \langle \text{op} \ (\text{op} \ b \ c) \ a \rangle$ if $(a > c$ & $b > c)$ and $\text{op} \in \{+, *\}$

Source: Shaun Feng
Example(s) in Rewriting

Example: \((\ast 4 (+ 3 3) \equiv (\ast (+ 4 4) 3)\)

\[\begin{align*}
(\ast 4 (+ 3 3) &\rightarrow (\ast(\ast 3 2)) \rightarrow (\ast 4 (\ast 2 3)) \rightarrow (\ast(\ast 2 3) 4) \\
(\ast (+ 4 4) 3 &\rightarrow (\ast (\ast 4 2) 3) \rightarrow (\ast (\ast 2 4) 3) \rightarrow (\ast(\ast 2 3) 4)
\end{align*}\]

Prove if \((\ast (x + y) y) \equiv (\ast (x x) y)\)

Term Rewriting Systems

3-tuple: \((T, L, R)\)

- **T**: Set of terms (functions, constants, variables, operators)
 \((t_1, t_2, \ldots, t_n)\)
- **L**: Set of labels \((R_1, R_2, \ldots)\)
- **R**: Set of labeled rules (may be conditional) \((r_1, r_2, \ldots, r_n)\)

Rewrite process

\[t_1 \xrightarrow{r_1} t_2 \xrightarrow{r_2} t_3 \xrightarrow{r_k} \ldots \xrightarrow{r_m} t_n \text{ (Normal Form)}\]

- Term that cannot be rewritten any further
- Depending on the system, several normal forms (or no normal form) may exist
- Normal forms can be used for verification

Equivalence of two terms

- Determine whether the two terms have the same normal forms
- Undecidable in general
Rewriting 3NAND using 2NAND

Terms
2NAND(), A, B, C, a, b, ∧, ¬

Rules
- Rule R1: \(a \land b \rightarrow \neg 2\text{NAND}(a, b) \)
- Rule R2: \(\neg(\neg a) \rightarrow a \)
- Rule R3: \(\neg a \rightarrow 2\text{NAND}(a, a) \)

Apply the rules to get a 3NAND

\[\neg((A \land B) \land C) \xrightarrow{R1} \neg(\neg 2\text{NAND}(A \land B, C)) \xrightarrow{R2} 2\text{NAND}(A \land B, C) \xrightarrow{R3} 2\text{NAND}(2\text{NAND}(A, B), 2\text{NAND}(A, B)), C \]

Termination and Cofluence

Termination
- No infinite rewriting sequence \(\rightarrow \) normal form exists

Cofluence
- Terms can be rewritten in multiple ways, but will eventually yield the same results
 - \(*(+ 2 1) (+ 3 4) \rightarrow *(3 (+ 3 4)) \rightarrow *(3 7) \)
 - \(*(+ 2 1) (+ 3 4) \rightarrow *(+ 2 1) 7 \rightarrow *(3 7) \)
- Normal form is unique if it exists

Convergence: Termination and Cofluence
- Normal form exists and is unique
- Convergent TRS used in equivalence checking
Rules of TRS Deduction

- **(I) Reflexivity:** \(t \rightarrow t \)
- **(R) Replacement:**
 - R1: \(a \rightarrow a - 3 \) if \(a \in I \) and \(a \geq 3 \)

 \[
 t_k(x) \rightarrow t_n(x) \\
 t_k(x_0/x) \rightarrow t_n(x_0/x)
 \]
- **(C) Congruence**
 - R1: \(a \rightarrow a - 3 \) if \(a \geq 3 \)

 \[
 t_1 \rightarrow t'_1, \ldots, t_k \rightarrow t'_m \\
 f(t_1, \ldots, t_k) \rightarrow f(t'_1, \ldots, t'_k)
 \]
- **(T) Transitivity**

 \[
 t_1 \rightarrow t_2, \ldots, t_2 \rightarrow t_3 \\
 t_1 \rightarrow t_3
 \]

TRS Closure

- **One step rewrite:**
 - Reflexivity
 - Congruence
 - Replacement

Source: Shaun Feng

Equivalence Under TRS

- For each pair of compare points (P1, P2), from the models M1 and M2
 - Get normal forms by applying rewrite rules
 - If normal_form(P1) and normal_form(P2) are the same term, then equivalence is proven

Assumptions necessary for TRS
- Convergence
- Canonical forms exist for equivalent terms

Checking Datapaths Using Arithmetic Expressions

Zhou, 1995
Based on Attribute Syntax Trees
Example: – (a * b * c) + b * c

(a) non-canonical form, and (b) canonical form under the lexicographic path ordering

Source: Zhou and Burleson, DAC 1995
Verification of Arithmetic Circuits using Term Rewriting

- RTL to RTL equivalence checking
- Verifies large multiplier designs
- Formalism: Term Rewriting Systems

Verifire
- Dedicated Arithmetic Circuit Checker
- Vtrans: Translates Verilog designs to Term Rewriting Systems
- Vprover: Proves equivalence of Term Rewriting Systems
 - Iterative engine which returns error trace if proof not found
 - Maintains an expanding rule base for expression minimization
 - Incomplete, but efficient, engine

RTL Equivalence Using Term Rewriting Systems (TRS)
Modeling Verilog as TRSs

- Verilog modules translated into *structural* TRS
- Resulting TRS “simulates” Verilog evaluation semantics
- TRS contains symbolic terms for signals in terms of other signals and primary inputs
- Symbolic terms (signal expressions) consist only of RTL operators

Verilog designs

- Every Verilog design corresponds to a TRS
- Every module is a term
- Inputs, Outputs, Reg, Wire, Module instantiations: Subterms
- Variable updating syntactic transformations: Rewrite rules (assignments, case, if-then-else statements)

Verification Algorithm

```plaintext
main (vG, vR) {
    trsG := translate (vG)
    trsR := translate (vR)
    proofOutcome := prove (trsG, trsR)
}

prove (trsG, trsR) {
    CP := computeComparePoints (trsG, trsR)
    for (every comparison point (cG, cR) ∈ CP)
        if (reduce (cG) is not equal to reduce (cR))
            return failure
    return success
}

reduce (t) {
    while (some rule can be applied)
        rewrite (t)
}
```

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, March 2, 2017
Verilog to TRS Translation (translate())

- Translate source Verilog modules into a structural TRS that “simulates” the Verilog evaluation semantics
- Structural TRS is at the same level of abstraction as the Verilog design
- Result is a rewrite system which can be used to compute the symbolic term for any signal in terms of other signals and/or primary inputs
- Each hierarchical signal is represented by a new constant function symbol (signal function)(hierarchy is “flattened”)
- Rewrite rules rewrite each signal function into an expression consisting of RTL operators and other signal functions

Equivalence of TRSs

- Observation function applied to both TRSs to obtain observed set of terms
- Comparing entire symbolic values of terms: intractable problem
- Compare at intermediate stages of rewriting: comparison points
- Terms compared and expression equivalence proved at every comparison point
- Last comparison point: Normal form

Heuristic for comparison points: compute a partition of the bits for a particular output defined by the assignments to different subsets of bits of the same signal in both the reference (golden) and target designs
Checking Equivalence of Terms (reduce())

Check for equivalence between two symbolic terms by rewriting based on simplification

\[
\begin{align*}
(x & x) & \rightarrow x \\
((x & y) & z) & \rightarrow (x & (y & z)) \\
(x << 3) & \rightarrow (x << 2) + (x << 1) + (x << 1) \\
((x << 1) - x) & \rightarrow x \\
((x << 1) << 1) & \rightarrow (x << 2)
\end{align*}
\]

Verilog for Ripple-Carry Adder

```verilog
module rcal6bit(A, B, Cin, S, Cout);
  input [15:0] A, B;
  input Cin;
  output [15:0] S;
  output Cout;
  reg S, Cout;
  wire [14:0] Carry;

  rcalbit rcalbit0(A[0], B[0], Cin, S[0], Carry[0]); R1
  rcalbit rcalbit1(A[1], B[1], Carry[0], S[1], Carry[1]); R2
  ;
  rcalbit rcalbit15(A[15], B[15], Carry[14], S[15], Cout); R16
endmodule

module rcalbit(A, B, C, S, Cout);
  input A, B, C;
  output S, Cout;
  assign S = A & B & C;
  assign Cout = A&B | B&C | C&A;
endmodule
```

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, March 2, 2017
Example of Rules in the Structural TRS for the Adder

R1: rcalbit0.A() → A[0]()
rcalbit0.B() → B[0]()
rcalbit0.C() → Cin()
rcalbit0.S() → (rcalbit0.A() ∧ rcalbit0.B() ∧ rcalbit0.C())
rcalbit0.Cout() → ((rcalbit0.A() & rcalbit0.B()) | (rcalbit0.B() & rcalbit0.C()) | (rcalbit0.C() & rcalbit0.A()))
S[0]() → rcalbit0.S()
Carry[0]() → rcalbit0.Cout()

R2: rcalbit1.A() → A[1]()
rcalbit1.B() → B[1]()
rcalbit1.C() → Carry[0]()

Equivalence of TRSs Applied to Arithmetic Circuits

- Observed Variables: Outputs
- Comparison points: Points where expressions for partial number of bits is obtained
- Bitwise equivalence of observed terms
- Normal form: Entire bitwidth compared

Example: checking ripple-carry adder against carry lookahead adder
Results on Multipliers

Different sizes of Wallace Tree Multipliers (Verilog RTL) compared with a simple Golden Multiplier (Verilog RTL) of the same size

<table>
<thead>
<tr>
<th>Wallace Tree</th>
<th>Verifire</th>
<th>Commercial Tool 1</th>
<th>Commercial Tool 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x4</td>
<td>14s</td>
<td>10s</td>
<td>9s</td>
</tr>
<tr>
<td>8x8</td>
<td>18s</td>
<td>18s</td>
<td>16s</td>
</tr>
<tr>
<td>16x16</td>
<td>25s</td>
<td>unfinished</td>
<td>unfinished</td>
</tr>
<tr>
<td>32x32</td>
<td>40s</td>
<td>unfinished</td>
<td>unfinished</td>
</tr>
<tr>
<td>64x64</td>
<td>60s</td>
<td>unfinished</td>
<td>unfinished</td>
</tr>
</tbody>
</table>

Distribution of Rewrite Rules for Multipliers Used by reduce()

<table>
<thead>
<tr>
<th>Rule class</th>
<th>Number of rules</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean</td>
<td>32</td>
<td>((x \land (y \land z)) \rightarrow ((x \land y) \land (x \land z)))</td>
</tr>
<tr>
<td>Add/Subtract</td>
<td>44</td>
<td>((x + (y - z)) \rightarrow ((x + y) - z))</td>
</tr>
<tr>
<td>Shift</td>
<td>16</td>
<td>((x << 1) << 1 \rightarrow (x << 2))</td>
</tr>
<tr>
<td>Multiplier Specific</td>
<td>9</td>
<td>((x << 1) - x \rightarrow x)</td>
</tr>
<tr>
<td>Total</td>
<td>101</td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Verifire Against Commercial Checker

<table>
<thead>
<tr>
<th>Multiplier</th>
<th>Verifire (Booth)</th>
<th>Commercial Tool (Booth)</th>
<th>Verifire (Wallace)</th>
<th>Commercial Tool (Wallace)</th>
<th>Verifire (Dadda)</th>
<th>Commercial Tool (Dadda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4b x 4b</td>
<td>16s</td>
<td>12s</td>
<td>14s</td>
<td>10s</td>
<td>13s</td>
<td>8s</td>
</tr>
<tr>
<td>8b x 8b</td>
<td>19s</td>
<td>20s</td>
<td>18s</td>
<td>20s</td>
<td>17s</td>
<td>17s</td>
</tr>
<tr>
<td>16b x 16b</td>
<td>24s</td>
<td>1942s</td>
<td>25s</td>
<td>972s</td>
<td>29s</td>
<td>29s</td>
</tr>
<tr>
<td>32b x 32b</td>
<td>37s</td>
<td>not completed</td>
<td>40s</td>
<td>not completed</td>
<td>51s</td>
<td>83s</td>
</tr>
<tr>
<td>64b x 64b</td>
<td>53s</td>
<td>-</td>
<td>60s</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The commercial equivalence checker was assisted by manual compare points (determined from the automatically extracted compare points in Verifire).

Use of TRS with SMT for Verifying Embedded Software

- Verify that two short code segments compute the same result
- Symbolically simulate modern VLIW
- Use TRS to simplify symbolic expressions
- Send query to decision procedure for proof
 - Verify equivalence between two code segments
 - Check conditions of rules to simplify memory term/expression

Dealing with Absence of Canonical Forms

- Difficult to reduce two equivalent symbolic expressions to a canonical form
 - If two program segments have different control flows, the expressions will be very different
- Solution: Use a decision procedure with SMT solvers

Applied to TI C62x VLIW DSP (can handle DSP assembly code)
Found mismatch in a packet example in TI CPU and ISA reference

Flow of the Technique

Boolean Satisfiability (SAT)

Is there an assignment to the \(p_1, p_2, \ldots, p_n \) variables such that \(\phi \) evaluates to 1?

Source: Barrett and Seshia, ICCAD tutorial, 1999
Is there an assignment to the x, y, z, w variables such that ϕ evaluates to 1?

Source: Barrett and Seshia, ICCAD tutorial, 1999
Data and Function Abstraction with EUF

Bit-vectors to Abstract Domain (e.g. \mathbb{Z})

\[
x_0, x_1, x_2, \ldots, x_{n-1} \Rightarrow x
\]

Functional units to Uninterpreted Functions

\[
a = x \land b = y \Rightarrow f(a,b) = f(x,y)
\]

Source: Barrett and Seshia, ICCAD tutorial, 1999

Hardware Abstraction with EUF

Source: Barrett and Seshia, ICCAD tutorial, 1999
Software Based Self Test

Advantages
- Minimized DFT circuitry
- Reduced external tester performance
- Excessive test power and over-testing eliminated

RT Level Test Generation for Hard-to Detect Faults

Overview
- Map gate level stuck-at fault to RTL
- Capture the propagation constraints as an LTL property
- Generate a witness for the LTL property using Bounded Model Checking
- All required constraints available in RTL
- Use SMT based Bounded Model Checking
- Scaling with cone-of-influence reduction

Prabhu et al., ETS 2012
RTL Test Generation for Hard-to-Detect Faults

Experimental Setup
- OR1200 RISC processor was DUT
- EBMC Model checker / Boolector SMT solver
- Bound of pipeline depth + 1
- Focused on hard to detect faults in control logic
- Commercial ATPG to sieve out easy to detect stuck-at faults
- 78% Fault coverage by commercial ATPG

Coverage and Run Time Comparisons *(Prabhu et al., 2012)*
Using TRS to Design and Verify Processors

Use TRS as a Hardware Description Language

- Can be used for clean, expressive, precise and concise descriptions of microarchitectures, memory models and cache coherence protocols
- Correctness of a TRS can be verified against a reference TRS specification
- HDL (e.g., Verilog) description can be synthesized from the TRS description

Commercialization

- Bluespec, Inc., Synthesis tool
- Tool uses guarded, atomic actions

Example: Hardware Synthesis of GCD

GCD(x, y) if x < y → GCD(y, x)
GCD(x, y) if x ≥ y and y ≠ 0 → GCD(x-y, y)

Verilog synthesized from TRS: 40.1 MHz and used 24% of FPGA
Hand written Verilog: 53 MHz and used 16% of the same FPGA
(IEEE Micro, May-June 1999)