

Jacob Abraham

Department of Electrical and Computer Engineering The University of Texas at Austin

> Verification of Digital Systems Spring 2020

> > April 23, 2020

Jacob Abraham, April 23, 2020 1 / 53

Jacob Abraham, April 23, 2020 1 / 53

Lecture 24. New Directions in Verif

Outline

ECE Department, University of Texas at Austin

Introduction

ECE Department, University of Texas at Austin

- Testing circuits after manufacture and in the field
 - Test generation for small delay defects
 - Tests for hard-to-detect faults
- Low-power systems
 - Early power estimation
 - Peak power estimation
 - Automatic annotation of RTL code for low power
- Application of verification to other domains
 - Verifying system security properties
 - Verifying safety-critical systems
 - Verification technology applied to biology

Lecture 24. New Dire

Verification is a Fundamental Technology

- Dealing with the analysis of extremely complex systems
- Can answer questions about the behavior of systems
- Verification algorithms and abstraction techniques can be applied to a variety of application problems
 - Generating at-speed (functional/application-level) tests for faults in an embedded module in a VLSI chip
 - Identifying accurate application-level power consumption from module-level power information
 - Automatically identifying portions of a chip which can be gated off during a particular clock cycle (to reduce power)
 - Automatically finding "implications" of a given pattern in a data set
 - Improving statistical correlations in data mining
- The verification problem will never go away, as long as there are designs
 - Will always need to verify the correctness of designs

Look at the Big Picture

ECE Department, University of Texas at A

ECE Department, University of Texas at Austin

Verification can also be applied to the other areas involving not only integrated circuits, but also any problem which can be modeled using logic functions and where answers to logic questions are desired

b Abraham, April 23, 2020 2 / 53

Jacob Abraham, April 23, 2020 3 / 53

Applicability of Verification Techniques

Simulation-Based Verification

- Can simulate very large designs
- Drawback: only a very small fraction of all possible inputs can be simulated in practice
- Generally use random or targeted sequences to achieve a coverage goal

Formal Verification

ECE Department. University of Texas

- Can only deal with small blocks
- Definite answer to whether a property holds, or a counter-example trace (assume the block is within the capacity of the tool)
- Useful for checking uncovered states, properties, etc., to achieve a coverage target

Outline

Introduction

ECE Department, University of Texas at Aus

ECE Department, University of Texas at Austin

- Testing circuits after manufacture and in the field
 - Test generation for small delay defects
 - Tests for hard-to-detect faults
- Low-power systems
 - Early power estimation
 - Peak power estimation
 - Automatic annotation of RTL code for low power
- Application of verification to other domains
 - Verifying system security properties
 - Verifying safety-critical systems
 - Verification technology applied to biology

Software-Based (Native-Mode) Self Test for Processors

- Why not use functional capabilities of processors to replace BIST hardware?
 - No additional hardware
- Reduce test costs by using low-cost testers
- Increase coverage of delay defects and increase yield by testing native
- No issues with excessive power consumption during test

Developed at University of Texas (Int'l Test Conference 1998)

Application to processors at Intel (Int'l Test Conference 2002)

ob Abraham, April 23, 2020 6 / 53

Jacob Abraham, April 23, 2020 7 / 53

<section-header><text><text><text><text><text><text><page-footer>

Tests for Small Delay Defects

Need to test paths in the circuit to detect small delay defects

However, the number of paths in a circuit can be exponential in the number of nodes

Solution: test the longest path through every node

• This will detect the smallest possible delay increase which will cause the circuit to fail

Jacob Abraham, April 23, 2020 9 / 53

Total number of tests is linear in the number of nodes

ECE Department, University of Texas at Austin Lecture 24. New Directions in Verification

sults on OR1200 processor					
www.ope	ncores.o	rg , synthesized	for 0.18μ TSM	IC process	
Results fo	or Phose	1 (nothe > 80	% of clock)		
No. of	Drop	Functionally	Functionally	Time	
Paths		Testable	Redundant	out	
27424	12	15118	12106	200	
		2			
Results for Phase 2					
NI. 0/ mag	والمتنب وما	- toot fou lourned	•	thom	
N: % noc	les with	test for longest	t path through	them	
N: % noc Module	les with	test for longest Functionally	t path through Functionally	them Rejected	N
N: % noc Module	les with	test for longest Functionally Testable	t path through Functionally Redundant	them Rejected Sub-paths	N (%)
N: % noc Module or1200_	des with	test for longest Functionally Testable 1826	t path through Functionally Redundant 29191	them Rejected Sub-paths 68087	N (%) 90.6
N: % noc Module or1200_ or1200_	des with ctrl alu	test for longest Functionally Testable 1826 1427	Functionally Redundant 29191 16985	them Rejected Sub-paths 68087 2716	N (%) 90.6 100
N: % noc Module or1200_ or1200_ or1200_	les with ctrl alu lsu	test for longest Functionally Testable 1826 1427 970	Functionally Redundant 29191 16985 4077	them Rejected Sub-paths 68087 2716 3744	N (%) 90.6 100 100
N: % noc Module or1200_ or1200_ or1200_ or1200_	tes with ctrl alu lsu wbmux	test for longest Functionally Testable 1826 1427 970 1146	Functionally Redundant 29191 16985 4077 2285	them Rejected Sub-paths 68087 2716 3744 2118	N (%) 90.6 100 100 100

Test of SoC Cores using Embedded Processor (*Gurumurthu et al., 2008*)

Wishbone and 128-bit AES designs from opencores.org Validation vectors: random values encrypted/decrypted

ECE Department, University of Texas at Austin

AES Core			
Inputs	69		
Outputs	33		
Combinational primitives	9225		
Sequential primitives	1119		
Stuck-at faults	64070		

Jacob Abraham, April 23, 2020 13 / 53

Result of Mapping AES tests to ARM instructions (one case)

			<u> </u>	/	
	Size	Fault	Original	No. of	Original
	(bytes)	coverage(%)	Coverage(%)	Cycles	Cycles
Test	9128	90.15	90.35	7816	7435

Lecture 24. New Directi

ECE Department, University of Texas at Aus

Abraham, April 23, 2020 16 / 53

xperimental Setup		
rocess		
 OR1200 RISC processor was DUT (included multiplier in data path) 		
• EBMC Model checker / Boolector SMT solver		
• Bound of pipleine depth + 1		
• Focused on hard to detect faults in control logic		
• Commercial ATPG to seive out easy to detect stuck-at faults		
• 78% Fault coverage with commercial ATPG		
ľ		

Experimental Results

ECE Department, University of Texas at Austin

Module	ATPG FC(%)	Flts.	SAT based method		Naive Ot	oservability	Method	
			FC(%)	# TO	T(sec)	FC(%)	# TO	T(sec)
if	80.35	328	84.11	310	96.18	88.49	161	95.13
ctrl	63.21	832	65.97	817	83.12	97.15	59	69.72
oprmuxes	73.66	378	76.09	354	95.49	98.26	6	57.46
sprs	89.59	393	90.85	381	93.71	93.78	57	90.27
freeze	82.94	17	99.14	2	64.41	100	0	43.51
rf	78.59	7444	80.50	7268	97.57	90.21	463	69.83
except	72.69	1263	73.48	1209	98.63	92.79	128	96.19
Overall	78.05	10655	79.17	10343	96.23	93.86	874	76.11

ire 24. New Direct

FC(%) : Fault Coverage in %

Faults : # of Undetected Collapsed Faults

TO : # of Timed Out faults

ECE Department, University of Texas at Austin

T(sec) : Average Time for generating a test for a fault in seconds

Lecture 24. New Directions in Verification

Jacob Abraham, April 23, 2020 18 / 53

Jacob Abraham, April 23, 2020 19 / 53

Experimental Results, Structural Observability

Module	FC(%)	# TO	T(sec)
if	98.17	25	23.14
ctrl	99.21	8	21.16
oprmuxes	100	0	19.33
sprs	97.53	12	18.39
freeze	100	0	10.48
rf	98.37	172	22.85
except	97.63	69	38.14
Overall	98.87	454	24.23

FC(%) : Fault Coverage in %

Faults : # of Undetected Collapsed Faults

TO : # of Timed Out faults

T(sec) : Average Time for generating a test for a fault in seconds

Summary of Results

ECE Department, University of Te

- Functional fault coverage of 99% for OR1200 processor
- SMT based approach was 4x faster than SAT

Coverage and Run Time Comparisons (Prabhu et al., 2012)

Abraham, April 23, 2020

20 / 53

Outline

- Introduction
- Testing circuits after manufacture and in the field
 - Test generation for small delay defects
 - Tests for hard-to-detect faults
- Low-power systems
 - Early power estimation
 - Peak power estimation
 - Automatic annotation of RTL code for low power
- Application of verification to other domains
 - Verifying system security properties
 - Verifying safety-critical systems
 - Verification technology applied to biology

Early Power Estimation (RTL and Above)

Activity factor estimation

ECE Department, University of Texas at Aust

ECE Department, University of Texas at Austin

- Logic functions do not change due to synthesis, only their implementations change
- Approximate the activity at the RT-Level
 - Get input-output activity by RT-Level simulation
 - Empirical observation to obtain activity in intermediate stages, Empirical observation to obtain the set of $sf_{in} - sf_{out}$ + $(1 - \frac{i}{N})^2 + sf_{out}$

$$sf_i = (sf_{in} - sf_{out}) * (1 - \overline{N})^2 + s$$

Quadratic variation with respect to logic depth

Logical effort, modified to extract capacitance for any delay target

- Stage effort from delay $f = F \frac{1}{N} = \frac{D}{T} P$
- Sizing of nodes $C_{in} = C_{out} * \frac{g}{f}$

acob Abraham, April 23, 2020 22 / 53

acob Abraham, April 23, 2020 23 / 53

Experiments

ECE Department, University of Texas at Austin

ECE Department, University of Texas at Austin

Estimated values vs. reference values Reference values obtained at gate-level Interconnect: wire-load model Libraries:

- Artisan TSMC $0.18 \mu m$
- Virtual Silicon UMC $0.13 \mu m$

Library sets: (x1, x2, x4) (2ip, 3ip, 4ip) Circuits

- OR1200 and FPU (opencores)
- ISCAS high-level models
- ISCAS sequential circuits

Jacob Abraham, April 23, 2020 24 / 53

Jacob Abraham, April 23, 2020 25 / 53

Results (robust with respect to technologies and libraries)

Combinational circuits (0.18 μ m)					
Target gate library	Average abs. error	Average rel. error			
1,2 ip	17.12	8.05			
1,2,3 ip	18.95	11.81			
1,2,3,4 ip	1,2,3,4 ip 19.60 17.65				

After accuracy improvement:

Relative error estimates for sequential circuits			
Circuits Target gate library Err%_0.13 Err%_0.1			
Dehovieral	1,2 ip	6.48	6.80
Denavioral	1,2,3 ip	5.75	7.89
	1,2,3,4 ip	5.47	6.79
Structural ISCAS	1,2 ip	8.26	10.19

Peak Power Estimation

Objective

ECE Department, University of Texas at Aust

Finding an instruction stream which maximizes the dynamic power, given the gate-level description of the processor

acob Abraham, April 23, 2020 26 / 53

Similar results on PUMA (dual-issue, out-of-order super-scalar, fixed-point PowerPC core)

ECE Department, University of Texas at Austin

gzip parser SPECINT2000 Benchmarks

Outline
 Introduction
 Testing circuits after manufacture and in the field
Test generation for small delay defectsTests for hard-to-detect faults
 Low-power systems
 Early power estimation
 Peak power estimation
 Automatic annotation of RTL code for low power
 Application of verification to other domains
 Verifying system security properties
 Verifying safety-critical systems
 Verification technology applied to biology
ECE Department, University of Texas at Austin Lecture 24. New Directions in Verification Jacob Abraham, April 23, 2020 33 / 53

ob Abraham, April 23, 2020 32 / 53

Design Bugs

Logic bugs

- Verification is dominating the design cycle
- Unlikely that all design bugs are caught before deployment
- Diversity is necessary to deal with design bugs

Design margins

ECE Department, University of Texas at Austin

- Effects of real bugs are not easy to duplicate (in many cases, error latencies of many millions (or billions) of cycles)
- Gray: concepts of **Bohr bugs** (repeatable) versus **Heisenbugs** (not seen to be repeatable)

Jacob Abraham, April 23, 2020 35 / 53

Bugs and design margins could be exploited by an attacker

Hardware Trojans

- Malicious modification of designs
- Example of analog circuitry modifying a digital chip extremely difficult to identify
- Design diversity may be a solution

External attacks

ECE Department, University of Texas at Au

- Classic work (Abadi) suggested control flow checking to detect execution of undesired code
- Effects of attacks could include modification of data, execution sequences, denial of service, etc.
 - Require data checks in addition to control-flow checks
 - Need to detect DoS attacks during operation example,

acob Abraham, April 23, 2020 36 / 53

shutting down GPS system (or spoofing GPS position)

Framework for Hardware Control Flow Monitoring (*Chaudhari et al., 2012*)

Summary of Verified TCM Properties

ECE Department, University of Texas at Austin

#]]	Property	Assumptions	Original Requirement
1 (G-250	G-260	The heading control mode, when selected, sends roll
			commands to turn to and maintain the commanded heading.
2 (G-110	G-220,G-260	The guidance system shall be capable of steering to and
			following a specified heading.
3 (G-120	G-180,A1,A2,	The guidance shall be capable of climbing at a defined rate, to be
		FPA1	limited by minimum and maximum engine performance and airspeed.
4 (G-130	G-180,A1,A2	The guidance shall be capable of descending at a defined rate, to be
			limited by minimum and maximum engine performance airspeed.
5 (G-140	G-120,G-200	The guidance shall be capable of climbing at a specified rate
			to a specified altitude, to be limited by maximum engine
			performance for a set airspeed
6 0	G-150	G-180,A1,G-120,	The guidance shall be capable of descending at a specified rate
		A2,G-200	to a specified altitude, to be limited by maximum engine
			performance for a set airspeed
7 (G-170 (Mode)	-	The altitude control shall engage when the altitude control mode
			is selected and when the FPA control mode is not selected, and when
			there is no manual pitch or manual roll command from the stick.
8 (G-180 (Mode)		The FPA control shall engage when the FPA mode
			is selected, and when there is no manual pitch or manual roll
			command from the stick.
9 (G-100	-	The Guidance system shall be capable of maintaining a steady speed
			in the normal flight envelope.
10	G-200	_	If the altitude control is engaged, once the plane is within 250 ft of
			the commanded altitude, the plane will remain within 250 ft
			of the commanded altitude.

acob Abraham, April 23, 2020 43 / 53

Summary of Verified TCM Properties, Cont'd

-#	Property	Assumptions	Original Bequirement
77		rissumptions	
11	G-210 (Mode)	-	If the FPA control and the altitude control are both selected, the FPA
			control will disengage and the altitude control will engage once the
			lane is within 200 ft of the commanded altitude.
12	G-220 (Mode)	-	The heading control shall engage when the heading control mode
			is selected, and when there is no manual pitch or manual roll
			command from the stick.
13	G-230	-	If the altitude control is engaged with no active speed control,
			the speed control shall engage and the speed command shall synchronize
			to the current speed, which shall become the new altitude's target speed.
14	G-240	_	The bank angle limit is established by the Bank Angle Limit Selector.
15	G-260 (Mode)	-	When the heading control mode is engaged, roll commands
			are given to turn in the nearest direction to the selected heading.
16	G-270 (Mode)	-	Manually positioning the thrust levers does not cause
			autothrottle disengagement.
17	G-290	-	The autothrottle will be limited by the max and the min throttle.
18	G-160	-	The guidance function shall be able to automatically deploy spoilers
			to limit speed in a descent, or when a significant reduction in
			airspeed is requested by the pilot, deactivating at low speed.
19	G-280	-	The FCCs shall issue a warning when the commanded altitude
			disagrees with the stored commanded altitude stored in the FCCs.
20	G-190	-	If any control surface actuator loses hydraulic pressure,
			the autopilot shall disengage.

Modeling Errors Affecting Verification Results

- Some components produced output when disabled (e.g., the altitude controller)
 - TCM model provided was incomplete
- Manual inputs from the pilot did not override the outputs of the autopilot for all three axes
 - Incompleteness in the TCM model
- Some inputs were not variables but appeared as xed constant values in the model (e.g., the bank angle limit of G-240)
 - Modeling error

ECE Department, University of Texas at Austin

ECE Department, University of Texas at a

- Conict of G-180 with with G-210 and the implicit assumption that only the flight path angle control or the altitude control can be active at any moment in time
 - G-180 had to be rened

ham, April 23, 2020 44 / 53

Jacob Abraham, April 23, 2020 45 / 53

Applications of Verification Technology in Other Domains

- Analysis of complex systems
 - Analyzing the power grid for "green" power
 - Analyzing DNA sequences
- Analysis of emerging systems
 - Micromechanical systems
 - Microfluidics systems

Analog Devices ADXL204 MEM Accelerometer

ECE Department. University of Texas at

Sandia Labs: purification of proteins in a microfluidic device using genetically-engineered partition tags

Jacob Abraham, April 23, 2020 46 / 53

Application to Systems Biology – Example Tools

- BAM, LDL degradation pathway
- BIOCHAM, Mammalian cell cycle control, G protein-coupled receptor kinases
- BoolNet, Genetic networks

ECE Department, University of Texas at /

- COPASI, Biochemical networks
- GreatSPN, Signal transduction pathways for angiogenesis
- IBM Rational Rhapsody, T-cell activation with statecharts
- PRISM, Biological signaling pathways, bone pathologies
- Simulink, Heart model for pacemaker verification
- S-TaLiRo, Modeling insulin-glucose regulatory system

Bartocci and Lio, "Computational Modeling, Formal Analysis and Tools for Systems Biology," *PLOS Comutational Biology*, Jan. 21, 2016

Formalization and Verification of Medical Guidelines

Abraham, April 23, 2020 48 / 53

Probabilistic Model Checking of Complex Biological Pathways

