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Introduction
 About myself

 PhD degree, Computer Science Dept., UBC, Vancouver, Canada 

 Led formal verification at Samsung/Nvidia/Oracle/Freescale/AMD

 Built formal verification teams at Samsung from scratch

 About 20 years experience in formal verification

 Three lectures
 Formal Equivalence Checking (Jan 28)

 Symbolic Trajectory Evaluation, Term Rewriting (Feb 11)

 Sequential Equivalence Checking (April 1)
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What is Formal Verification?
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Formal Verification

Model CheckingTheorem Proving

Equivalence Checking
Formal Property Verification (FPV)

Combinational Equivalence Checking Sequential Equivalence Checking (SEC)

LEC/Formality/FormalPro… SEC/SEQ/SLEC/Hector/ESP_CV…

JasperGold/VCFormal/0in…

ACL2/HOL/…

Who Are Using Formal Verification?

4

 Software companies
 Microsoft 

 SLAM: static driver verifier
 VeriSol:  Azure Blockchain smart contracts
 SLAyer: memory safety of C programs
 …

 Google: DeepDive, static analyzer for vulnerabilities of android apps…
 Facebook: INFER for mobile apps (Instagram/facebook/Msger)…
 Amazon: formal reasoning on cloud security(AWS)…

 Hardware design companies 
 Intel, Apple, Nvidia, ARM, Samsung, ….: clock gating, floating points, formal 

properties, protocols,…
 Google, Facebook, Amazon…: secret HW projects



Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 1

4. Formal Equivalence Checking

Jacob Abraham

Department of Electrical and Computer Engineering
The University of Texas at Austin

Verification of Digital Systems
Spring 2020

January 30, 2020

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 1 / 52

Outline

Review, representing logic

Application of formal equivalence checking

Basics
Tool for equivalence checking

Dealing with complexity in equivalence checking

Things to watch out for in equivalence checking

Functional partitioning
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Equivalence Checking

Validate that the implementation of a module is consistent
with the specification

Can use simulation or formal techniques
Combinational or sequential modules

Example: Specification in RTL

module mux(input s, d0, d1,

output y);

assign y = s ? d1 : d0;

endmodule

Example: Implementation at the gate level
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Huffman Model of a Sequential Circuit

If the specification and implementation have identical memory
elements, need to only check equivalence of the combinational
portions
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Formally Checking the Equivalence of Two Modules

Canonical representations for combinational equivalence
checking (why canonical?)

Tables
Equations
Graphs

Representations for sequential equivalence checking

State and transitions
Tables, equations, graphs

Issues

Complexity
Ease of automation
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Some Boolean Connectives

(P → Q) := (P +Q)

(P ⊕Q) := ((P ·Q) + (P ·Q))

(P ↔ Q) := ((P ·Q) + (P ·Q))

f(x1, . . . , xi := 1, . . . , xn) is called the cofactor of f with respect
to xi, written f |xi
f(x1, . . . , xi := 0, . . . , xn) is called the cofactor of f with respect
to xi, written f |xi
Shannon Expansion: f(x1, . . . , xi, . . . , xn) = (xi · f |xi + xi · f |xi)
Example: f = a b c+ a c (Note: · implicit)
f |a = b c, f |a = c
f = a(b c) + a(c)
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Decision Tree for A⊕B ⊕ C

In order to prove that two Boolean functions are equivalent, they
must be represented canonically (Why)?
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Reduced, Ordered BDD (ROBDD)

F = A⊕B ⊕ C
Reduced, Ordered BDDs (ROBDDs) are canonical

Can represent sets of states, state-transition relations, etc.

Structure and complexity of ROBDDs for Symmetric Functions?
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Example of ROBDD Reduction
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Impact of BDD Variable Ordering
f(x1, x2, . . . , x8) = x1 · x2 + x3 · x4 + x5 · x6 + x7 · x8

Ordering : x1 < x3 < x5 < x7 < x2 < x4 < x6 < x8
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Figure modified from Wikipedia
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Impact of BDD Variable Ordering, Cont’d
f(x1, x2, . . . , x8) = x1 · x2 + x3 · x4 + x5 · x6 + x7 · x8

Ordering : x1 < x2 < x3 < x4 < x5 < x6 < x7 < x8
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Figure modified from Wikipedia

Variable Swapping – An example
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Representing Functions and Relations

A relation can be used to represent a function, such as
y ↔ f(x1, . . . , xn)
Example, consider the relational representation for an AND gate
y ↔ x1 ∧ x2

x1 x2 y y ↔ x1 ∧ x2
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

This representation for a function, in CNF, is used in SAT clauses
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Satisfiability (SAT) Solvers

Can a Boolean Function be Satisfied?

Cast an equivalence checking problem as a SAT problem

Starts by converting Boolean formula into the Conjunctive
Normal Form (CNF) – (product of sums)

(a+ b+ c)(a+ e+ f)(c+ d+ g). . .

Goal is to find an assignment satisfying every term (if any
clause is 0, there is no satisfying assignment)

Commercial and Open SAT solvers available

Most verification tools now use BDDs + SAT

Some bring in ATPG ideas – called “structural SAT”
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Truth Table to CNF

Put negation of formula in DNF

For each “0” or “F” row in table, make a term equivalent to
the corresponding assignment

Negate the disjunction of the terms

By DeMorgan’s Law, switch AND and OR, and complement
literals

Example: Express x↔ y (x · y + x · y) in CNF

Two terms for “0”: x=1, y=0 and x=0, y=1
=⇒ function is “0” when xy + xy

CNF is: (x+ y)(x+ y)
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Circuit to CNF

d ≡ (a+ b)

Clauses:
(a+ b+ d)
(a+ d)
(b+ d)

e ≡ (c.d)

Clauses:
(c+ d+ e)
(d+ e)
(c+ e)
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Complexity of SAT

Monasson et al., “Determining computational complexity from characteristic

’phase transitions’,” ture, vol. 400, 8 July, 1999
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Equivalence Checking as a Satisfiability Problem

Forcing a 1 at Y (for some input combination) will prove
inequivalence of the two circuits

Approach is not memory limited (like BDDs)
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SAT Competitions

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 18 / 52

Are the Two Circuits Equivalent?

1. Map key points: inputs, outputs, f1 ↔ f3, f2 ↔ f4
2. Build equations: f1 = b, f2 = f1, out = (a · f2)

f3 = b, f4 = (f3), out = a+ f4
3. Compare equations: show logic of output signals is the same
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Erroneous Design

In this case, the comparison of the equations will show that
(f1 = b = f3) for the both circuits, and
(f2 = f1 = f3) for the top, while (f4 = f3) for the bottom circuit

which means, f2 6= f4 =⇒ ERROR
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Debugging – Where to Look

Fanin cones (support set)

Different fanin =⇒ major issue

Set of counterexample values

If only specific values cause an error, provides hint of root
cause

“Intelligent” hints from tools

Is an overall inversion suspected?
Identify similar areas of logic within cone?
Isolate error
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Model Flattening

Minor exceptions to state matching – useful if flops/latches don’t
map
Example:

set parameters -flatten design

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 22 / 52

Constraints in Equivalence Checking

Example of the need for constraints

RTL is often general

‘ifdef CHIP_VERSION_1

‘define A 0

‘else

‘define A 1

‘endif

When reusing part of the design:

assign A = 1b1;

...

if (!A) ...

Irrelevant RTL remains
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Are the Two Circuits Equivalent?

No, but what if a is always 1?

Need to specify constraints to the equivalence checking tool
set constant r:/WORK/a 1
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Why Constraints Matter

Good synthesis tools take advantage of specified constraints

Assume constants to reduce size/scope
Don’t synthesize masked-out RTL
Allow out-of-band constraint specifications in control files

Equivalence checking tools must recognize constraints

Otherwise, will get spurious mismatches

No effort if constraints are visible at the equivalence checking
level

But may be only in wrapper RTL
Or inside analog blackbox
Or could be due to software/outside specifications

If not visible to tool, may need to specify it

Add constraints (on pin, between values, etc.)
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Synthesized Netlists

Synthesized netlists built from cell library

Cells hide transistor-level logic

Delivered with behavioral descriptions
Library developers certify correctness

Dealing with custom cells is difficult

Checking full block at the transistor level is expensive

Formal verification of custom cells is a separate process
Tools have been developed for automatically extracting logic
(and, in one case, RTL) descriptions from transistor-level
designs

Users may need to annotate transistor-level information when
using an logic equivalence checking tool

Transistor signal flow directions
Nodes meant to hold state
Domino precharge nodes
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State Negation

Are the two circuit below equivalent?

Yes: with State Negation (state f2 = ¬f4)
set user match type cell r:/WORK/f2 i:/WORK/f4 -inverted
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State Replication

Are the two circuit below equivalent?

set user match -type cell r:WORK/f2 i:WORK/f2 1 i:WORK/f2 2
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Scan Chains

Scan chains used for silicon bring-up and manufacturing test

Use commands guide scan input guide scan output
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Handling Scan Chains in Equivalence Checking

Need to be careful – scan is in the netlists, not in RTL

Scan insertion during synthesis

Identify scan enable conditions

May be simple scan enable pin
Or a combination of pins and states

Use constraints to disable in netlist so that tool can deal with
scan

This could be a verification hole – need to be addressed

Gate-level simulation of netlist
Or custom scripts to walk chains

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 30 / 52

Clock Gating

Another verification issue
Stop clock to inactive flip-flops

No clock asserted =⇒ no switching power
Automatically inserted in synthesis

Thus, in netlist, but not in RTL

Enabled flop

Enabled flop with clock gating

set verification clock gate hold mode low
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Black Boxes

Formal tool cannot deal with some blocks

This logic is ignored by the tool

Usually a Verilog module instance

Examples

Analog circuits
“Hard IP” – externally supplied block (no alternative but to
“trust” it)
Divide and conquer in large designs – different ownership of
particular block
Large embedded memories (register files, caches, etc.) and
multipliers – use specialized tools on them

What is verified then?

Drivers of black-box input pins
Receivers of black-box input pins
Internals of black box are ignored – be careful!
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Black Box Example

TOP.MODULE is a single key point
But mapped only if a, b, and c have matches
Verify fails if logic driving a or b mismatches

set black box r:WORK/TOP/MODULE

set black box i:WORK/TOP/MODULE
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Don’t Care Spaces

Are these two equal?

Suppose source RTL is:

case ({a,b})

2b00: out=0

2b01: out=1

2b10: out=1

endcase

Unspecified case is a Dont-Care (DC)
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Don’t Care Cases

Often result from underspecified RTL

Synthesis has freedom to choose values

Can optimize for area, timing, etc.

Formal tools can handle automatically

But, don’t cares only come from golden model
Don’t care in netlist model is an error
Asymmetry between golden and netlist models

Sometimes, RTL can match two different netlists

But, verifying the netlists against each other may produce an
error
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Pipeline Retiming

Are the two circuits equivalent?

In a sequential sense, the circuits are equivalent
Logic has been moved across a flop – pipeline retiming
set parameters -retimed design
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Pipeline Retiming and Equivalence Checking

Retiming violates state matching

Should not expect generic equivalence tools to handle this

Recent tools can handle some cases

Tools are aware of synthesis techniques

Internally “push” logic along pipeline to match

Many limitations, need to be careful

Retiming must be isolated to one module
Can cause runtime/memory complexity
Need sequential equivalence checking tool for more general
cases
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Dealing with Complexity

Possible result on very complex module

Tool crash
Tool “aborts” – could not deal with that logic

Check tool options to possibly resolve this problem

Increase “effort” of tool
Check for structures (for example, multiplier) and use different
tool/techniques on them
Concentrate comparison on each standalone point

Monitor process for memory blowup

Run on larger server

Attempt to parallelize comparisons

Using multiple machines on the network
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Hierarchical Equivalence Checking

Verify entire design (Top) if possible

Otherwise, perform equivalence checking three times
TOP.Blue
TOP.Green
TOP with Blue and Green black-boxed

What about inputs to the black boxes?
Signals may be related (example, set of inputs “one-hot”)

Sometimes need to write wrappers for each black box
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Cut Points

Problem: verifying large combinational cones
Solution: Divide logic at points other than states

Internal signals may correspond
In extreme cases, recode RTL to enable matching non-state
points

Cut point = non-state to treat as key point
Map and verify just like latches/flops
Reduces logic cones being analyzed

Add rule in tool to match p1 and p2
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Possible Cut-Point Problem

Is p1 still a useful cut point?
Constraint issues
set cut point signal
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Case Splitting

Formal techniques consider all cases together

Good tool engines may be smarter

What if small inputs activate/deactivate lots of logic?

Example: mode bits

Constrain appropriate pins to 1 or 0

Then compare twice
Or, in general, constrain n bits, then 2n compares

We will explore this in more detail in a formal context
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Example of Case Splitting

Suppose compare of f2 and f4 aborts, and we want to case-split on
f1/f3
First assign a constant 0 to flops
Then assign a constant 1
If both cases pass, circuits are equivalent
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False Positives

A False Positive is a case where the equivalence checking tool
incorrectly labels design as equivalent, even when they are not

Very costly – equivalence checking typically gates next design
phase

Wrong checking answer at tapeout =⇒ silicon respin

Not just a theoretical concept – has been seen in real designs

This is not just from a bug in the tool – incorrect specification
or use of the tool can lead to this problem

See some examples in the following slides
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Constraints in Equivalence Checking

Constraints: Reduce set of possible values
Turn off scan
Known conditions on inputs
Eliminate unused state encodings

Constraint that A and B are inverse of each other needed to prove
C==0 in Block 2
Bad constraints =⇒ False Positive
If constraint also included mapping a and b equal to 1 gives 1 on c
(this implies that a and b have to be equal)
All inputs are illegal, so module passes check
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Library Cells and Equivalence Checking

Vendor-supplied libraries of cells used in design

Logic representations trusted for checking
Library needs to be validated (example for assumptions on
inputs)

What about contention on the wires shorted together? Is the
common point an AND or OR of the signals?
Cell is legal if we guarantee that a and b are complements
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Unreachable Points in Equivalence Checking

Unreachable: flop/latch that cannot affect output

Can be logically ignored
Must be ignored if not in both models

Common causes

Synthesis optimizations
Tied off no-longer-relevant logic

Must be careful about back end logic

Some flows (scan, bonus cells) connected later
So “unreachables” may be important!
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Reachable and Unreachable Flops

Lost unreachables may result in false positives
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Other Items to Watch

Black boxing logic
Ensure that black-boxed logic and interfaces verified
somewhere

RTL language usage
Watch for ambiguous Verilog standards

Tools may disagree on interpretation

Ideally, ensure independence between Synthesis and Checking
Different results from different vendor tools
Avoid Synthesis and Equivalence Checking from same vendor?
“Verification diversity” (may not be possible due to costs, etc.)

Obscure tools behaviors
Multiple drivers on a net – report error, or treat as wired
(AND or OR)?
Set to wire unless intention is for multi-drives
Input accidentally defined as output (really happened, and was
caught during late inspection)

Multiple checks – example, sanity check of simulation
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Conformal LEC (Cadence) – Equivalence Checking Tool

Steps in running the tool

Read the reference (golden) model

Read the implementation model (to check)

Define match points between reference and implementation
models

Verify the design

Diagnose the error

Debug the design

See the Conformal LEC Tutorial and References in the Lab 1
handout on Canvas
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Partitioning Techniques

Orthogonal Partitions

If F is complemented into regions π1 and π2 such that Fπ1
and Fπ2 are never true at the same time, then π1 and π2 form
orthogonal partitions

F can be regarded as a linear sum of functions Fπ1 and Fπ2

Fπ1 and Fπ2 can be evaluated and ordered independently

Many function pairs, which otherwise would take exponential
amount of computational resources for verification, can be
efficiently (in polynomial time) verified through such partitions
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Functional Partitioning

If Fπ1 and Fπ2 are never true at the same time, then π1 and π2
form orthogonal partitions

Fπ1 and Fπ2 can be evaluated and ordered independently

Many functions, which otherwise would take an exponential
amount of resources for verification, can be verified efficiently
(in polynomial time) using orthogonal partitions

Example, the Fortune-Hopcroft-Schmidt (FHS) function

The FHS function requires an

exponential number of ROBDD

nodes to represent it. However, if

it is partitioned into subfunctions

based on the selection logic, each

subfunction is easy to represent,

and there are only O(n) of these

orthogonal functions, allowing

easy verification of the circuit
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