
1

Jan 28, 2021

EE 382M-11
The University of Texas at Austin

Department of Electrical and Computer Engineering

Dr. Xiushan “Shaun” Feng
Formal Verification Group Leader,

Samsung Austin Research Center (SARC), Austin, TX
Samsung Advanced Computing Lab (ACL), San Jose, CA

Samsung G2 Design Center, Gyeonggi-do, Korea

1

Introduction
 About myself

 PhD degree, Computer Science Dept., UBC, Vancouver, Canada

 Led formal verification at Samsung/Nvidia/Oracle/Freescale/AMD

 Built formal verification teams at Samsung from scratch

 About 20 years experience in formal verification

 Three lectures
 Formal Equivalence Checking (Jan 28)

 Symbolic Trajectory Evaluation, Term Rewriting (Feb 11)

 Sequential Equivalence Checking (April 1)

2

2

What is Formal Verification?

3

Formal Verification

Model CheckingTheorem Proving

Equivalence Checking
Formal Property Verification (FPV)

Combinational Equivalence Checking Sequential Equivalence Checking (SEC)

LEC/Formality/FormalPro… SEC/SEQ/SLEC/Hector/ESP_CV…

JasperGold/VCFormal/0in…

ACL2/HOL/…

Who Are Using Formal Verification?

4

 Software companies
 Microsoft

 SLAM: static driver verifier
 VeriSol: Azure Blockchain smart contracts
 SLAyer: memory safety of C programs
 …

 Google: DeepDive, static analyzer for vulnerabilities of android apps…
 Facebook: INFER for mobile apps (Instagram/facebook/Msger)…
 Amazon: formal reasoning on cloud security(AWS)…

 Hardware design companies
 Intel, Apple, Nvidia, ARM, Samsung, ….: clock gating, floating points, formal

properties, protocols,…
 Google, Facebook, Amazon…: secret HW projects

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 1

4. Formal Equivalence Checking

Jacob Abraham

Department of Electrical and Computer Engineering
The University of Texas at Austin

Verification of Digital Systems
Spring 2020

January 30, 2020

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 1 / 52

Outline

Review, representing logic

Application of formal equivalence checking

Basics
Tool for equivalence checking

Dealing with complexity in equivalence checking

Things to watch out for in equivalence checking

Functional partitioning

Acknowledgments: Jim Bitner (UT), Jawahar Jain (UT, Fujitsu
Labs. and Samsung), Shahrzad Mirkhani (UT), Erik Seligman
(Intel/Portland State University)

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 1 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 2

Equivalence Checking

Validate that the implementation of a module is consistent
with the specification

Can use simulation or formal techniques
Combinational or sequential modules

Example: Specification in RTL

module mux(input s, d0, d1,

output y);

assign y = s ? d1 : d0;

endmodule

Example: Implementation at the gate level

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 2 / 52

Huffman Model of a Sequential Circuit

If the specification and implementation have identical memory
elements, need to only check equivalence of the combinational
portions

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 3 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 3

Formally Checking the Equivalence of Two Modules

Canonical representations for combinational equivalence
checking (why canonical?)

Tables
Equations
Graphs

Representations for sequential equivalence checking

State and transitions
Tables, equations, graphs

Issues

Complexity
Ease of automation

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 4 / 52

Some Boolean Connectives

(P → Q) := (P +Q)

(P ⊕Q) := ((P ·Q) + (P ·Q))

(P ↔ Q) := ((P ·Q) + (P ·Q))

f(x1, . . . , xi := 1, . . . , xn) is called the cofactor of f with respect
to xi, written f |xi
f(x1, . . . , xi := 0, . . . , xn) is called the cofactor of f with respect
to xi, written f |xi
Shannon Expansion: f(x1, . . . , xi, . . . , xn) = (xi · f |xi + xi · f |xi)
Example: f = a b c+ a c (Note: · implicit)
f |a = b c, f |a = c
f = a(b c) + a(c)

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 5 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 4

Decision Tree for A⊕B ⊕ C

In order to prove that two Boolean functions are equivalent, they
must be represented canonically (Why)?

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 6 / 52

Reduced, Ordered BDD (ROBDD)

F = A⊕B ⊕ C
Reduced, Ordered BDDs (ROBDDs) are canonical

Can represent sets of states, state-transition relations, etc.

Structure and complexity of ROBDDs for Symmetric Functions?
ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 7 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 5

Example of ROBDD Reduction

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 8 / 52

Impact of BDD Variable Ordering
f(x1, x2, . . . , x8) = x1 · x2 + x3 · x4 + x5 · x6 + x7 · x8

Ordering : x1 < x3 < x5 < x7 < x2 < x4 < x6 < x8

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 9 / 52

Figure modified from Wikipedia

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 6

Impact of BDD Variable Ordering, Cont’d
f(x1, x2, . . . , x8) = x1 · x2 + x3 · x4 + x5 · x6 + x7 · x8

Ordering : x1 < x2 < x3 < x4 < x5 < x6 < x7 < x8

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 10 / 52

Figure modified from Wikipedia

Variable Swapping – An example

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 11 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 7

Representing Functions and Relations

A relation can be used to represent a function, such as
y ↔ f(x1, . . . , xn)
Example, consider the relational representation for an AND gate
y ↔ x1 ∧ x2

x1 x2 y y ↔ x1 ∧ x2
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

This representation for a function, in CNF, is used in SAT clauses

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 12 / 52

Satisfiability (SAT) Solvers

Can a Boolean Function be Satisfied?

Cast an equivalence checking problem as a SAT problem

Starts by converting Boolean formula into the Conjunctive
Normal Form (CNF) – (product of sums)

(a+ b+ c)(a+ e+ f)(c+ d+ g). . .

Goal is to find an assignment satisfying every term (if any
clause is 0, there is no satisfying assignment)

Commercial and Open SAT solvers available

Most verification tools now use BDDs + SAT

Some bring in ATPG ideas – called “structural SAT”

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 13 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 8

Truth Table to CNF

Put negation of formula in DNF

For each “0” or “F” row in table, make a term equivalent to
the corresponding assignment

Negate the disjunction of the terms

By DeMorgan’s Law, switch AND and OR, and complement
literals

Example: Express x↔ y (x · y + x · y) in CNF

Two terms for “0”: x=1, y=0 and x=0, y=1
=⇒ function is “0” when xy + xy

CNF is: (x+ y)(x+ y)

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 14 / 52

Circuit to CNF

d ≡ (a+ b)

Clauses:
(a+ b+ d)
(a+ d)
(b+ d)

e ≡ (c.d)

Clauses:
(c+ d+ e)
(d+ e)
(c+ e)

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 15 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 9

Complexity of SAT

Monasson et al., “Determining computational complexity from characteristic

’phase transitions’,” ture, vol. 400, 8 July, 1999

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 16 / 52

Equivalence Checking as a Satisfiability Problem

Forcing a 1 at Y (for some input combination) will prove
inequivalence of the two circuits

Approach is not memory limited (like BDDs)

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 17 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 10

SAT Competitions

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 18 / 52

Are the Two Circuits Equivalent?

1. Map key points: inputs, outputs, f1 ↔ f3, f2 ↔ f4
2. Build equations: f1 = b, f2 = f1, out = (a · f2)

f3 = b, f4 = (f3), out = a+ f4
3. Compare equations: show logic of output signals is the same

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 19 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 11

Erroneous Design

In this case, the comparison of the equations will show that
(f1 = b = f3) for the both circuits, and
(f2 = f1 = f3) for the top, while (f4 = f3) for the bottom circuit

which means, f2 6= f4 =⇒ ERROR
ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 20 / 52

Debugging – Where to Look

Fanin cones (support set)

Different fanin =⇒ major issue

Set of counterexample values

If only specific values cause an error, provides hint of root
cause

“Intelligent” hints from tools

Is an overall inversion suspected?
Identify similar areas of logic within cone?
Isolate error

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 21 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 12

Model Flattening

Minor exceptions to state matching – useful if flops/latches don’t
map
Example:

set parameters -flatten design

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 22 / 52

Constraints in Equivalence Checking

Example of the need for constraints

RTL is often general

‘ifdef CHIP_VERSION_1

‘define A 0

‘else

‘define A 1

‘endif

When reusing part of the design:

assign A = 1b1;

...

if (!A) ...

Irrelevant RTL remains

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 23 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 13

Are the Two Circuits Equivalent?

No, but what if a is always 1?

Need to specify constraints to the equivalence checking tool
set constant r:/WORK/a 1

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 24 / 52

Why Constraints Matter

Good synthesis tools take advantage of specified constraints

Assume constants to reduce size/scope
Don’t synthesize masked-out RTL
Allow out-of-band constraint specifications in control files

Equivalence checking tools must recognize constraints

Otherwise, will get spurious mismatches

No effort if constraints are visible at the equivalence checking
level

But may be only in wrapper RTL
Or inside analog blackbox
Or could be due to software/outside specifications

If not visible to tool, may need to specify it

Add constraints (on pin, between values, etc.)

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 25 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 14

Synthesized Netlists

Synthesized netlists built from cell library

Cells hide transistor-level logic

Delivered with behavioral descriptions
Library developers certify correctness

Dealing with custom cells is difficult

Checking full block at the transistor level is expensive

Formal verification of custom cells is a separate process
Tools have been developed for automatically extracting logic
(and, in one case, RTL) descriptions from transistor-level
designs

Users may need to annotate transistor-level information when
using an logic equivalence checking tool

Transistor signal flow directions
Nodes meant to hold state
Domino precharge nodes

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 26 / 52

State Negation

Are the two circuit below equivalent?

Yes: with State Negation (state f2 = ¬f4)
set user match type cell r:/WORK/f2 i:/WORK/f4 -inverted

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 27 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 15

State Replication

Are the two circuit below equivalent?

set user match -type cell r:WORK/f2 i:WORK/f2 1 i:WORK/f2 2

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 28 / 52

Scan Chains

Scan chains used for silicon bring-up and manufacturing test

Use commands guide scan input guide scan output

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 29 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 16

Handling Scan Chains in Equivalence Checking

Need to be careful – scan is in the netlists, not in RTL

Scan insertion during synthesis

Identify scan enable conditions

May be simple scan enable pin
Or a combination of pins and states

Use constraints to disable in netlist so that tool can deal with
scan

This could be a verification hole – need to be addressed

Gate-level simulation of netlist
Or custom scripts to walk chains

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 30 / 52

Clock Gating

Another verification issue
Stop clock to inactive flip-flops

No clock asserted =⇒ no switching power
Automatically inserted in synthesis

Thus, in netlist, but not in RTL

Enabled flop

Enabled flop with clock gating

set verification clock gate hold mode low
ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 31 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 17

Black Boxes

Formal tool cannot deal with some blocks

This logic is ignored by the tool

Usually a Verilog module instance

Examples

Analog circuits
“Hard IP” – externally supplied block (no alternative but to
“trust” it)
Divide and conquer in large designs – different ownership of
particular block
Large embedded memories (register files, caches, etc.) and
multipliers – use specialized tools on them

What is verified then?

Drivers of black-box input pins
Receivers of black-box input pins
Internals of black box are ignored – be careful!

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 32 / 52

Black Box Example

TOP.MODULE is a single key point
But mapped only if a, b, and c have matches
Verify fails if logic driving a or b mismatches

set black box r:WORK/TOP/MODULE

set black box i:WORK/TOP/MODULE
ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 33 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 18

Don’t Care Spaces

Are these two equal?

Suppose source RTL is:

case ({a,b})

2b00: out=0

2b01: out=1

2b10: out=1

endcase

Unspecified case is a Dont-Care (DC)
ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 34 / 52

Don’t Care Cases

Often result from underspecified RTL

Synthesis has freedom to choose values

Can optimize for area, timing, etc.

Formal tools can handle automatically

But, don’t cares only come from golden model
Don’t care in netlist model is an error
Asymmetry between golden and netlist models

Sometimes, RTL can match two different netlists

But, verifying the netlists against each other may produce an
error

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 35 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 19

Pipeline Retiming

Are the two circuits equivalent?

In a sequential sense, the circuits are equivalent
Logic has been moved across a flop – pipeline retiming
set parameters -retimed design

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 36 / 52

Pipeline Retiming and Equivalence Checking

Retiming violates state matching

Should not expect generic equivalence tools to handle this

Recent tools can handle some cases

Tools are aware of synthesis techniques

Internally “push” logic along pipeline to match

Many limitations, need to be careful

Retiming must be isolated to one module
Can cause runtime/memory complexity
Need sequential equivalence checking tool for more general
cases

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 37 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 20

Dealing with Complexity

Possible result on very complex module

Tool crash
Tool “aborts” – could not deal with that logic

Check tool options to possibly resolve this problem

Increase “effort” of tool
Check for structures (for example, multiplier) and use different
tool/techniques on them
Concentrate comparison on each standalone point

Monitor process for memory blowup

Run on larger server

Attempt to parallelize comparisons

Using multiple machines on the network

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 38 / 52

Hierarchical Equivalence Checking

Verify entire design (Top) if possible

Otherwise, perform equivalence checking three times
TOP.Blue
TOP.Green
TOP with Blue and Green black-boxed

What about inputs to the black boxes?
Signals may be related (example, set of inputs “one-hot”)

Sometimes need to write wrappers for each black box

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 39 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 21

Cut Points

Problem: verifying large combinational cones
Solution: Divide logic at points other than states

Internal signals may correspond
In extreme cases, recode RTL to enable matching non-state
points

Cut point = non-state to treat as key point
Map and verify just like latches/flops
Reduces logic cones being analyzed

Add rule in tool to match p1 and p2
ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 40 / 52

Possible Cut-Point Problem

Is p1 still a useful cut point?
Constraint issues
set cut point signal

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 41 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 22

Case Splitting

Formal techniques consider all cases together

Good tool engines may be smarter

What if small inputs activate/deactivate lots of logic?

Example: mode bits

Constrain appropriate pins to 1 or 0

Then compare twice
Or, in general, constrain n bits, then 2n compares

We will explore this in more detail in a formal context

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 42 / 52

Example of Case Splitting

Suppose compare of f2 and f4 aborts, and we want to case-split on
f1/f3
First assign a constant 0 to flops
Then assign a constant 1
If both cases pass, circuits are equivalent

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 43 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 23

False Positives

A False Positive is a case where the equivalence checking tool
incorrectly labels design as equivalent, even when they are not

Very costly – equivalence checking typically gates next design
phase

Wrong checking answer at tapeout =⇒ silicon respin

Not just a theoretical concept – has been seen in real designs

This is not just from a bug in the tool – incorrect specification
or use of the tool can lead to this problem

See some examples in the following slides

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 44 / 52

Constraints in Equivalence Checking

Constraints: Reduce set of possible values
Turn off scan
Known conditions on inputs
Eliminate unused state encodings

Constraint that A and B are inverse of each other needed to prove
C==0 in Block 2
Bad constraints =⇒ False Positive
If constraint also included mapping a and b equal to 1 gives 1 on c
(this implies that a and b have to be equal)
All inputs are illegal, so module passes check

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 45 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 24

Library Cells and Equivalence Checking

Vendor-supplied libraries of cells used in design

Logic representations trusted for checking
Library needs to be validated (example for assumptions on
inputs)

What about contention on the wires shorted together? Is the
common point an AND or OR of the signals?
Cell is legal if we guarantee that a and b are complements

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 46 / 52

Unreachable Points in Equivalence Checking

Unreachable: flop/latch that cannot affect output

Can be logically ignored
Must be ignored if not in both models

Common causes

Synthesis optimizations
Tied off no-longer-relevant logic

Must be careful about back end logic

Some flows (scan, bonus cells) connected later
So “unreachables” may be important!

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 47 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 25

Reachable and Unreachable Flops

Lost unreachables may result in false positives
ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 48 / 52

Other Items to Watch

Black boxing logic
Ensure that black-boxed logic and interfaces verified
somewhere

RTL language usage
Watch for ambiguous Verilog standards

Tools may disagree on interpretation

Ideally, ensure independence between Synthesis and Checking
Different results from different vendor tools
Avoid Synthesis and Equivalence Checking from same vendor?
“Verification diversity” (may not be possible due to costs, etc.)

Obscure tools behaviors
Multiple drivers on a net – report error, or treat as wired
(AND or OR)?
Set to wire unless intention is for multi-drives
Input accidentally defined as output (really happened, and was
caught during late inspection)

Multiple checks – example, sanity check of simulation

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 49 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 26

Conformal LEC (Cadence) – Equivalence Checking Tool

Steps in running the tool

Read the reference (golden) model

Read the implementation model (to check)

Define match points between reference and implementation
models

Verify the design

Diagnose the error

Debug the design

See the Conformal LEC Tutorial and References in the Lab 1
handout on Canvas

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 50 / 52

Partitioning Techniques

Orthogonal Partitions

If F is complemented into regions π1 and π2 such that Fπ1
and Fπ2 are never true at the same time, then π1 and π2 form
orthogonal partitions

F can be regarded as a linear sum of functions Fπ1 and Fπ2

Fπ1 and Fπ2 can be evaluated and ordered independently

Many function pairs, which otherwise would take exponential
amount of computational resources for verification, can be
efficiently (in polynomial time) verified through such partitions

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 51 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

Verification of Digital Systems, Spring 2020
Formal Equivalence Checking 27

Functional Partitioning

If Fπ1 and Fπ2 are never true at the same time, then π1 and π2
form orthogonal partitions

Fπ1 and Fπ2 can be evaluated and ordered independently

Many functions, which otherwise would take an exponential
amount of resources for verification, can be verified efficiently
(in polynomial time) using orthogonal partitions

Example, the Fortune-Hopcroft-Schmidt (FHS) function

The FHS function requires an

exponential number of ROBDD

nodes to represent it. However, if

it is partitioned into subfunctions

based on the selection logic, each

subfunction is easy to represent,

and there are only O(n) of these

orthogonal functions, allowing

easy verification of the circuit

ECE Department, University of Texas at Austin Lecture 4. Formal Equivalence Checking Jacob Abraham, January 30, 2020 52 / 52

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 30, 2020

