
Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20191

© Mentor Graphics Corporation

Harry D. Foster

Introduction to
SystemVerilog
Assertions (SVA)

Chief Scientist Verification

IC Verification Solutions Division

February 2020

© Mentor Graphics Corporation

Lecture Overview

In this lecture, you will. . .

 Learn the structure of the SVA language

 Learn how to construct sequence

 Learn how to construct properties

 Apply SVA on real examples

 Exercises

 Summary

H Foster, EE 382M, Verification of Digital Systems, Spring 20182

HF, UT Austin, Feb 20202

© Mentor Graphics Corporation

LINEAR FORMALISM

Brief Review of LTL and Introduction of Regular Expressions

© Mentor Graphics Corporation

SystemVerilog Assertions

 SVA is based on linear temporal logic (LTL) built over

sublanguages of regular expressions.

 Most engineers will find SVA sufficient to express most

common assertions required for hardware design.

H Foster, EE 382M, Verification of Digital Systems, Spring 20184

HF, UT Austin, Feb 20204

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20192

© Mentor Graphics Corporation

© Mentor Graphics Corporation

 All Boolean logic propositions - p

“Process 2 is in the critical section”

 X p – p holds in the next state.

“Process 2 will be in the critical section in the next state”

pX p

What We can Express in LTL

HF, UT Austin, Feb 20205

H Foster, EE 382M, Verification of Digital Systems, Spring 20185 © Mentor Graphics Corporation

 F p – sometimes (i.e., eventually) p holds.

“eventually process 2 will enter the critical section”

pF p

• G p – always (i.e., globally) p holds.

“process 1 and 2 are always mutually exclusive”

p pp pp pG p

H Foster, EE 382M, Verification of Digital Systems, Spring 20186

HF, UT Austin, Feb 20206

What We can Express in LTL

© Mentor Graphics Corporation

 [p U q] – “q holds now or sometime in the future

and p holds from now until q holds” (strong)

 [p W q] – “p holds from now until q holds” (weak)

p qp ppp U q

p pp pp pp W q

H Foster, EE 382M, Verification of Digital Systems, Spring 20187

HF, UT Austin, Feb 20207

What We can Express in LTL

© Mentor Graphics Corporation

 Weak operators – X, G, W

Used to express safety properties,

i.e. “something bad never happens”

 Strong operators – F, U

Used to express liveness properties,

i.e. “something good eventually happens”

Safety properties put no obligation on the future, liveness properties do!

H Foster, EE 382M, Verification of Digital Systems, Spring 20188

HF, UT Austin, Feb 20208

What We can Express in LTL

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20193

© Mentor Graphics Corporation

© Mentor Graphics Corporation

What We can Express in LTL

 LTL formulas can be combined using the ¬¬¬¬, ∧∧∧∧, ∨∨∨∨, →→→→

logic connectors (negation, conjunction, disjunction, implication)

For example….

G (request →→→→ F grant)

p pp pp p

request grant

H Foster, EE 382M, Verification of Digital Systems, Spring 20189

HF, UT Austin, Feb 20209

© Mentor Graphics Corporation

What We can Express in LTL

 LTL formulas can be combined using the ¬, ∧, ∨, →

logic connectors (negation, conjunction, disjunction, implication)

For example….

Temporal operators can be combined too…

FG p

pp p

H Foster, EE 382M, Verification of Digital Systems, Spring 201810

HF, UT Austin, Feb 202010

G (request →→→→ F grant)

© Mentor Graphics Corporation

What We Cannot Express in LTL

 Counting example:
“p is asserted in every even cycle”

All the following traces satisfy this property

!p,p,!p,p,…

p,p, p,p….

p,p,!p,p,p,p…

 No LTL formula can express this property

H Foster, EE 382M, Verification of Digital Systems, Spring 201811

HF, UT Austin, Feb 202011

© Mentor Graphics Corporation

Regular Expressions

 Regular expressions describe sets of finite words

w=a1,a2,…,an .

— a1,a2,… are letters in an alphabet.

 Regular expressions can express counting modulo n.

 The * operator – enables counting modulo n.

— (ab)* - a regular expression describing the set of words:

– ε - (the empty word)

– ab

– abab

– ababab…..

H Foster, EE 382M, Verification of Digital Systems, Spring 201812

HF, UT Austin, Feb 202012

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20194

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Regular Expressions

 For reactive systems a letter in the alphabet is a Boolean

expression

 The set of computations satisfying “p is asserted in every even

cycle” is described by the SVA regular expression

(1`b1 ## p)[*]

 A regular expression by itself is not a property

—Later: building properties from regular expressions in SVA

H Foster, EE 382M, Verification of Digital Systems, Spring 201813

HF, UT Austin, Feb 202013

© Mentor Graphics Corporation

The behavior, “eventually p holds forever”

cannot be expressed by a regular expression

It can be expressed in LTL as : F G p

H Foster, EE 382M, Verification of Digital Systems, Spring 201814

HF, UT Austin, Feb 202014

What Regular Expressions Cannot Express

© Mentor Graphics Corporation

 LTL and regular expressions are linear formalisms

– Linear formalisms can be used to express mainly properties that are

intended to hold on all computations (i.e., executions of a design

model).

– Most properties required for the specification of digital designs can

be expressed using linear formalism

 What cannot express in linear formalisms:

“There exists a computation in which eventually p holds forever”

– LTL implicitly quantifies universally over paths

H Foster, EE 382M, Verification of Digital Systems, Spring 201815

HF, UT Austin, Feb 202015

Linear Formalisms

© Mentor Graphics Corporation

SVA LANGUAGE STRUCTURE

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20195

© Mentor Graphics Corporation

© Mentor Graphics Corporation

SVA Language Structure

• Checker packaging

• assert, assume, cover

• Specification of behavior;
desired or undesired

• How Boolean events
are related over time

• True or falseBoolean ExpressionsBoolean Expressions

Sequences
(Sequential Expressions)

Sequences
(Sequential Expressions)

PropertiesProperties

Directives
(assert, cover)

Directives
(assert, cover)

Assertion
Units

Assertion
Units

H Foster, EE 382M, Verification of Digital Systems, Spring 201817

HF, UT Austin, Feb 202017

© Mentor Graphics Corporation

Boolean ExpressionsBoolean Expressions

Sequences
(Sequential Expressions)

Sequences
(Sequential Expressions)

PropertiesProperties

Directives
(assert, cover)

Directives
(assert, cover)

Assertion
Units

Assertion
Units

SVA Language Structure

rst_n

!(grant0 & grant1)

clk

error

assert property (@(posedge clk) disable iff (~rst_n)

!(grant0 & grant1));

H Foster, EE 382M, Verification of Digital Systems, Spring 201818

HF, UT Austin, Feb 202018

Note: rst_n is an active low reset in this example

© Mentor Graphics Corporation

SVA Language Structure

assert property (@(posedge clk) disable iff (~rst_n)

!(grant0 & grant1));

 SVA provides a mechanism to asynchronously

disable a property during a reset using the SVA

disable iff clause

H Foster, EE 382M, Verification of Digital Systems, Spring 201819

Note: rst_n is an active low reset in this example

HF, UT Austin, Feb 202019

© Mentor Graphics Corporation

MAPPING SVA INTO LTL

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20196

© Mentor Graphics Corporation

© Mentor Graphics Corporation

 All Boolean logic propositions - p

“Process 2 is in the critical section”

 LTL: X p – p holds in the next state.

 SVA: nexttime [n] p – p holds in the next state.

“Process 2 will be in the critical section in the next state”

pnexttime p

LTL Operators in SVA

H Foster, EE 382M, Verification of Digital Systems, Spring 201821

HF, UT Austin, Feb 202021

© Mentor Graphics Corporation

LTL Operators in SVA

 LTL: F p – eventually p holds.

 SVA: eventually p – eventually p holds (weak).

“eventually process 2 will enter the critical section”

peventually p

Note: s_eventually is a strong version of this operator in SVA.

H Foster, EE 382M, Verification of Digital Systems, Spring 201822

HF, UT Austin, Feb 202022

© Mentor Graphics Corporation

LTL Operators in SVA

• LTL: G p – always (i.e., globally) p holds.

• SVA: always p – always (i.e., globally) p holds.

“process 1 and 2 are always mutually exclusive”

p pp pp palways p

Note: there is an implicit always when asserting a property:

assert property(p);

H Foster, EE 382M, Verification of Digital Systems, Spring 201823

HF, UT Austin, Feb 202023

© Mentor Graphics Corporation

 LTL: [p U q] – “q holds now or sometime in the future and

p holds from now until q holds” (strong)

 SVA: p s_until q

 LTL: [p W q] – “p holds from now until q holds” (weak)

 SVA: p until q

LTL Operators in SVA

p qp ppp s_until q

p pp pp pp until q

H Foster, EE 382M, Verification of Digital Systems, Spring 201824

HF, UT Austin, Feb 202024

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20197

© Mentor Graphics Corporation

© Mentor Graphics Corporation

assert property (@posedge clk disable iff (reset)

$rose(req) implies !done s_until grnt);

SVA with LTL Operator Example

H Foster, EE 382M, Verification of Digital Systems, Spring 201825

HF, UT Austin, Feb 202025

© Mentor Graphics Corporation

SEQUENCES

© Mentor Graphics Corporation

SVA Language Structure

Sequences

 So far we have examined LTL-based assertions

 We now we introduce SVA sequences

— Multiple Boolean expressions are evaluated

in a linear order of increasing time

Boolean ExpressionsBoolean Expressions

Sequences
(Sequential Expressions)

Sequences
(Sequential Expressions)

PropertiesProperties

Directives
(assert, cover)

Directives
(assert, cover)

Assertion
Units

Assertion
Units

H Foster, EE 382M, Verification of Digital Systems, Spring 201827

HF, UT Austin, Feb 202027

© Mentor Graphics Corporation

SVA Language Structure

start

clk

transfer

start ##1 transfer

 Sequence
— Temporal delay ##n with an integer n.

H Foster, EE 382M, Verification of Digital Systems, Spring 201828

HF, UT Austin, Feb 202028

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20198

© Mentor Graphics Corporation

© Mentor Graphics Corporation

SVA Language Structure

start

clk

transfer

start ##2 transfer

 Sequence
— Temporal delay ##n with an integer n.

H Foster, EE 382M, Verification of Digital Systems, Spring 201829

HF, UT Austin, Feb 202029

© Mentor Graphics Corporation

SVA Language Structure

start

clk

transfer

start ##[0:2] transfer

 Sequence
— Temporal delay ##[m:n] with range [m:n]

H Foster, EE 382M, Verification of Digital Systems, Spring 201830

HF, UT Austin, Feb 202030

© Mentor Graphics Corporation

SVA Language Structure

start

clk

transfer

start[*2] ##1 transfer

H Foster, EE 382M, Verification of Digital Systems, Spring 201831

HF, UT Austin, Feb 202031

• Sequence

• Consecutive repetition [*m] or range [*m:n]

- Use $ to represent infinity

© Mentor Graphics Corporation

• Sequence

• Consecutive repetition [*m] or range [*m:n]

- Use $ to represent infinity

SVA Language Structure

start

clk

transfer

start[*1:2] ##1 transfer

H Foster, EE 382M, Verification of Digital Systems, Spring 201832

HF, UT Austin, Feb 202032

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20199

© Mentor Graphics Corporation

© Mentor Graphics Corporation

• Sequence

• Consecutive repetition [*m] or range [*m:n]

- Use $ to represent infinity

SVA Language Structure

start

clk

transfer

start[*1:2] ##1 transfer

H Foster, EE 382M, Verification of Digital Systems, Spring 201833

HF, UT Austin, Feb 202033

© Mentor Graphics Corporation

SVA Language Structure

start

clk

transfer

start[*1:2] ##1 transfer

Note: This also matches the sequence specification!!!!

H Foster, EE 382M, Verification of Digital Systems, Spring 201834

HF, UT Austin, Feb 202034

• Sequence

• Consecutive repetition [*m] or range [*m:n]

- Use $ to represent infinity

© Mentor Graphics Corporation

SVA Language Structure

start

clk

transfer

start[=2] ##1 transfer

• Sequence
• Non-consecutive repetition [=m] or [=m:n]

[*] represents
zero to infinity

start[=2]  !start[*] ##1 start ##1 !start[*] ##1 start ##1 !start[*]

H Foster, EE 382M, Verification of Digital Systems, Spring 201835

HF, UT Austin, Feb 202035

© Mentor Graphics Corporation

SVA Language Structure

start

clk

transfer

start[->2] ##1 transfer

start[->2]  !start[*] ##1 start ##1 !start[*] ##1 start

[*] represents
zero to infinity

• Sequence
• Goto non-consecutive repetition [->m] or [->m:n]

H Foster, EE 382M, Verification of Digital Systems, Spring 201836

HF, UT Austin, Feb 202036

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201910

© Mentor Graphics Corporation

© Mentor Graphics Corporation

SVA Language Structure

Boolean ExpressionsBoolean Expressions

Sequences
(Sequential Expressions)

Sequences
(Sequential Expressions)

PropertiesProperties

Directives
(assert, cover)

Directives
(assert, cover)

Assertion
Units

Assertion
Units

 Properties

H Foster, EE 382M, Verification of Digital Systems, Spring 201837

HF, UT Austin, Feb 202037

© Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202038

 Properties
— Overlapping sequence implication operator |->

ready ##1 start |-> go ##1 done

ready

clk

start

go

done

assertion property (@(posedge clk) ready ##1 start |-> go ##1 done);

H Foster, EE 382M, Verification of Digital Systems, Spring 201838

© Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202039

 Properties
— Non-overlapping sequence implication operator |=>

ready ##1 start |=> go ##1 done

ready

clk

start

go

done

NOTE: A |=> B is the same as A |-> ##1 B

H Foster, EE 382M, Verification of Digital Systems, Spring 201839 © Mentor Graphics Corporation

 Asserting that an arbiter is fair

— To be fair, a pending request for a particular client should

never have to wait more than two arbitration cycles

— Otherwise, the arbiter unfairly issued multiple grants to a

different client

Fair Arbitration Scheme Example

Arbiter

req[0]

req[1]

gnt[0]

gnt[1]

H Foster, EE 382M, Verification of Digital Systems, Spring 201840

HF, UT Austin, Feb 202040

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201911

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Fair Arbitration Scheme Example

gnt[0]

req[0]

clk

gnt[1]

Arbiter
req[0]

req[1]

gnt[0]

gnt[1]

a_0_fair:
assert property (@(posedge clk) disable iff (reset)

$rose(req[0]) |-> not (!gnt[0] throughout (gnt[1])[->2]));

H Foster, EE 382M, Verification of Digital Systems, Spring 201841

HF, UT Austin, Feb 202041

© Mentor Graphics Corporation

Fair Arbitration Scheme Example

gnt[0]

req[0]

clk

gnt[1]

Arbiter
req[0]

req[1]

gnt[0]

gnt[1]

a_0_fair:
assert property (@(posedge clk) disable iff (reset)

req[0] |-> not (!gnt[0] throughout (gnt[1])[->2]));

H Foster, EE 382M, Verification of Digital Systems, Spring 201842

HF, UT Austin, Feb 202042

© Mentor Graphics Corporation

Fair Arbitration Scheme Example

gnt[0]

req[0]

clk

gnt[1]

Arbiter
req[0]

req[1]

gnt[0]

gnt[1]

a_0_fair:
assert property (@(posedge clk) disable iff (reset)

$rose(req[0]) |-> not (!gnt[0] throughout (gnt[1])[->2]));

H Foster, EE 382M, Verification of Digital Systems, Spring 201843

HF, UT Austin, Feb 202043

© Mentor Graphics Corporation

Fair Arbitration Scheme Example

gnt[0]

req[1]

clk

gnt[1]

Arbiter
req[0]

req[1]

gnt[0]

gnt[1]

a_1_fair:
assert property (@(posedge clk) disable iff (reset)

$rose(req[1] |-> not (!gnt[1] throughout (gnt[0])[->2]));

H Foster, EE 382M, Verification of Digital Systems, Spring 201844

HF, UT Austin, Feb 202044

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201912

© Mentor Graphics Corporation

© Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202045

 Named sequences and properties
— To facilitate reuse, properties and sequences can be

declared and then referenced by name
— Can be declared with or without parameters

sequence s_op_retry;
(req ##1 retry);

endsequence

sequence s_cache_fill(req, done, fill);
(req ##1 done [=1] ##1 fill);

endsequence

H Foster, EE 382M, Verification of Digital Systems, Spring 201845 © Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202046

 Named properties and sequences

sequence s_op_retry;
(req ##1 retry);

endsequence

sequence s_cache_fill(rdy, done, fill);
(rdy ##1 done [=1] ##1 fill);

endsequence

assert property (@(posedge clk) disable iff (reset)
s_op_retry |=> s_cache_fill (my_rdy,my_done,my_fill));

H Foster, EE 382M, Verification of Digital Systems, Spring 201846

© Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202047

 Named properties and sequences

property p_en_mutex(en0, en1);
@(posedge clk) disable iff (reset)

~(en0 & en1);
endproperty

assert property (p_en_mutex(bus_en0, bus_en1));

H Foster, EE 382M, Verification of Digital Systems, Spring 201847 © Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202048

 Action blocks
— An SVA action block specifies the actions that are taken upon

success or failure of the assertion

— The action block, if specified, is executed immediately after the

evaluation of the assert expression

assert property (@(posedge clk) disable iff (reset)
!(grant0 & grant1))

else begin // action block fail statement
$error(“Mutex violation with grants.”);

end

H Foster, EE 382M, Verification of Digital Systems, Spring 201848

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201913

© Mentor Graphics Corporation

© Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202049

 System functions

• $rose(expression)

• $fell(expression)

• $stable(expression)

• $past(expression [, number_of_ticks])

H Foster, EE 382M, Verification of Digital Systems, Spring 201849 © Mentor Graphics Corporation

 You must be precise when specifying!

The need for $rose system function

start

clk

transfer

assertion property (@(posedge clk) start |-> ##2 Transfer);

H Foster, EE 382M, Verification of Digital Systems, Spring 201850

HF, UT Austin, Feb 202050

© Mentor Graphics Corporation

Eliminates multiple matches

HF, UT Austin, Feb 202051

 You must be precise when specifying!

start

clk

transfer

assertion property (@(posedge clk) $rose(start) |-> ##2 Transfer);

$rose(start) is a short cut for the sequence !start ##1 start

H Foster, EE 382M, Verification of Digital Systems, Spring 201851 © Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202052

 System functions

• $onehot (<expression>)
- Returns true if only one bit of the expression is high

• $onehot0 (<expression>)
- Returns true if at most one bit of the expression is high

• $isunknown (<expression>)
- Returns true if any bit of the expression is X or Z

- This is equivalent to ^<expression> === ’bx

H Foster, EE 382M, Verification of Digital Systems, Spring 201852

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201914

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Introduction to SVA

HF, UT Austin, Feb 202053

 Some assertions require additional modeling code
— In addition to the assertion constructs

// Assert that the LIFO controller cannot overflow nor underflow

put

get

data_in

clk

rst_n

data_out

LIFO

full

empty

Controller

clk

rst_n A

A

H Foster, EE 382M, Verification of Digital Systems, Spring 201853 © Mentor Graphics Corporation

// assertion modeling code – not part of the design

`ifdef ASSERT_ON

int cnt = 0;

always @(posedge clk)

if (!rst_n)

cnt <= 0;

else

cnt <= cnt + put – get;
// assert no LIFO overflow

assert property (@posedge clk disable iff (~rst_n)

!((cnt + put – get) > `DEPTH));

// assert no LIFO underflow

assert property (@posedge clk disable iff (!rst_n) !((cnt + put) < get));

`endif

Introduction to SVA

H Foster, EE 382M, Verification of Digital Systems, Spring 201854

Note: rst_n is an active low reset in this example

HF, UT Austin, Feb 202054

© Mentor Graphics Corporation

SVA Does and Don’ts

 Never assert a sequence!

assert property (@posedge clk) (req ##1 grnt ##1 done));

— This says every clock we see req, followed by gnt, followed by done
—

— The correct way to do this is with an implication operator:

assert property (@posedge clk) (req |=> grnt ##1 done));

 It’s ok to cover a sequence

 It’s ok to assert a forbidden sequence using not
assert property (@posedge clk) not (req ##1 done ##1 grant));

H Foster, EE 382M, Verification of Digital Systems, Spring 201855

HF, UT Austin, Feb 202055

© Mentor Graphics Corporation

BUS-BASED DESIGN
EXAMPLE

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201915

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Bus A
I/F

Datapath

LIFO

I/F

Control
Bridge

Datapath

LIFO

CPU 1 CPU 2

Memory
Controller

Graphics
Controller

Arbiter
Bus B

UART

Timer

Bus-Based Design Example

H Foster, EE 382M, Verification of Digital Systems, Spring 201857

HF, UT Austin, Feb 202057

© Mentor Graphics Corporation

Nonpipelined Bus Interface

Slave 0

clk

rst_n

sel[0]

en

write

addrI/F

Master

I/F

wdata

rdata

H Foster, EE 382M, Verification of Digital Systems, Spring 201858

HF, UT Austin, Feb 202058

Note: rst_n is an active low reset in this example

© Mentor Graphics Corporation

0 1 2 3 4

addr Addr 1

write

sel[0]

en

wdata Data 1

Non-Burst Write Transaction

BUS STATE INACTIVE START ACTIVE INACTIVE

H Foster, EE 382M, Verification of Digital Systems, Spring 201859

HF, UT Austin, Feb 202059

© Mentor Graphics Corporation

addr Addr 1

write

sel[0]

en

rdata Data 1

0 1 2 3 4

BUS STATE INACTIVE START ACTIVE INACTIVE

Non-Burst Read Transaction

H Foster, EE 382M, Verification of Digital Systems, Spring 201860

HF, UT Austin, Feb 202060

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201916

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Conceptual Bus States

INACTIVE
sel[0] == 0

en == 0

START
sel[0] == 1

en == 0

ACTIVE
sel[0] == 1

en == 1

transfer

no transfer

no transfer

setup

setup

H Foster, EE 382M, Verification of Digital Systems, Spring 201861

HF, UT Austin, Feb 202061

© Mentor Graphics Corporation

Interface Requirements

Property Name Description

Bus legal treansitions

p_state_reset_inactive Initial state after reset is INACTIVE

p_valid_inactive_transition INACTIVE is followed by INACTIVE or START

p_valid_start_transition START is followed by ACTIVE

p_valid_active_transition ACTIVE is followed by INACTIVE or START

p_no_error_state Bus state must be valid: !(se==0 & en==1)

Bus stable signals

p_sel_stable Slave select signals remain stable from START to ACTIVE

p_addr_stable Address remains stable from START to ACTIVE

p_write_stable Control remains stable from START to ACTIVE

p_wdata_stable Data remains stable from START to ACTIVE

INACTIVE
sel[0] == 0

en == 0

START
sel[0] == 1

en == 0

ACTIVE
sel[0] == 1

en == 1

transfer

no transfer

setup

setup

H Foster, EE 382M, Verification of Digital Systems, Spring 201862

HF, UT Austin, Feb 202062

© Mentor Graphics Corporation

`ifdef ASSERTION_ON
//Map bus control values to conceptual states

if (~rst_n) begin
bus_reset = 1;
bus_inactive = 1;
bus_start = 0;
bus_active = 0;
bus_error = 0;

end
else begin

bus_reset = 0;
bus_inactive = ~sel & ~en;
bus_start = sel & ~en;
bus_active = sel & en;
bus_error = ~sel & en;

end
`endif

Use Modeling Code to Simplify Coding

INACTIVE
sel[0] == 0

en == 0

START
sel[0] == 1

en == 0

ACTIVE
sel[0] == 1

en == 1

transfer

no transfer

setup

setup

H Foster, EE 382M, Verification of Digital Systems, Spring 201863

HF, UT Austin, Feb 202063

© Mentor Graphics Corporation

SVA Examples

property p_valid_inactive_transition;

@(posedge clk) disable iff (bus_reset)

(bus_inactive) |=>
((bus_inactive) || (bus_start));

endproperty

a_valid_inactive_transition:

assert property (p_valid_inactive_transition);

property p_valid_start_transition;

@(posedge clk) disable iff (bus_reset)

(bus_start) |=> (bus_active);

endproperty

a_valid_start_transition:

assert property (p_valid_start_transition);

INACTIVE
sel[0] == 0

en == 0

START
sel[0] == 1

en == 0

ACTIVE
sel[0] == 1

en == 1

transfer

no transfer

setup

setup

H Foster, EE 382M, Verification of Digital Systems, Spring 201864

HF, UT Austin, Feb 202064

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201917

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Instantiating Assertions within Modules

module bus_controller (. . .);

. . .

always (@posedge clk) begin

. . . .

end

always (@posedge clk) begin

. . . .

end

assert property (p_valid_start_transition);

endmodule

Implicit always

H Foster, EE 382M, Verification of Digital Systems, Spring 201865

HF, UT Austin, Feb 202065

© Mentor Graphics Corporation

CHECKER PACKAGING

© Mentor Graphics Corporation

SVA Language Structure

• Checker packaging

• assert, assume, cover

• Specification of behavior;
desired or undesired

• How Boolean events
are related over time

• True or falseBoolean ExpressionsBoolean Expressions

Sequences
(Sequential Expressions)

Sequences
(Sequential Expressions)

PropertiesProperties

Directives
(assert, cover)

Directives
(assert, cover)

Assertion
Units

Assertion
Units

H Foster, EE 382M, Verification of Digital Systems, Spring 201867

HF, UT Austin, Feb 202067

© Mentor Graphics Corporation

SVA Checker

Source: Dmitry Korchemny, “SystemVerilog Assertions for Formal Verification,” HVC2013

H Foster, EE 382M, Verification of Digital Systems, Spring 201868

HF, UT Austin, Feb 202068

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201918

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Binding Checkers

Source: Dmitry Korchemny, “SystemVerilog Assertions for Formal Verification,” HVC2013

H Foster, EE 382M, Verification of Digital Systems, Spring 201869

HF, UT Austin, Feb 202069

© Mentor Graphics Corporation

EXERCISES

© Mentor Graphics Corporation

Ex.1: Simple Shift Buffer Example

 After reset, the input d_in should never be unknown.

HF, UT Austin, Feb 202071

© Mentor Graphics Corporation

Ex.1: Signal is Valid After Reset

 After reset, the input d_in should never be unknown.

a_d_in_never_x: assert property (@(posedge clk) disable iff (reset)

(d_in !== 1’bx));

HF, UT Austin, Feb 202072

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201919

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Ex.2: One-Cold State Machine

 After reset, state[7:0] must have only a single bit low.

state: 11101111, 1011111, 0111111, 11111110, …

HF, UT Austin, Feb 202073

© Mentor Graphics Corporation

Ex.2: One-Cold FSM

 After reset, state[7:0] must have only a single bit low.

state: 11101111, 1011111, 0111111, 11111110, …

a_one_cold_fsm: assert property (@(posedge clk) disable iff (reset)

$onehot(~state));

HF, UT Austin, Feb 202074

© Mentor Graphics Corporation

Ex.3: Simple Handshaking Protocol

 Whenever start is high, then start must be low in the next
cycle and remain low until after the next strictly subsequent
cycle in which complete is high.

 complete may not be high unless start was high in a
preceding cycle and complete was not high in any of the
intervening cycles.

HF, UT Austin, Feb 202075

© Mentor Graphics Corporation

Ex.3: Simple Handshaking Protocol

 Whenever start is high, then start must be low in the next
cycle and remain low until after the next strictly subsequent
cycle in which complete is high.

 complete may not be high unless start was high in a
preceding cycle and complete was not high in any of the
intervening cycles.

a_no_start: assert property (@(posedge clk) disable iff (reset)

start |=> !start throughout complete[->1]

);

a_no_complete: assert property (@(posedge clk) disable iff (reset)

complete |=> !complete throughout start[->1]

);

HF, UT Austin, Feb 202076

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201920

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Ex.4 Stack (LIFO)

HF, UT Austin, Feb 202077

 A LIFO contains the following controls:
— put : add data to LIFO
— get : remove data from LIFO
— cnt counter that points to the next available

location in the LIFO (4’b1000 represents full)

 It is not possible to overflow the LIFO

 It is not possible to underflow the LIFO

7

6

5

4

3

2

1

0

cnt 

© Mentor Graphics Corporation

Ex.4 Stack (LIFO)

HF, UT Austin, Feb 202078

 A LIFO contains the following controls:
— put : add data to LIFO
— get : remove data from LIFO
— cnt counter that points to the next available

location in the LIFO (4’b1000 represents full)

a_no_overflow: assert property

(@(posedge clk) disable iff (reset)

!(cnt == 4’b1000 & put & !get)

);

7

6

5

4

3

2

1

0

cnt 

© Mentor Graphics Corporation

Ex.4 Stack (LIFO)

HF, UT Austin, Feb 202079

 A LIFO contains the following controls:
— put : add data to LIFO
— get : remove data from LIFO
— cnt counter that points to the next available

location in the LIFO (4’b1000 represents full)

a_no_underflow: assert property

(@(posedge clk) disable iff (reset)

!(cnt == 4’b0000 & !put & get)

);

7

6

5

4

3

2

1

0

cnt 

© Mentor Graphics Corporation

SUMMARY

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201921

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Lecture Recap

HF, UT Austin, Feb 202081

In this lecture, I discussed. . .

 Discussed the structure of the SVA language

 Discussed how to construct sequence

 Discussed how to construct properties

 Demonstrate SVA on real examples

 Discussed Checkers and Bind

 Exercises

 Summary

H Foster, EE 382M, Verification of Digital Systems, Spring 201881 © Mentor Graphics Corporation

More Info on Industry Verification Trends

HF, UT Austin, Feb 202082

 http://go.mentor.com/55d6T

© Mentor Graphics Corporation

www.mentor.com

