
Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20191

© Mentor Graphics Corporation

Harry D. Foster

Introduction to
SystemVerilog
Assertions (SVA)

Chief Scientist Verification

IC Verification Solutions Division

February 2020

© Mentor Graphics Corporation

Lecture Overview

In this lecture, you will. . .

 Learn the structure of the SVA language

 Learn how to construct sequence

 Learn how to construct properties

 Apply SVA on real examples

 Exercises

 Summary

H Foster, EE 382M, Verification of Digital Systems, Spring 20182

HF, UT Austin, Feb 20202

© Mentor Graphics Corporation

LINEAR FORMALISM

Brief Review of LTL and Introduction of Regular Expressions

© Mentor Graphics Corporation

SystemVerilog Assertions

 SVA is based on linear temporal logic (LTL) built over

sublanguages of regular expressions.

 Most engineers will find SVA sufficient to express most

common assertions required for hardware design.

H Foster, EE 382M, Verification of Digital Systems, Spring 20184

HF, UT Austin, Feb 20204

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20192

© Mentor Graphics Corporation

© Mentor Graphics Corporation

 All Boolean logic propositions - p

“Process 2 is in the critical section”

 X p – p holds in the next state.

“Process 2 will be in the critical section in the next state”

pX p

What We can Express in LTL

HF, UT Austin, Feb 20205

H Foster, EE 382M, Verification of Digital Systems, Spring 20185 © Mentor Graphics Corporation

 F p – sometimes (i.e., eventually) p holds.

“eventually process 2 will enter the critical section”

pF p

• G p – always (i.e., globally) p holds.

“process 1 and 2 are always mutually exclusive”

p pp pp pG p

H Foster, EE 382M, Verification of Digital Systems, Spring 20186

HF, UT Austin, Feb 20206

What We can Express in LTL

© Mentor Graphics Corporation

 [p U q] – “q holds now or sometime in the future

and p holds from now until q holds” (strong)

 [p W q] – “p holds from now until q holds” (weak)

p qp ppp U q

p pp pp pp W q

H Foster, EE 382M, Verification of Digital Systems, Spring 20187

HF, UT Austin, Feb 20207

What We can Express in LTL

© Mentor Graphics Corporation

 Weak operators – X, G, W

Used to express safety properties,

i.e. “something bad never happens”

 Strong operators – F, U

Used to express liveness properties,

i.e. “something good eventually happens”

Safety properties put no obligation on the future, liveness properties do!

H Foster, EE 382M, Verification of Digital Systems, Spring 20188

HF, UT Austin, Feb 20208

What We can Express in LTL

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20193

© Mentor Graphics Corporation

© Mentor Graphics Corporation

What We can Express in LTL

 LTL formulas can be combined using the ¬¬¬¬, ∧∧∧∧, ∨∨∨∨, →→→→

logic connectors (negation, conjunction, disjunction, implication)

For example….

G (request →→→→ F grant)

p pp pp p

request grant

H Foster, EE 382M, Verification of Digital Systems, Spring 20189

HF, UT Austin, Feb 20209

© Mentor Graphics Corporation

What We can Express in LTL

 LTL formulas can be combined using the ¬, ∧, ∨, →

logic connectors (negation, conjunction, disjunction, implication)

For example….

Temporal operators can be combined too…

FG p

pp p

H Foster, EE 382M, Verification of Digital Systems, Spring 201810

HF, UT Austin, Feb 202010

G (request →→→→ F grant)

© Mentor Graphics Corporation

What We Cannot Express in LTL

 Counting example:
“p is asserted in every even cycle”

All the following traces satisfy this property

!p,p,!p,p,…

p,p, p,p….

p,p,!p,p,p,p…

 No LTL formula can express this property

H Foster, EE 382M, Verification of Digital Systems, Spring 201811

HF, UT Austin, Feb 202011

© Mentor Graphics Corporation

Regular Expressions

 Regular expressions describe sets of finite words

w=a1,a2,…,an .

— a1,a2,… are letters in an alphabet.

 Regular expressions can express counting modulo n.

 The * operator – enables counting modulo n.

— (ab)* - a regular expression describing the set of words:

– ε - (the empty word)

– ab

– abab

– ababab…..

H Foster, EE 382M, Verification of Digital Systems, Spring 201812

HF, UT Austin, Feb 202012

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20194

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Regular Expressions

 For reactive systems a letter in the alphabet is a Boolean

expression

 The set of computations satisfying “p is asserted in every even

cycle” is described by the SVA regular expression

(1`b1 ## p)[*]

 A regular expression by itself is not a property

—Later: building properties from regular expressions in SVA

H Foster, EE 382M, Verification of Digital Systems, Spring 201813

HF, UT Austin, Feb 202013

© Mentor Graphics Corporation

The behavior, “eventually p holds forever”

cannot be expressed by a regular expression

It can be expressed in LTL as : F G p

H Foster, EE 382M, Verification of Digital Systems, Spring 201814

HF, UT Austin, Feb 202014

What Regular Expressions Cannot Express

© Mentor Graphics Corporation

 LTL and regular expressions are linear formalisms

– Linear formalisms can be used to express mainly properties that are

intended to hold on all computations (i.e., executions of a design

model).

– Most properties required for the specification of digital designs can

be expressed using linear formalism

 What cannot express in linear formalisms:

“There exists a computation in which eventually p holds forever”

– LTL implicitly quantifies universally over paths

H Foster, EE 382M, Verification of Digital Systems, Spring 201815

HF, UT Austin, Feb 202015

Linear Formalisms

© Mentor Graphics Corporation

SVA LANGUAGE STRUCTURE

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20195

© Mentor Graphics Corporation

© Mentor Graphics Corporation

SVA Language Structure

• Checker packaging

• assert, assume, cover

• Specification of behavior;
desired or undesired

• How Boolean events
are related over time

• True or falseBoolean ExpressionsBoolean Expressions

Sequences
(Sequential Expressions)

Sequences
(Sequential Expressions)

PropertiesProperties

Directives
(assert, cover)

Directives
(assert, cover)

Assertion
Units

Assertion
Units

H Foster, EE 382M, Verification of Digital Systems, Spring 201817

HF, UT Austin, Feb 202017

© Mentor Graphics Corporation

Boolean ExpressionsBoolean Expressions

Sequences
(Sequential Expressions)

Sequences
(Sequential Expressions)

PropertiesProperties

Directives
(assert, cover)

Directives
(assert, cover)

Assertion
Units

Assertion
Units

SVA Language Structure

rst_n

!(grant0 & grant1)

clk

error

assert property (@(posedge clk) disable iff (~rst_n)

!(grant0 & grant1));

H Foster, EE 382M, Verification of Digital Systems, Spring 201818

HF, UT Austin, Feb 202018

Note: rst_n is an active low reset in this example

© Mentor Graphics Corporation

SVA Language Structure

assert property (@(posedge clk) disable iff (~rst_n)

!(grant0 & grant1));

 SVA provides a mechanism to asynchronously

disable a property during a reset using the SVA

disable iff clause

H Foster, EE 382M, Verification of Digital Systems, Spring 201819

Note: rst_n is an active low reset in this example

HF, UT Austin, Feb 202019

© Mentor Graphics Corporation

MAPPING SVA INTO LTL

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20196

© Mentor Graphics Corporation

© Mentor Graphics Corporation

 All Boolean logic propositions - p

“Process 2 is in the critical section”

 LTL: X p – p holds in the next state.

 SVA: nexttime [n] p – p holds in the next state.

“Process 2 will be in the critical section in the next state”

pnexttime p

LTL Operators in SVA

H Foster, EE 382M, Verification of Digital Systems, Spring 201821

HF, UT Austin, Feb 202021

© Mentor Graphics Corporation

LTL Operators in SVA

 LTL: F p – eventually p holds.

 SVA: eventually p – eventually p holds (weak).

“eventually process 2 will enter the critical section”

peventually p

Note: s_eventually is a strong version of this operator in SVA.

H Foster, EE 382M, Verification of Digital Systems, Spring 201822

HF, UT Austin, Feb 202022

© Mentor Graphics Corporation

LTL Operators in SVA

• LTL: G p – always (i.e., globally) p holds.

• SVA: always p – always (i.e., globally) p holds.

“process 1 and 2 are always mutually exclusive”

p pp pp palways p

Note: there is an implicit always when asserting a property:

assert property(p);

H Foster, EE 382M, Verification of Digital Systems, Spring 201823

HF, UT Austin, Feb 202023

© Mentor Graphics Corporation

 LTL: [p U q] – “q holds now or sometime in the future and

p holds from now until q holds” (strong)

 SVA: p s_until q

 LTL: [p W q] – “p holds from now until q holds” (weak)

 SVA: p until q

LTL Operators in SVA

p qp ppp s_until q

p pp pp pp until q

H Foster, EE 382M, Verification of Digital Systems, Spring 201824

HF, UT Austin, Feb 202024

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20197

© Mentor Graphics Corporation

© Mentor Graphics Corporation

assert property (@posedge clk disable iff (reset)

$rose(req) implies !done s_until grnt);

SVA with LTL Operator Example

H Foster, EE 382M, Verification of Digital Systems, Spring 201825

HF, UT Austin, Feb 202025

© Mentor Graphics Corporation

SEQUENCES

© Mentor Graphics Corporation

SVA Language Structure

Sequences

 So far we have examined LTL-based assertions

 We now we introduce SVA sequences

— Multiple Boolean expressions are evaluated

in a linear order of increasing time

Boolean ExpressionsBoolean Expressions

Sequences
(Sequential Expressions)

Sequences
(Sequential Expressions)

PropertiesProperties

Directives
(assert, cover)

Directives
(assert, cover)

Assertion
Units

Assertion
Units

H Foster, EE 382M, Verification of Digital Systems, Spring 201827

HF, UT Austin, Feb 202027

© Mentor Graphics Corporation

SVA Language Structure

start

clk

transfer

start ##1 transfer

 Sequence
— Temporal delay ##n with an integer n.

H Foster, EE 382M, Verification of Digital Systems, Spring 201828

HF, UT Austin, Feb 202028

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20198

© Mentor Graphics Corporation

© Mentor Graphics Corporation

SVA Language Structure

start

clk

transfer

start ##2 transfer

 Sequence
— Temporal delay ##n with an integer n.

H Foster, EE 382M, Verification of Digital Systems, Spring 201829

HF, UT Austin, Feb 202029

© Mentor Graphics Corporation

SVA Language Structure

start

clk

transfer

start ##[0:2] transfer

 Sequence
— Temporal delay ##[m:n] with range [m:n]

H Foster, EE 382M, Verification of Digital Systems, Spring 201830

HF, UT Austin, Feb 202030

© Mentor Graphics Corporation

SVA Language Structure

start

clk

transfer

start[*2] ##1 transfer

H Foster, EE 382M, Verification of Digital Systems, Spring 201831

HF, UT Austin, Feb 202031

• Sequence

• Consecutive repetition [*m] or range [*m:n]

- Use $ to represent infinity

© Mentor Graphics Corporation

• Sequence

• Consecutive repetition [*m] or range [*m:n]

- Use $ to represent infinity

SVA Language Structure

start

clk

transfer

start[*1:2] ##1 transfer

H Foster, EE 382M, Verification of Digital Systems, Spring 201832

HF, UT Austin, Feb 202032

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 20199

© Mentor Graphics Corporation

© Mentor Graphics Corporation

• Sequence

• Consecutive repetition [*m] or range [*m:n]

- Use $ to represent infinity

SVA Language Structure

start

clk

transfer

start[*1:2] ##1 transfer

H Foster, EE 382M, Verification of Digital Systems, Spring 201833

HF, UT Austin, Feb 202033

© Mentor Graphics Corporation

SVA Language Structure

start

clk

transfer

start[*1:2] ##1 transfer

Note: This also matches the sequence specification!!!!

H Foster, EE 382M, Verification of Digital Systems, Spring 201834

HF, UT Austin, Feb 202034

• Sequence

• Consecutive repetition [*m] or range [*m:n]

- Use $ to represent infinity

© Mentor Graphics Corporation

SVA Language Structure

start

clk

transfer

start[=2] ##1 transfer

• Sequence
• Non-consecutive repetition [=m] or [=m:n]

[*] represents
zero to infinity

start[=2] !start[*] ##1 start ##1 !start[*] ##1 start ##1 !start[*]

H Foster, EE 382M, Verification of Digital Systems, Spring 201835

HF, UT Austin, Feb 202035

© Mentor Graphics Corporation

SVA Language Structure

start

clk

transfer

start[->2] ##1 transfer

start[->2] !start[*] ##1 start ##1 !start[*] ##1 start

[*] represents
zero to infinity

• Sequence
• Goto non-consecutive repetition [->m] or [->m:n]

H Foster, EE 382M, Verification of Digital Systems, Spring 201836

HF, UT Austin, Feb 202036

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201910

© Mentor Graphics Corporation

© Mentor Graphics Corporation

SVA Language Structure

Boolean ExpressionsBoolean Expressions

Sequences
(Sequential Expressions)

Sequences
(Sequential Expressions)

PropertiesProperties

Directives
(assert, cover)

Directives
(assert, cover)

Assertion
Units

Assertion
Units

 Properties

H Foster, EE 382M, Verification of Digital Systems, Spring 201837

HF, UT Austin, Feb 202037

© Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202038

 Properties
— Overlapping sequence implication operator |->

ready ##1 start |-> go ##1 done

ready

clk

start

go

done

assertion property (@(posedge clk) ready ##1 start |-> go ##1 done);

H Foster, EE 382M, Verification of Digital Systems, Spring 201838

© Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202039

 Properties
— Non-overlapping sequence implication operator |=>

ready ##1 start |=> go ##1 done

ready

clk

start

go

done

NOTE: A |=> B is the same as A |-> ##1 B

H Foster, EE 382M, Verification of Digital Systems, Spring 201839 © Mentor Graphics Corporation

 Asserting that an arbiter is fair

— To be fair, a pending request for a particular client should

never have to wait more than two arbitration cycles

— Otherwise, the arbiter unfairly issued multiple grants to a

different client

Fair Arbitration Scheme Example

Arbiter

req[0]

req[1]

gnt[0]

gnt[1]

H Foster, EE 382M, Verification of Digital Systems, Spring 201840

HF, UT Austin, Feb 202040

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201911

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Fair Arbitration Scheme Example

gnt[0]

req[0]

clk

gnt[1]

Arbiter
req[0]

req[1]

gnt[0]

gnt[1]

a_0_fair:
assert property (@(posedge clk) disable iff (reset)

$rose(req[0]) |-> not (!gnt[0] throughout (gnt[1])[->2]));

H Foster, EE 382M, Verification of Digital Systems, Spring 201841

HF, UT Austin, Feb 202041

© Mentor Graphics Corporation

Fair Arbitration Scheme Example

gnt[0]

req[0]

clk

gnt[1]

Arbiter
req[0]

req[1]

gnt[0]

gnt[1]

a_0_fair:
assert property (@(posedge clk) disable iff (reset)

req[0] |-> not (!gnt[0] throughout (gnt[1])[->2]));

H Foster, EE 382M, Verification of Digital Systems, Spring 201842

HF, UT Austin, Feb 202042

© Mentor Graphics Corporation

Fair Arbitration Scheme Example

gnt[0]

req[0]

clk

gnt[1]

Arbiter
req[0]

req[1]

gnt[0]

gnt[1]

a_0_fair:
assert property (@(posedge clk) disable iff (reset)

$rose(req[0]) |-> not (!gnt[0] throughout (gnt[1])[->2]));

H Foster, EE 382M, Verification of Digital Systems, Spring 201843

HF, UT Austin, Feb 202043

© Mentor Graphics Corporation

Fair Arbitration Scheme Example

gnt[0]

req[1]

clk

gnt[1]

Arbiter
req[0]

req[1]

gnt[0]

gnt[1]

a_1_fair:
assert property (@(posedge clk) disable iff (reset)

$rose(req[1] |-> not (!gnt[1] throughout (gnt[0])[->2]));

H Foster, EE 382M, Verification of Digital Systems, Spring 201844

HF, UT Austin, Feb 202044

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201912

© Mentor Graphics Corporation

© Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202045

 Named sequences and properties
— To facilitate reuse, properties and sequences can be

declared and then referenced by name
— Can be declared with or without parameters

sequence s_op_retry;
(req ##1 retry);

endsequence

sequence s_cache_fill(req, done, fill);
(req ##1 done [=1] ##1 fill);

endsequence

H Foster, EE 382M, Verification of Digital Systems, Spring 201845 © Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202046

 Named properties and sequences

sequence s_op_retry;
(req ##1 retry);

endsequence

sequence s_cache_fill(rdy, done, fill);
(rdy ##1 done [=1] ##1 fill);

endsequence

assert property (@(posedge clk) disable iff (reset)
s_op_retry |=> s_cache_fill (my_rdy,my_done,my_fill));

H Foster, EE 382M, Verification of Digital Systems, Spring 201846

© Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202047

 Named properties and sequences

property p_en_mutex(en0, en1);
@(posedge clk) disable iff (reset)

~(en0 & en1);
endproperty

assert property (p_en_mutex(bus_en0, bus_en1));

H Foster, EE 382M, Verification of Digital Systems, Spring 201847 © Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202048

 Action blocks
— An SVA action block specifies the actions that are taken upon

success or failure of the assertion

— The action block, if specified, is executed immediately after the

evaluation of the assert expression

assert property (@(posedge clk) disable iff (reset)
!(grant0 & grant1))

else begin // action block fail statement
$error(“Mutex violation with grants.”);

end

H Foster, EE 382M, Verification of Digital Systems, Spring 201848

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201913

© Mentor Graphics Corporation

© Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202049

 System functions

• $rose(expression)

• $fell(expression)

• $stable(expression)

• $past(expression [, number_of_ticks])

H Foster, EE 382M, Verification of Digital Systems, Spring 201849 © Mentor Graphics Corporation

 You must be precise when specifying!

The need for $rose system function

start

clk

transfer

assertion property (@(posedge clk) start |-> ##2 Transfer);

H Foster, EE 382M, Verification of Digital Systems, Spring 201850

HF, UT Austin, Feb 202050

© Mentor Graphics Corporation

Eliminates multiple matches

HF, UT Austin, Feb 202051

 You must be precise when specifying!

start

clk

transfer

assertion property (@(posedge clk) $rose(start) |-> ##2 Transfer);

$rose(start) is a short cut for the sequence !start ##1 start

H Foster, EE 382M, Verification of Digital Systems, Spring 201851 © Mentor Graphics Corporation

SVA Language Structure

HF, UT Austin, Feb 202052

 System functions

• $onehot (<expression>)
- Returns true if only one bit of the expression is high

• $onehot0 (<expression>)
- Returns true if at most one bit of the expression is high

• $isunknown (<expression>)
- Returns true if any bit of the expression is X or Z

- This is equivalent to ^<expression> === ’bx

H Foster, EE 382M, Verification of Digital Systems, Spring 201852

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201914

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Introduction to SVA

HF, UT Austin, Feb 202053

 Some assertions require additional modeling code
— In addition to the assertion constructs

// Assert that the LIFO controller cannot overflow nor underflow

put

get

data_in

clk

rst_n

data_out

LIFO

full

empty

Controller

clk

rst_n A

A

H Foster, EE 382M, Verification of Digital Systems, Spring 201853 © Mentor Graphics Corporation

// assertion modeling code – not part of the design

`ifdef ASSERT_ON

int cnt = 0;

always @(posedge clk)

if (!rst_n)

cnt <= 0;

else

cnt <= cnt + put – get;
// assert no LIFO overflow

assert property (@posedge clk disable iff (~rst_n)

!((cnt + put – get) > `DEPTH));

// assert no LIFO underflow

assert property (@posedge clk disable iff (!rst_n) !((cnt + put) < get));

`endif

Introduction to SVA

H Foster, EE 382M, Verification of Digital Systems, Spring 201854

Note: rst_n is an active low reset in this example

HF, UT Austin, Feb 202054

© Mentor Graphics Corporation

SVA Does and Don’ts

 Never assert a sequence!

assert property (@posedge clk) (req ##1 grnt ##1 done));

— This says every clock we see req, followed by gnt, followed by done
—

— The correct way to do this is with an implication operator:

assert property (@posedge clk) (req |=> grnt ##1 done));

 It’s ok to cover a sequence

 It’s ok to assert a forbidden sequence using not
assert property (@posedge clk) not (req ##1 done ##1 grant));

H Foster, EE 382M, Verification of Digital Systems, Spring 201855

HF, UT Austin, Feb 202055

© Mentor Graphics Corporation

BUS-BASED DESIGN
EXAMPLE

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201915

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Bus A
I/F

Datapath

LIFO

I/F

Control
Bridge

Datapath

LIFO

CPU 1 CPU 2

Memory
Controller

Graphics
Controller

Arbiter
Bus B

UART

Timer

Bus-Based Design Example

H Foster, EE 382M, Verification of Digital Systems, Spring 201857

HF, UT Austin, Feb 202057

© Mentor Graphics Corporation

Nonpipelined Bus Interface

Slave 0

clk

rst_n

sel[0]

en

write

addrI/F

Master

I/F

wdata

rdata

H Foster, EE 382M, Verification of Digital Systems, Spring 201858

HF, UT Austin, Feb 202058

Note: rst_n is an active low reset in this example

© Mentor Graphics Corporation

0 1 2 3 4

addr Addr 1

write

sel[0]

en

wdata Data 1

Non-Burst Write Transaction

BUS STATE INACTIVE START ACTIVE INACTIVE

H Foster, EE 382M, Verification of Digital Systems, Spring 201859

HF, UT Austin, Feb 202059

© Mentor Graphics Corporation

addr Addr 1

write

sel[0]

en

rdata Data 1

0 1 2 3 4

BUS STATE INACTIVE START ACTIVE INACTIVE

Non-Burst Read Transaction

H Foster, EE 382M, Verification of Digital Systems, Spring 201860

HF, UT Austin, Feb 202060

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201916

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Conceptual Bus States

INACTIVE
sel[0] == 0

en == 0

START
sel[0] == 1

en == 0

ACTIVE
sel[0] == 1

en == 1

transfer

no transfer

no transfer

setup

setup

H Foster, EE 382M, Verification of Digital Systems, Spring 201861

HF, UT Austin, Feb 202061

© Mentor Graphics Corporation

Interface Requirements

Property Name Description

Bus legal treansitions

p_state_reset_inactive Initial state after reset is INACTIVE

p_valid_inactive_transition INACTIVE is followed by INACTIVE or START

p_valid_start_transition START is followed by ACTIVE

p_valid_active_transition ACTIVE is followed by INACTIVE or START

p_no_error_state Bus state must be valid: !(se==0 & en==1)

Bus stable signals

p_sel_stable Slave select signals remain stable from START to ACTIVE

p_addr_stable Address remains stable from START to ACTIVE

p_write_stable Control remains stable from START to ACTIVE

p_wdata_stable Data remains stable from START to ACTIVE

INACTIVE
sel[0] == 0

en == 0

START
sel[0] == 1

en == 0

ACTIVE
sel[0] == 1

en == 1

transfer

no transfer

setup

setup

H Foster, EE 382M, Verification of Digital Systems, Spring 201862

HF, UT Austin, Feb 202062

© Mentor Graphics Corporation

`ifdef ASSERTION_ON
//Map bus control values to conceptual states

if (~rst_n) begin
bus_reset = 1;
bus_inactive = 1;
bus_start = 0;
bus_active = 0;
bus_error = 0;

end
else begin

bus_reset = 0;
bus_inactive = ~sel & ~en;
bus_start = sel & ~en;
bus_active = sel & en;
bus_error = ~sel & en;

end
`endif

Use Modeling Code to Simplify Coding

INACTIVE
sel[0] == 0

en == 0

START
sel[0] == 1

en == 0

ACTIVE
sel[0] == 1

en == 1

transfer

no transfer

setup

setup

H Foster, EE 382M, Verification of Digital Systems, Spring 201863

HF, UT Austin, Feb 202063

© Mentor Graphics Corporation

SVA Examples

property p_valid_inactive_transition;

@(posedge clk) disable iff (bus_reset)

(bus_inactive) |=>
((bus_inactive) || (bus_start));

endproperty

a_valid_inactive_transition:

assert property (p_valid_inactive_transition);

property p_valid_start_transition;

@(posedge clk) disable iff (bus_reset)

(bus_start) |=> (bus_active);

endproperty

a_valid_start_transition:

assert property (p_valid_start_transition);

INACTIVE
sel[0] == 0

en == 0

START
sel[0] == 1

en == 0

ACTIVE
sel[0] == 1

en == 1

transfer

no transfer

setup

setup

H Foster, EE 382M, Verification of Digital Systems, Spring 201864

HF, UT Austin, Feb 202064

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201917

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Instantiating Assertions within Modules

module bus_controller (. . .);

. . .

always (@posedge clk) begin

. . . .

end

always (@posedge clk) begin

. . . .

end

assert property (p_valid_start_transition);

endmodule

Implicit always

H Foster, EE 382M, Verification of Digital Systems, Spring 201865

HF, UT Austin, Feb 202065

© Mentor Graphics Corporation

CHECKER PACKAGING

© Mentor Graphics Corporation

SVA Language Structure

• Checker packaging

• assert, assume, cover

• Specification of behavior;
desired or undesired

• How Boolean events
are related over time

• True or falseBoolean ExpressionsBoolean Expressions

Sequences
(Sequential Expressions)

Sequences
(Sequential Expressions)

PropertiesProperties

Directives
(assert, cover)

Directives
(assert, cover)

Assertion
Units

Assertion
Units

H Foster, EE 382M, Verification of Digital Systems, Spring 201867

HF, UT Austin, Feb 202067

© Mentor Graphics Corporation

SVA Checker

Source: Dmitry Korchemny, “SystemVerilog Assertions for Formal Verification,” HVC2013

H Foster, EE 382M, Verification of Digital Systems, Spring 201868

HF, UT Austin, Feb 202068

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201918

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Binding Checkers

Source: Dmitry Korchemny, “SystemVerilog Assertions for Formal Verification,” HVC2013

H Foster, EE 382M, Verification of Digital Systems, Spring 201869

HF, UT Austin, Feb 202069

© Mentor Graphics Corporation

EXERCISES

© Mentor Graphics Corporation

Ex.1: Simple Shift Buffer Example

 After reset, the input d_in should never be unknown.

HF, UT Austin, Feb 202071

© Mentor Graphics Corporation

Ex.1: Signal is Valid After Reset

 After reset, the input d_in should never be unknown.

a_d_in_never_x: assert property (@(posedge clk) disable iff (reset)

(d_in !== 1’bx));

HF, UT Austin, Feb 202072

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201919

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Ex.2: One-Cold State Machine

 After reset, state[7:0] must have only a single bit low.

state: 11101111, 1011111, 0111111, 11111110, …

HF, UT Austin, Feb 202073

© Mentor Graphics Corporation

Ex.2: One-Cold FSM

 After reset, state[7:0] must have only a single bit low.

state: 11101111, 1011111, 0111111, 11111110, …

a_one_cold_fsm: assert property (@(posedge clk) disable iff (reset)

$onehot(~state));

HF, UT Austin, Feb 202074

© Mentor Graphics Corporation

Ex.3: Simple Handshaking Protocol

 Whenever start is high, then start must be low in the next
cycle and remain low until after the next strictly subsequent
cycle in which complete is high.

 complete may not be high unless start was high in a
preceding cycle and complete was not high in any of the
intervening cycles.

HF, UT Austin, Feb 202075

© Mentor Graphics Corporation

Ex.3: Simple Handshaking Protocol

 Whenever start is high, then start must be low in the next
cycle and remain low until after the next strictly subsequent
cycle in which complete is high.

 complete may not be high unless start was high in a
preceding cycle and complete was not high in any of the
intervening cycles.

a_no_start: assert property (@(posedge clk) disable iff (reset)

start |=> !start throughout complete[->1]

);

a_no_complete: assert property (@(posedge clk) disable iff (reset)

complete |=> !complete throughout start[->1]

);

HF, UT Austin, Feb 202076

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201920

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Ex.4 Stack (LIFO)

HF, UT Austin, Feb 202077

 A LIFO contains the following controls:
— put : add data to LIFO
— get : remove data from LIFO
— cnt counter that points to the next available

location in the LIFO (4’b1000 represents full)

 It is not possible to overflow the LIFO

 It is not possible to underflow the LIFO

7

6

5

4

3

2

1

0

cnt

© Mentor Graphics Corporation

Ex.4 Stack (LIFO)

HF, UT Austin, Feb 202078

 A LIFO contains the following controls:
— put : add data to LIFO
— get : remove data from LIFO
— cnt counter that points to the next available

location in the LIFO (4’b1000 represents full)

a_no_overflow: assert property

(@(posedge clk) disable iff (reset)

!(cnt == 4’b1000 & put & !get)

);

7

6

5

4

3

2

1

0

cnt

© Mentor Graphics Corporation

Ex.4 Stack (LIFO)

HF, UT Austin, Feb 202079

 A LIFO contains the following controls:
— put : add data to LIFO
— get : remove data from LIFO
— cnt counter that points to the next available

location in the LIFO (4’b1000 represents full)

a_no_underflow: assert property

(@(posedge clk) disable iff (reset)

!(cnt == 4’b0000 & !put & get)

);

7

6

5

4

3

2

1

0

cnt

© Mentor Graphics Corporation

SUMMARY

Introduction to SystemVerilog Assertions (SVA)

HF, UT Austin, Feb 201921

© Mentor Graphics Corporation

© Mentor Graphics Corporation

Lecture Recap

HF, UT Austin, Feb 202081

In this lecture, I discussed. . .

 Discussed the structure of the SVA language

 Discussed how to construct sequence

 Discussed how to construct properties

 Demonstrate SVA on real examples

 Discussed Checkers and Bind

 Exercises

 Summary

H Foster, EE 382M, Verification of Digital Systems, Spring 201881 © Mentor Graphics Corporation

More Info on Industry Verification Trends

HF, UT Austin, Feb 202082

 http://go.mentor.com/55d6T

© Mentor Graphics Corporation

www.mentor.com

