Introduction to SystemVerilog Assertions (SVA)

Lecture Overview

Introduction to

In this lecture, you will. . .

SyStemver“og L the struct f the SVA |
- m [earn the structure o e anguage
Assertions (SVA) 9tas

m Learn how to construct sequence

Harry D. Foster
Chief Scientist Verification

Learn how to construct properties

IC Verification Solutions Division Apply SVA on real examples

Exercises

February 2020

Summary

© Mentor Graphics Corporaton Menlor

2 HE UT Austi Feb 2020

SystemVerilog Assertions

m SVA is based on linear temporal logic (LTL) built over
sublanguages of regular expressions.

LINEAR FORMALISM m Most engineers will find SVA sufficient to express most

common assertions required for hardware design.

Brief Review of LTL and Introduction of Regular Expressions

© Mentor Graphics Corporaton Mentor
4 UT Austin, Feb 2020

© Mentor Graphics Corporation Menlar«

1 HF, UT Austin, Feb 2019 A Siemens Business



Introduction to SystemVerilog Assertions (SVA)

What We can Express in LTL

What We can Express in LTL

= All Boolean logic propositions - p

“Process 2 is in the critical section”

= X p —p holds in the next state.

“Process 2 will be in the critical section in the next state”

Xp OO0 -0O

¢ P Menlor
5 UT Austin_Feb 2020 z

= F p — sometimes (i.e., eventually) p holds.

“eventually process 2 will enter the critical section”

Fp OO-0O-0O@-0O—

- G p —always (i.e., globally) p holds.
“process 1 and 2 are always mutually exclusive”

Gp @@

© Mentor Graphics Corporaton Menlor

6 _HEUT Austin Feb 2020

What We can Express in LTL

What We can Express in LTL

= [pU g] - "gholds now or sometime in the future
and p holds from now until g holds” (strong)

pUg @—‘O—~

m [pW g] - "pholds from now until g holds” (weak)

pW g (—(p—(p—(—(—(—

© Mentor Graphics Corporaton Menlor

7___HE UT Austin Feb 2020

m Weak operators — X, G, W
Used to express safety properties,
i.e. "something bad never happens”

= Strong operators — F, U
Used to express liveness properties,
i.e. "something good eventually happens”

Safety properties put no obligation on the future, liveness properties do!

© Mentor Graphics Corporaton Menlor

8 UT Austin, Feb 2020

© Mentor Graphics Corporation

Menlor

A Siemens Business

HF, UT Austin, Feb 2019



Introduction to SystemVerilog Assertions (SVA)

What We can Express in LTL

What We can Express in LTL

m LTL formulas can be combined using the —, A, v, =
Iogic connectors (negation, conjunction, disjunction, implication)

For example....

G ( request— F grant)

@B

© Mentor Graphics Corporaton Menlor
9 UT Austin_Feb 2020 z

m LTL formulas can be combined using the —, A, v, —
Iogic connectors (negation, conjunction, disjunction, implication)

For example....

G ( request— F grant)

Temporal operators can be combined too...
FG p

O~O—-O—-@ @@

© Mentor Graphics Corporaton Menlor
10__HE,UT Austin Feb 2020 )

What We Cannot Express in LTL

Regular Expressions

m Counting example:
“p is asserted in every even cycle”
All the following traces satisfy this property
'p,P,'P/P;

P.P; PP-...
P,p,!P,P,P,p...

m No LTL formula can express this property

© Mentor Graphics Corporaton Menlor
11 HE UT Austin Feb 2020

m Regular expressions describe sets of finite words
w=al,az,...,an.
—al,a2,... are letters in an alphabet.

m Regular expressions can express counting modulo n.

m The * operator — enables counting modulo n.
— (ab)* - a regular expression describing the set of words:
= € - (the empty word)
- ab
- abab
= ababab.....

© Mentor Graphics Corporaton Menlor
12 HE UT Austin, Feb 2020

© Mentor Graphics Corporation

Menlor

A Siemens Business

HF, UT Austin, Feb 2019



Introduction to SystemVerilog Assertions (SVA)

Regular Expressions What Regular Expressions Cannot Express

m For reactive systems a letter in the alphabet is a Boolean

expression
mThe behavior, “eventually p holds forever”

m The set of computations satisfying “p /s asserted in every even cannot be expressed by a reqular expression
cycle”is described by the SVA regular expression P Y 9 P

(1°b1 ## p)[*]
mIt can be expressed in LTLas: FG p

m A regular expression by itself is not a property

—Later: building properties from regular expressions in SVA

© Mentor Graphics Corporaton Menlor © Mentor Graphics Corporaton Mentor
- L4__HEUT Austin Feb 2020 z

13__HE UT Austin Feb 2020

Linear Formalisms

m LTL and regular expressions are /inear formalisms
— Linear formalisms can be used to express mainly properties that are
intended to hold on all computations (i.e., executions of a design

model).

— Most properties required for the specification of digital designs can SVA LANG UAGE STRUCTU RE

be expressed using linear formalism

m What cannot express in linear formalisms:
“There exists a computation in which eventually p holds forever

— LTL implicitly quantifies universally over paths

”

© Mentor Graphics Corporaton Menlor

15 __HE UT Austin Feb 2020

© Mentor Graphics Corporation Menlar«

A Siemens Business

HF, UT Austin, Feb 2019



Introduction to SystemVerilog Assertions (SVA)

SVA Language Structure SVA Language Structure

AR\ . Checker packaging assert property (@(posedge clk) disable iff (~rst_n)
Units I(grant0 & grantl));
Directives

(assert, cover) + assert, assume, cover

Properties « Specification of behavior;
desired or undesired

Sequences Directives f
(Sequentigl Expressions) « How Boolean events C LD rst.n
are related over time CAE)D
Sequences I(grant0 & grant1)

n wh ’
Boolean Expressions o True or false (Sequential Expressions) error

Boolean Expressions

Note: rst_n is an active low reset in this example

© Mentor Graphics Corporaton Menlor © Mentor Graphics Corporaton Mentor

18 UT Austin Feb 2020

17__HE UT Austin Feb 2020

SVA Language Structure

m SVA provides a mechanism to asynchronously
disable a property during a reset using the SVA
disable iff clause

MAPPING SVA INTO LTL

assert property (@(posedge clk) disable iff (~rst_n)
I(grant0 & grantl));

Note: rst_n is an active low reset in this example

© Mentor Graphics Corporaton Menlor

19 HE UT Austin Feb 2020

© Mentor Graphics Corporation Menlar«

HF, UT Austin, Feb 2019 A Siemens Business



Introduction to SystemVerilog Assertions (SVA)

LTL Operators in SVA

LTL Operators in SVA

= All Boolean logic propositions - p

“Process 2 is in the critical section”

= LTL: X p — p holds in the next state.
= SVA: nexttime [n] p — p holds in the next state.

“Process 2 will be in the critical section in the next state”

nexttime p () —(p— — (O )—( )—(—

© Mentor Graphics Corporaton Menlor

20__HE UT pustin Feb 2020

m LTL: F p — eventually p holds.
m SVA: eventually p — eventually p holds (weak).

“eventually process 2 will enter the critical section”

eventually p (—( )~ )~ —(p—()—

Note: s_eventually is a strong version of this operator in SVA.

© Mentor Graphics Corporaton Menlor

22__HE UT Austin Feb 2020

LTL Operators in SVA

LTL Operators in SVA

- LTL: G p — always (i.e., globally) p holds.
- SVA: always p — always (i.e., globally) p holds.

“process 1 and 2 are always mutually exclusive”

always p (p—(D—(—(@ (o

Note: there is an implicit always when asserting a property.
assert property(p);

© Mentor Graphics Corporaton Menlor

23 HF, UT Austin, Feb 2020

m LTL: [pU g] —“gholds now or sometime in the future and
p holds from now until g holds” (strong)

m SVA: ps_until g

ps_until g (p—(p—(p—(p—~(9—O~
m LTL: [pW g] —“p holds from now until g holds” (weak)
m SVA: puntil g

puntilg —(p—(p—(—~o—(—

© Mentor Graphics Corporaton Menlor

24__HF,UT Austin Feb 2020

© Mentor Graphics Corporation Menlar

A Siemens Business

HF, UT Austin, Feb 2019



Introduction to SystemVerilog Assertions (SVA)

SVA with LTL Operator Example

assert property (@posedge clk disable iff (reset)
$rose(req) implies !done s_until grnt);

Menlor

25__HE UT pustin Feb 2020

SVA Language Structure

SVA Language Structure

Sequences

= So far we have examined LTL-based assertions

fAssertior
[

Directives
(assert, cover)

m We now we introduce SVA sequences
— Multiple Boolean expressions are evaluated
in a linear order of increasing time

Seq
« (Sequemial:::sinns) ‘

Boolean Expressions

Mentor

27__HF, UT Austin, Feb 2020

= Sequence
— Temporal delay ##n with an integer n.

start ##1 transfer

acl 1]
start I_I

transfer |

HE, UT Austin, Feb 2020

Mentor

HF, UT Austin, Feb 2019

© Mentor Graphics Corporation

Menlor

A Siemens Business



Introduction to SystemVerilog Assertions (SVA)

SVA Language Structure

SVA Language Structure

= Sequence
— Temporal delay ##n with an integer n.

start ##2 transfer

acl 11T
[ ]

start

transfer

= Sequence
— Temporal delay ##/m.:njwith range [m:n]

start ##[0:2] transfer

clk | |

start

I
o
B

transfer

. e e——— Mentor R e —— Mertor
SVA Language Structure SVA Language Structure
¢ Sequence ¢ Sequence
 Consecutive repetition [*m] or range [*m:n] » Consecutive repetition [*m] or range [*m:n]
- Use $ to represent infinity - Use $ to represent infinity
start[*2] ##1 transfer start[*1:2] ##1 transfer
a |11 a |11
start start |
transfer | transfer |
31 HF, UT Austin, Feb 2020 o e o Menfor 32 HF, UT Austin, Feb 2020 o e o Menfor

HF, UT Austin, Feb 2019

© Mentor Graphics Corporation

Menlor

A Siemens Business



Introduction to SystemVerilog Assertions (SVA)

SVA Language Structure

SVA Language Structure

¢ Sequence
» Consecutive repetition [*m] or range [*m:n]
- Use $ to represent infinity

start[*1:2] ##1 transfer

a |11 1]
start I |
transfer I |

© Mentor Graphics Corporaton Menlor

33__HE UT Austin, Feb 2020

¢ Sequence
» Consecutive repetition [*m] or range [*m:n]
- Use $ to represent infinity

start[*1:2] ##1 transfer

a |11
start I
transfer I |

Note: This also matches the sequence specification!!!!

© Mentor Graphics Corporaton Menlor

34__HE UT Austin, Feb 2020

SVA Language Structure

SVA Language Structure

e Sequence
» Non-consecutive repetition [=m] or [=m:n]

start[=2] ##1 transfer

a || 1]
start | I
[*] represents
zero to infinity
transfer

start[=2] < Istart[*] ##1 start ##1 Istart[*] ##1 start ##1 Istart[*]

© Mentor Graphics Corporaton Menlor

35__HF UT Austin Feb 2020

e Sequence
« Goto non-consecutive repetition [->m] or [->m:n]

start[->2] ##1 transfer

a | |11

[*] represents

Zzero to infinity
transfer

start[->2] P Istart[*] ##1 start ##1 Istart[*] ##1 start

© Mentor Graphics Corporaton Menlor

36__HF,UT Austin Feb 2020

© Mentor Graphics Corporation Menlar«

HF, UT Austin, Feb 2019 A Siemens Business



Introduction to SystemVerilog Assertions (SVA)

SVA Language Structure SVA Language Structure
m Properties

m Properties
— Overlapping sequence implication operator |->

ready ##1 start |-> go ##1 done

Directives
(assert, cover) | I | | I

clk

ready| L—
N )

start
go

.
done —|_|—

assertion property ( @(posedge clk) ready ##1 start [-> go ##1 done );

Properties

Sequences
(Sequential Expressions)

Boolean Expressions

© Mentor Graphics Corporaton Menlor

© Mentor Graphics Corporaton Menlor
z 38__HE_UT Austin Feb 2020

37_HEUT fustin Feb 2020

SVA Language Structure Fair Arbitration Scheme Example

m Asserting that an arbiter is fair
— To be fair, a pending request for a particular client should
never have to wait more than two arbitration cycles
— Otherwise, the arbiter unfairly issued multiple grants to a

ready ##1 start |=> go ##1 done different dient

ac |11 11

ready I_l—
start —J L

req[0] gnt[0]
g | 1 —>
done — | L rea[1] gntf1]

NOTE: A |=>B isthesameas A |-> ##1B

m Properties
— Non-overlapping sequence implication operator |=>

© Mentor Graphics Corporaton Mentor © Mentor Graphics Corporaton Menlor

40__HF,UT Austin, Feb 2020

39 __HF UT Austin Feb 2020

© Mentor Graphics Corporation Menlar«

A Siemens Business

HF, UT Austin, Feb 2019



11

Introduction to SystemVerilog Assertions (SVA)

Fair Arbitration Scheme Example

Fair Arbitration Scheme Example

a_o0_fair.
assert property (@(posedge clk) disable iff (reset)
$rose(req[0]) |-> not (Ignt[0] throughout (gnt[1])[->2]));

7 O I B

req[0] —,_\—
req[0]. gnt[0]
req gnt[1]| gnito] ,—I ,—I
gnt[1]

© Mentor Graphics Corporaton Menlor
41__HE UT ustin Feb 2020 z

a_o0_fair.
assert property (@(posedge clk) disable iff (reset)
req[0] |-> not (!gnt[0] throughout (gnt[1])[->2]));

an || I If |

req[0] —,
req[0]. gnt[0]
req gnt[1]| gneto]
oy — LT 1

© Mentor Graphics Corporaton Menlor
42__HE_UT Austin Feb 2020 z

Fair Arbitration Scheme Example

Fair Arbitration Scheme Example

a_0_fair.
assert property (@(posedge clk) disable iff (reset)
$rose(req[0]) |-> not (!gnt[0] throughout (gnt[1])[->2]));

clk | |

req[0] J
reg[0]. gnt[0]
req gnt[1]]| il
gnt[1]

© Mentor Graphics Corporaton Menlor
43__HF, UT Austin, Feb 2020

a_1_fair
assert property (@(posedge clk) disable iff (reset)
$rose(req[1] |-> not (!gnt[1] throughout (gnt[0])[->2]));

% T R I
req[1] J—\—
_ LT

req[0]. gnt[0]
rea1]. antg1j| 7"
gntf1]

© Mentor Graphics Corporaton Menlor
44__HFUT Austin Feb 2020

HF, UT Austin, Feb 2019

© Mentor Graphics Corporation

Menlor

A Siemens Business



12

Introduction to SystemVerilog Assertions (SVA)

SVA Language Structure

SVA Language Structure

= Named sequences and properties
— To facilitate reuse, properties and sequences can be
declared and then referenced by name
— Can be declared with or without parameters

sequence s_op_retry;
(req ##1 retry);
endsequence

sequence s_cache_fill(req, done, fill);
(req ##1 done [=1] ##1 fill);
endsequence

© Hentor Graphics Corporaton Menlor

45 __HE UT Austin Feb 2020

= Named properties and sequences

sequence s _op._retry;
(req ##1 retry);
endsequence

sequence s _cache_filfrdy, done, fill);
(rdy ##1 done [=1] ##1 fill);
endsequence
assert property ( @(posedge clk) disable iff (reset)
s op_retry|=> s_cache_fill (my_rdy,my_done,my_fill));

© Hentor Graphics Corporaton Menlor

46 __HE_UT Austin Feb 2020

SVA Language Structure

SVA Language Structure

= Named properties and sequences

property p_en_mutex(en0, enl);
@(posedge clk) disable iff (reset)
~(en0 & enl);

endproperty

assert property (p_en_mutex(bus_en0, bus_enl));

© Mentor Graphics Corporaton Menlor

47__HF,UT Austin Feb 2020

m Action blocks
— An SVA action block specifies the actions that are taken upon
success or failure of the assertion
— The action block, if specified, is executed immediately after the
evaluation of the assert expression

assert property ( @(posedge clk) disable iff (reset)
I(grant0 & grantl) )
else begin // action block fail statement
$error("Mutex violation with grants.”);
end

© Mentor Graphics Corporaton Menlor

48__HF,UT Austin, Feb 2020

HF, UT Austin, Feb 2019

© Mentor Graphics Corporation

Menlor

A Siemens Business



13

Introduction to SystemVerilog Assertions (SVA)

SVA Language Structure

The need for $rose system function

m System functions

« $rose( expression )

- $fell( expression )

- $stable( expression )

- $past( expression [, number_of_ticks] )

m You must be precise when specifying!
assertion property ( @(posedge clk) start [-> ##2 Transfer);

a | |1

start

transfer

s e T v Fob 2020 rme— Mentor 50T e reb 2020 [ Menior
Eliminates multiple matches SVA Language Structure
= You must be precise when specifying! m System functions
assertion property ( @(posedge clk) $rose(start) [-> ##2 Transfer); . $oneho t (< expression >)
- Returns true if only one bit of the expression is high
| | | » $onehot0 (<expression>)
clk - Returns true if at most one bit of the expression is high
tart . .
sta « $isunknown (<expression>)
transfer | - Returns true if any bit of the expression is X or Z
- This is equivalent to ~<expression> === 'bx
$rose(start) is a short cut for the sequence Istart ##1 start
51 HF, UT Austin, Feb 2020 @ Hestor Grshics Corporaion Menlor T © Mentor Graphics Corporation Menlor

HF, UT Austin, Feb 2019

© Mentor Graphics Corporation

Menlor

A Siemens Business



14

Introduction to SystemVerilog Assertions (SVA)

Introduction to SVA

Introduction to SVA

m Some assertions require additional modeling code
— In addition to the assertion constructs

LIFO

ck ——|

rst_n —»

data_out
full

empty

—

=

// Assert that the LIFO controller cannot overflow nor underflow

© Mentor Graphics Corporaton Menlor

53__HE UT fustin Feb 2020

50

// assertion modeling code — not part of the design
“ifdef ASSERT_ON Introduction to SVA

int cnt = 0; . s
always @(posedge clk)
if (Irst_n) o
cnt <= 0;
else
cnt <= cnt + put — get;

assertions require additional modeiing code

// assert no LIFO overflow - e

assert property (@posedge clk disable iff (~rst_n)
I((cnt + put — get) > "DEPTH));
// assert no LIFO underflow
assert property (@posedge clk disable iff (rst_n) !((cnt + put) < get));
“endif

Note: rst_n is an active low reset in this example

© Mentor Graphics Corporaton
HE_UT Austin, Feb 2020

Mentor

SVA Does and Don'ts

m Never asserta sequence!
assert property (@posedge clk) (req ##1 grnt ##1 done));
— This says every clock we see reg, followed by gnt, followed by done
- The correct way to do this is with an implication operator:
assert property (@posedge clk) (req | => grnt ##1 done));

m It's ok to covera sequence

= It's ok to assert a forbidden sequence using 770t
assert property (@posedge clk) not (req ##1 done ##1 grant));

© Mentor Graphics Corporaton Menlor

55 __HF, UT Austin, Feb 2020

HF, UT Austin, Feb 2019

BUS-BASED DESIGN

EXAMPLE

© Mentor Graphics Corporation

Menlor

A Siemens Business



Introduction to SystemVerilog Assertions (SVA)

Bus-Based Design Example Nonpipelined Bus Interface
clk
rst_n
sel[0]
en
Bf/dge Control | o —— |
cPU1 CPU2 I Datapath’ UART 1/F addr 1/F
LIFO -
| Y Bus B write
Arbiter 1/F 1/F
[ —1 rdata
Datapath
i . data
oo [coneried |- LiFo J Timer Master " Slave 0
Note: rst_n is an active low reset in this example
T Austin Feb 2020 © Mentar Grophics Corporetion Menior I © Mentor Graphics Corparation Mentor
Non-Burst Write Transaction Non-Burst Read Transaction
0 1 2 3 4 0 1 2 3 4
addr I Addr 1 addr X Addr 1
write write \
Ssellol ™ | . ﬁel oy ] A
< ) | \ | /A
en en
AN 2 | \\\777// / |
wdata ¥ Data 1 rdata | pata 1 [
BUS STATE | INACTIVE | START | . ACTIVE | INACTIVE BUS STATE | INACTIVE | START | . ACTIVE | INACTIVE
59 HF, UT Austin, Feb 2020 Menlor 60 HF, UT Austin, Feb 2020 Menlor

HF, UT Austin, Feb 2019

© Mentor Graphics Corporation

Menlor

A Siemens Business



Introduction to SystemVerilog Assertions (SVA)

Conceptual Bus States

Interface Requirements

INACTIVE no transfer

self0] == 0
o

self0] == 1
en==0

setup

© Mentor Graphics Corporaton

Mentor

5L__HE,UT Austin Feb 2020

Property Name Description

Bus legal treansitions

Initial state after reset is INACTIVE
INACTIVE is followed by INACTIVE or START
START is followed by ACTIVE

ACTIVE is followed by INACTIVE or START

p_state_reset_inactive

p_valid_inactive_transition

p_valid_start_transition

p_valid_active_transition

p_no_error_state Bus state must be valid: !(se==0 & en==1) \

Bus stable signals

p_sel_stable Slave select signals remain stable from START to ACTIVE

Address remains stable from START to ACTIVE

p_addr_stable

p_write_stable Control remains stable from START to ACTIVE

p_wdata_stable Data remains stable from START to ACTIVE

© Mentor Graphics Corporaton

Mentor

£2__HE_UT Austin Feb 2020

Use Modeling Code to Simplify Coding

SVA Examples

“ifdef ASSERTION_ON
//Map bus control values to conceptual states
if (~rst_n) begin

bus_reset =1

bus_inactive

bus_start
bus_active —
bus_error G
end lm
else begin
bus_reset ; ot START,
bus_inactive = ~sel & ~en; =
bus_start = sel & ~en; lm, hid
bus_active = sel & en; —
bus_error = ~sel & en; G
end
*endif

© Mentor Graphics Corporaton

Mentor

63__HF, UT Austin, Feb 2020

property p_valid_inactive_transition;
@(posedge clk) disable iff (bus_reset)

( bus_inactive) |=>
((bus_inactive) || (bus_start));

endproperty
a_valid_inactive_transition:
assert property (p_valid_inactive_transition);

property p_valid_start_transition;
@(posedge clk) disable iff (bus_reset)
(bus_start) |=> (bus_active);
endproperty
a_valid_start_transition:
assert property (p_valid_start_transition);

e -
setp
ranster

© Mentor Graphics Corporaton

Mentor

64__HF,UT Austin, Feb 2020

© Mentor Graphics Corporation

Menlor

A Siemens Business

HF, UT Austin, Feb 2019



Introduction to SystemVerilog Assertions (SVA)

Instantiating Assertions within Modules

module bus_controller (...);

always (@posedge clk) begin

end

CHECKER PACKAGING

always (@posedge clk) begin

Implicit always
end

assert prperty (p_valid_start_transition);

endmodule
I Y ——— Menior
SVA Language Structure SVA Checker
checker seq_protocol (start, complete, dataln, dataOut, event clk);
Checker packaging i i

default clocking @clk; endclocking
var type(dataln) data;

Directives ) . - Al e

(assert, cover) « assert, assume, cover property match (first, last); first |=> ffirst until_with last; endproperty

always_ff @clk if (start) data <= dataln;

Properties * Specification of behavior;

desired or undesired a_data_check: assert property (complete |-> dataOut == data);

a_no_start: assert property (maich(start, complete));

Sequences a_no_complete: assert property (match(complete, start));

(Sequential Expressions) « How Boolean events i
are related over time initial
a_initial_no_complete: assert property (lcomplete throughout start[->1]);
Bool E q endchecker : seq_protocol
oolean Expressions o True or false
Dmitry % 7 7 for Formal jfication,” HVC2013
T Py —— Menlor P Y e——— Menlor

© Mentor Graphics Corporation Menlar«

HF, UT Austin, Feb 2019 A Siemens Business



18

Introduction to SystemVerilog Assertions (SVA)

Binding Checkers

e
fogic clock, snda, sndb, Snde, fova, fovb, fovc; ‘module trans #(DEL=1) (input logic clock, in, output logic out);
trans ta (clock, snda, rcva); HOEL=beguih
Yo e e e
trans #{2) tc (clock, snde, rove); else begin: b
SRR ek
e

— 72 g coc e

Top i1 DEL ;e il B
snaect Rl B i s e

end
checker request_granted (feg, gnt, , ..); end
‘endmodule : trans.
‘endchecker : request_granted

bind trans eventually_granted check in2out(in, out, posedge clock);

bind trans: ta, tb request_granted delay1(in, out,, posedge clock);
bind trans: tc request_granted delay2(in, out, 2, posedge clock);

Dmitry Y ilog jons for Formal Verification,” HVC2013
- Menfor
Ex.1: Simple Shift Buffer Example Ex.1: Signal is Valid After Reset
m After reset, the input ¢ _/n should never be unknown. m After reset, the input ¢ _/n should never be unknown.
a_d_in_never_x: assert property (@(posedge clk) disable iff (reset)
(d_in == 1'bx));
© Mentor Graphics Corporation Mentor Mentor

71__HF,UT Austin Feb 2020

72__HF,UT Austin Feb 2020

HF, UT Austin, Feb 2019

© Mentor Graphics Corporation

Menlor

A Siemens Business



19

Introduction to SystemVerilog Assertions (SVA)

Ex.2: One-Cold State Machine

Ex.2: One-Cold FSM

m After reset, state/7:0] must have only a single bit low.

state: 11101111, 1011111,0111111, 11111110, ...

© Mentor Graphics Corporaton Menlor
73__HE UT Austin, Feb 2020 )

m After reset, state/7:0] must have only a single bit low.

state: 11101111, 1011111,0111111, 11111110, ...

a_one_cold_fsm. assert property (@(posedge clk) disable iff (reset)
$onehot(~state));

© Mentor Graphics Corporaton Menlor
74__HE,UT Austin, Feb 2020 )

Ex.3: Simple Handshaking Protocol

Ex.3: Simple Handshaking Protocol

m Whenever startis high, then start must be low in the next
cycle and remain low until after the next strictly subsequent
cycle in which completeis high.

m complete may not be high unless start was high in a
preceding cycle and complete was not high in any of the
intervening cycles.

© Mentor Graphics Corporaton Mentor
75 __HF,UT Austin Feb 2020

m Whenever startis high, then start must be low in the next
cycle and remain low until after the next strictly subsequent
cycle in which completeis high.

m complete may not be high unless start was high in a

preceding cycle and complete was not high in any of the
intervening cycles.

a_no_start: assert property (@(posedge clk) disable iff (reset)
start |=> !Istart throughout complete[->1]

)i

a_no_complete: assert property (@(posedge clk) disable iff (reset)
complete |=> !complete throughout start[->1]

)i

© Mentor Graphics Corporaton Mentor
76 __HF,UT Austin, Feb 2020

HF, UT Austin, Feb 2019

© Mentor Graphics Corporation

Menlor

A Siemens Business



Introduction to SystemVerilog Assertions (SVA)

Ex.4 Stack (LIFO)

Ex.4 Stack (LIFO)

m A LIFO contains the following controls:
— put: add data to LIFO
— get : remove data from LIFO
— cnt counter that points to the next available
location in the LIFO (4'b1000 represents full)

m It is not possible to overflow the LIFO

7
6
5
4
3
2
1
0

m It is not possible to underflow the LIFO

© Mentor Graphics Corporaton Menlor

77__HE,UT Austin, Feb 2020

m A LIFO contains the following controls:
— put: add data to LIFO
— get : remove data from LIFO
— cnt counter that points to the next available

location in the LIFO (4'b1000 represents full) N ;
a_no_overflow: assert property = z
(@(posedge clk) disable iff (reset) - 3
I(cnt == 4'b1000 & put & !get) - P
) -
[

P——— Menror

78 __HE, UT Austin, Feb 2020

Ex.4 Stack (LIFO)

m A LIFO contains the following controls:
— put: add data to LIFO
— get : remove data from LIFO
— cnt counter that points to the next available
location in the LIFO (4'b1000 represents full)

a_no_underflow: assert property
(@(posedge clk) disable iff (reset)
I(cnt == 4'b0000 & !put & get)
)i

O = N W A U1

© Mentor Graphics Corporaton Menlor
79 HF,UT Austin Feb 2020 -

SUMMARY

© Mentor Graphics Corporation

Menlor

A Siemens Business

HF, UT Austin, Feb 2019



Introduction to SystemVerilog Assertions (SVA)

Lecture Recap More Info on Industry Verification Trends
In this lecture, I discussed. . . m http://go.mentor.com/55d6T

m Discussed the structure of the SVA language

m Discussed how to construct sequence

Discussed how to construct properties

Demonstrate SVA on real examples

= Discussed Checkers and Bind F
e
m Exercises L

= Summary

© Mentor Graphics Corporaton Menlor © Mentor Graphics Corporaton Menlor

B1__HE UT Austin, Feb 2020 52__HE UT Austin, Feb 2020

Menlor

A Siemens Business

www.mentor.com

© Mentor Graphics Corporation Menlar«

21 HF, uT AUStin, Feb 2019 A Siemens Business



