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Introduction to Wires on a Chip

Intel Damascene copper

Most of chip is wires (interconnect) | it

@ Most of the chip is covered by (T = i S
wires, many layers of wires e
@ Transistors: little things under g i
wires
@ Wires as important as transistors
o Affect
@ Speed
o Power
o Noise

o Alternating layers usually run
orthogonally
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o Pitch=w + s
@ Aspect Ratio, AR = t/w
o Old processes had AR << 1
o Modern processes have AR = 2 to pack in many skinny wires
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Layer Stack

@ Number of metal layers has been increasing

e AMI 0.6 mm process has 3 metal layers
o Modern processes use 6-10+ metal layers

o EXampIe: Intel 180 nm Layer T(nm) W(nm) S (nm) AR
process 6 1720 80 80 20 D |:|
e M1: thin, narrow (< 3)) 1000
o High density cells 5 1600 80 800 20 |:| |:|
o M2-M4: thicker 1000
. 4 1080 540 540 20 D D
o For longer wires 0
) 3 ™ 2 & 22 oo
o M5-M6: thickest 70
2 700 320 320 22 II
s For Vpp, GND, CLK B .
@ :
Substrate
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Wire Resistance

p = resistivity (2 *m)

l l
tw w
Rp = sheet resistance (2/0)
e [ is a dimensionless unit
Count number of squares

o R = Rox* (# of squares)

047

(]

1 RectangularBlock 4Rectangular Blocks
R=R( R=Rg(2L/2W) Q
=R (LUW) Q
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Choice of Metals

@ Until the 180 nm generation, most wires were aluminum

@ Modern processes often use copper

o Cu atoms diffuse into silicon and damage FETs
e Must be surrounded by a diffusion barrier

Metal Bulk Resistivity (1€ * cm)
Silver (Ag) 1.6
Copper (Cu) 1.7
Gold (Au) o)
Aluminum (Al) 2.8
Tungsten (W) 5.3
Molybdenum (Mo) | 5.3
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Sheet Resistance

Typical sheet resistances in 180 nm process

Layer Sheet Resistance (2/0J)
Diffusion (silicided) 3-10

Diffusion (no silicide) | 50-200

Polysilicon (silicided) 3-10

Polysilicon (no silicide) | 50-400

Metall 0.08
Metal2 0.05
Metal3 0.05
Metal4 0.03
Metal5 0.02
Metal6 0.02
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Contact Resistance

o Contacts and vias also have 2-20 ) resistance
@ Use many contacts for lower R

e Many small contacts for current crowding around periphery
@ Multiple contacts also help improve the yield (failure or high

resistance of a contact will have only a small effect on the
overall resistivity)
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Wire Capacitance

@ Wire has capacitance per unit length
o To neighbors
o To layers above and below

° Ctotal = Ctop + Cbot + 2Cadj

s w
<>
layer n+1
1
h, v top
A
t v 4 F layer n
A C
h1 Cbot—r ad
layer n-1
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Capacitance Trends

o Parallel plate equation: C =€A/d
o Wires are not parallel plates, but obey trends
o Increasing area (W, t) increases capacitance
o Increasing distance (s, h) decreases capacitance
@ Dielectric Constant
o €= keg
® ¢ =885 x 10! F/cm
e k= 3.9 for Si02
@ Processes are starting to use low-k dielectrics

o k ~ 3 (or less) as dielectrics use air pockets
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Ciop/Chot Trends

/*/ff

o W >> H = Parallel Plate Model
o C=k- €0 - W L
o W<H-= Frlnglng Model
o C alog(W)
@ For Deep Sub-Micron (DSM) (or nanoscale) processes,
fringing model applies
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Cagj Trends

o T >> W = Parallel Plate Model
o C=k- €0 * LVVL
o T'< W = Fringing Model

o C alog(T)

@ For DSM processes, parallel plate model applies
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M2 Capacitance Data

o Typical wires have ~ 0.2 fF/um
o Compare to 2 fF/um for gate capacitance

400
350
300 M1, M3 planes
——5=320
250 —— s =480
— —A— =640
§ —@—s5=®
T 200
S% Isolated
S 150 ‘a5 =320
- [}---5=480
----A----8 =640
100 0
o9 c@--.-8= 0
oo
o
50
0 T T T !
0 500 1000 1500 2000

w (nm)
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Diffusion and Polysilicon

o Diffusion capacitance is very high (about 2 fF/um)
o Comparable to gate capacitance
o Diffusion also has high resistance
o Avoid using diffusion runners for wires!

@ Polysilicon has lower C but high R

o Use for transistor gates
o Occasionally for very short wires between gates
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Lumped Element Models

@ Wires are a distributed system
o Approximate with lumped element models

N segments
R

« RN RN ORNRN
Ec $C/N $C/N EC/N $C/N
R R R/2 R/2

e o

L-model [ I-model T-model

o 3-segment m-model accurate to 3% in simulation
@ L-model needs 100 segments for same accuracy!

@ Use single segment m-model for Elmore delay
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When to use Lumped versus Distributed Models

o First find the total R and total C for the wire.
o If RC > t, (or ty) of driver then use distributed (II or T)
model
o If RC < ¢, (or ty) of driver then use lumped (L) model
@ It is safe to use distributed model always, but this results in
more circuit elements and larger simulation times.

@ To find number of distributed elements to use

o Increase the number of elements, and stop when the error
between k and k + 1 elements is acceptably small.

o Distributed RC delay is about half that of lumped RC

@ This can be validated by using the ElImore model for the
distributed wire (see previous slide)

@ Rule of Thumb: for a distributed wire, propagation delay can
be estimated as ~ RC/2.
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@ Metal2 wire in 180 nm process

e 5 mm long
e 0.32 um wide

o Construct a 3-segment m-model

o Rp=005Q/0 = R=T81Q
® Upermicron = O.QfF/,um = (C=1pF

260Q 260 Q 260 Q
L L L L L L

$67fF167fF 167f@167fF $67fF167 fF
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Wire RC Delay

o Estimate the delay of a 10x inverter driving a 2x inverter at
the end of the 5mm wire from the previous example

o R =25 kQ * um for gates
e Unit inverter: 0.36 um nMQS, 0.72 um pMOS

7810
T N 1T
690 Q) $500 f@soo fF $4 fF
Driver Wire Load

@ t,g=11ns
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Crosstalk

@ A capacitor does not like to change its voltage instantaneously
@ A wire has high capacitance to its neighbor
o When the neighbor switches from 1—0 or 0—1, the wire tends
to switch too
o Called capacitive coupling or crosstalk
o Crosstalk effects

o Noise on nonswitching wires
o Increased delay on switching wires
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Crosstalk Delay

@ Assume layers above and below on average are quiet

e Second terminal of capacitor can be ignored
o Model as Cyng = Ciop + Chot

o Effective C,4; depends on behavior of neighbors
o Miller Effect

AHHB

c L CadjLC

gnd T T gnd
B AV Cesra) MCF
Constant Vbp | Cgna +Cagi |1
Switching with A 0 Cynd 0
Switching opposite A | 2Vpp | Cyng +2Cuq | 2
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Crosstalk Noise

@ Crosstalk causes noise on nonswitching wires
o If victim is floating:
e model as capacitive voltage divider

Codi
AVm‘ctim = mAVaggTessor
Aggressor
A Vaggressor
T Cadj
Victim

I and-v AI/\Y/ictim
%
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@ Usually victim is driven by a gate that fights noise
o Noise depends on relative resistances
o Victim driver is in linear region, aggressor in saturation
o If sizes are same, Ryggressor = 2 — 4 X Ryictim

aggressor Aggressor
AV g gnd-a
aggressor L
T Cadj
V|ctlm Victim

C:g nd-v Alzctim
QE xt

Cadj 1
and—v + Cadj 1+k

AV;Jictim = A‘/aggressm“

k— Taggressor Raggressor(cgnd—a + Cadj)

Tvictim Rvictim (andfv e Cadj)
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Coupling Waveforms

Simulated Coupling for Cy4j = Cuictim

Aggressor
18 1
15 1
12 1
Victim (undriven): 50%
09 o = — —
06 1 / . o
Victim (half size driver): 16%
/ Victim (equal size driver): 8%

03 1 Victim (double size driver): 4%

o LR e ———

0 200 400 600 800 1000 1200 1400 1800 2000
t(ps)
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Noise Implications

@ So what if we have noise?
@ If the noise is less than the noise margin, nothing happens
o Static CMOS logic will eventually settle to correct output
even if disturbed by large noise spikes
o But glitches cause extra delay
o Also cause extra power from false transitions
@ Dynamic logic never recovers from glitches

@ Memories and other sensitive circuits also can produce the
wrong answer
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Wire Engineering

Goal: achieve delay, area, power goals with acceptable noise

@ Degrees of
freedom

Width
Spacing
Layer
Shielding

vdd a, a,

ECE Department, University of Texas at Austin

gnd a,

Delay(ns):RC/2

WireSpacing
(nm)

Lecture 10. Interconnects in CMOS Technology

20 08
18
~ 07
16 - °
. a 7 06 —
12 © A g os A =
n 3
1.0 Iy g 04 x
08 = S 03
n £
06 x S 02
04 8 o1
02
0 0
500 1000 1500 20 0 500 1000 1500
Pitch (nm) Pitch (nm)
vdd vdd a, gnd 3@ vdd a, gnd by b, a, b,

2000
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@ R and C are proportional to [

o RC delay is proportional to [?
o Unacceptably great for long wires

o Break long wires into N shorter segments
o Drive each one with an inverter or buffer

Wire Length: |
T ¥ >

Driver Receiver

N Segments
' Segment '
1
I/N I/N W
N A4d
Driver Repeater Repeater Repeater Receiver
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Repeater Design

@ How many repeaters should we use?
@ How large should each one be?

o Equivalent Circuit
o Wire length [
o Wire Capacitance Cy, * [, Resistance R, * [

o Inverter width W (nMOS = W, pMOS = 2W)
o Gate Capacitance C'*W, Resistance R/W

R,/N
A
W i WL

;EC II2N ;gc II2N ;ECW
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Repeater Results

@ Write equation for Elmore Delay

o Differentiate with respect to W and N
e Set equal to 0, solve

1 [2RC
NV R,Cy,
t
2 (2+v2) VRC'R,C,
~ 60-80 ps/mm in 0.184 process
RCY,
W = ] 22w
R, C’
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Clock Distribution

clock

matched |
delays

High peak currents to
drive typical clock loads
(=~ 1000 pF)

dVv
Iea = U
peat = O
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H-Trees

o>
o>

o] o
o>

oo

1
v
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Matching Delays in Clock Distribution

Balance delays of paths

Match buffer and wire delays to minimize skew
Issues

o Load of latch (driven by clock) is data-dependent (capacitance
depends on source voltage)

o Process variations

o IR drops and temperature variations

@ Tools to support clock tree design
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Clocking in the Itanium Processor

o 0.18u technology
@ 1GHz core clock

@ 200 MHz system clk
@ Core clocking

260 mm?

1 primary driver
5 repeaters
157,000 clocked
latches

®© 6 o o

Source for the slides on Itanium: Intel/HP
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Clock Generation

Phase

Shifted

Clocks to Core &

Uncore Primary
Drivers
Systam clock +
System clock —
Ratio N Cora clock of frequancy
AVDD N times system frequency

’w .| ] > Clock qualifiers of frequency core/N
Matching routas PLL [=ync | Latch pipa -
2 to
FEB Gater
Enablar

Froem FSB P System clock frequency
gater

{normal test mode faadbacks ﬂ
feedback) i
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Core Clock Distribution

>

s

[

V2

—>

gaters

<G

primary
driver

=
I
3>

Repeaters

3
32
“:tlﬁ»

SLCBs

<]

.

L
«<—

-

>

«<—

>

7 (33) Each SLCB ~70 tap points of ~8 gaters each

ECE Department, University of Texas at Austin

Lecture 10. Interconnects in CMOS Technology

Jacob Abraham, September 29, 2020 33 / 36



Second Level Clock Buffer (SLCB)

4x 2x  Ix
coarse control _._4 _4 .4 _|-_¢1
g g e :

—'| AL ALHE

SLCB Schematic - finecontral

4x  2x X

clock 2

distribution To gaters

» 256ps delay range for
debug purposes

Debug
mode
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First Level Route Geometry

Lateral

e

Clocks are routed en
the top two layars (m5
& m6)

| N N N N

maintains constant impedance
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Measured Skew

1000 pansdiv[=|~= 20C ac/div == Delaws 1.7756 pc |= = dwg: 07512 |= = Paw Loop Lcngth: 0,82 us
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