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Bad Circuit 1

Circuit

2:1 multiplexer

Symptom

Mux works when
selected D is 0 but not 1
Or fails at low VDD
Or fails in SFSF corner

Principle: Threshold drop

X never rises above VDD − Vt
Vt is raised by the body effect
The threshold drop is most serious as Vt becomes a greater
fraction of VDD

Solution: Use transmission gates, not pass transistors
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Bad Circuit 2

Circuit

Latch
Symptom

Load a 0 into Q
Set φ = 0
Eventually Q
spontaneously flips to 1

Principle: Leakage

X is a dynamic node holding a value as charge on the node
Eventually, subthreshold leakage may disturb charge

Solution: Staticize node with
feedback

Or, periodically refresh node (this
requires a fast clock, and is not
practical for processes with big
leakage)
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Bad Circuit 3
Circuit

Domino AND gate

Symptom

Precharge gate (Y = 0)
Then evaluate
Eventually Y
spontaneously flips to 1

Principle: Leakage

X is a dynamic node holding
value as charge on the node
Eventually subthreshold leakage
may disturb charge

Solution: Keeper
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Bad Circuit 4

Circuit

Pseudo-nMOS OR

Symptom

When only one input is
true, Y = 0
Perhaps only happens
in SF corner

Principle: Ratio Failure

nMOS and pMOS fight each other
If the pMOS is too strong, nMOS cannot pull X low enough

Solution: Check that ratio is satisfied in all corners
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Bad Circuit 5

Circuit

Latch
Symptom

Q stuck at 1
May only happen for
certain latches where
input is driven by a
small gate located far
away

Principle: Ratio failure (again)

Series resistance of D driver, wire resistance, and transmission
gate gate must be much less than weak feedback inverter

Solution: Check relative strengths

Avoid unbuffered diffusion inputs
where driver is unknown
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Bad Circuit 6

Circuit

Domino AND gate

Symptom

Precharge gate while A
= B = 0, so Z = 0
Set φ= 1
A rises
Z is observed to
sometimes rise

Principle: Charge sharing

If X was low, it shares charge
with Y

Solution: Limit charge sharing

Safe if CY >> CX
Or, precharge node X too VX = VY =

CY

CX + CY
VDD
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Bad Circuit 7

Circuit

Dynamic gate + latch
Symptom

Precharge gate while
transmission gate latch
is opaque
Evaluate
When latch becomes
transparent, X falls

Principle: Charge sharing

If Y was low, it shares charge with X

Solution: Buffer dynamic nodes before driving transmission
gate
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Bad Circuit 8

Circuit

Latch

Symptom

Q changes while latch
is opaque
Especially if D comes
from a far-away driver

Principle: Diffusion Input Noise Sensitivity

If VD < −Vt, transmission gate turns on
Most likely because of power supply noise or coupling on D

Solution: Buffer D locally
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Bad Circuit 9

Circuit

Anything

Symptom

Some gates are slower
than expected

Principle: Hot Spots and Power Supply Noise
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Noise
Sources

Power supply noise/ground bounce
Capacitive coupling
Substrate coupling
Charge sharing
Leakage
Noise feedthrough

Consequences

Increased delay (for noise to settle out)
Or incorrect computations

Source: electronicproducts.com
Line-to-substrate coupling

Visualization of substrate noise
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Electromigration

“Electron wind” causes movement of metal atoms along wires

Excessive electromigration leads to open circuits

Most significant for unidirectional currents (DC)
Depends on current density Jdc (current/area)
Exponential dependence on temperature
Black’s Equation:

MTTF ∝ e
Ea
kT

Jndc
,

where Ea is the activation energy (empirically determined by
stress testing at high temperatures), and n is typically 2
Typical limits: Jdc < 1− 2 mA/µm2
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Self Heating

Current through wire resistance generates heat
Oxide surrounding wires is a thermal insulator
Heat tends to build up in wires
Hotter wires are more resistive, slower

Self-heating limits AC current densities for reliability

Irms =

√∫ T
0 I(t)2dt

T

Typical limits: Jrms < 15 mA/µm2

Self heating a problem for SOI circuits and 3-D systems

Modeling self heating, Silvaco
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Latchup

Latchup: positive feedback leading to VDD – GND short

Major problem for 1970s CMOS processes before it was well
understood

Avoid by minimizing resistance of body to GND/VDD

Use plenty of substrate and well taps
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Guard Rings

Latchup risk greatest when diffusion-to-substrate diodes could
become forward-biased

Surround sensitive region with guard ring to collect injected
charge
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Overvoltage
High voltages can damage transistors

Electrostatic discharge (ESD)
Oxide arcing
Punchthrough
Time-dependent dielectric breakdown (TDDB)

Accumulated wear from tunneling currents

Requires low VDD for thin oxides and short channels
Use ESD protection structures where chip meets real world

Transient suppression device specifications

for automotive applications

Source: dev.emcelettronica.com
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Hot Carriers

Electric fields across channel impart high energies to some
carriers

These “hot” carriers may be blasted into the gate oxide where
they become trapped
Accumulation of charge in oxide causes shift in Vt over time
Eventually Vt shifts too far for devices to operate correctly

Choose VDD to achieve reasonable product lifetime
Worst problems for inverters and NORs with slow input rise
time and long propagation delays

Source: Kiethley Application Note 2535
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Bias Temperature Instability

Mechanism

Even when no carriers moving from source to drain, the gate
voltage can cause charges to migrate into the insulating gate
oxide

Phenomenon is partly reversible

Charges leave the oxide after the gate voltage is removed

Source: Keane and Kim, IEEE Spectrum, May 2011
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NBTI Mechanism and Degradation

Hole interaction with oxide causes Si-H
bonds to break

Change is positive charge density in traps
increases Vt

When stress is removed, H atoms diffuse
back to interface and anneal the broken
bond

DC stress causes much shorter lifetime

Source: Peters, Semiconductor International, March 1, 2004
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Transistor Aging and Failure Prediction

Guardband violation due to transistor aging

Example of an aging sensor

Agarwal et al., VTS 2007
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Oxide Breakdown

Mechanism

Voltage across the gate can also cause electrically active
defects within the oxide layer

The defects can trap charges

If enough of the charges accumulate, they can create a short,
causing a catastrophic failure of the transistor

Source: Keane and Kim, IEEE Spectrum, May 2011
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Summary

Static CMOS gates are very robust

Will settle to correct value if designed with sufficient margins
and if you wait long enough

Other circuits suffer from a variety of pitfalls

Tradeoff between performance and robustness

Very important to check circuits for pitfalls

For large chips, you need an automatic checker
Design rules aren’t worth the paper they are printed on unless
you back them up with a tool
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Industry Estimates of Expected Lifetimes of Chips

Source: Sperling, “Making Chips To Last Their Expected Lifetimes,”

Semiconductor Engineering, October 21, 2020.
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Classes of Dependable Systems

Systems Designed for Very Long Life
Spacecraft with multiyear missions, inaccessible systems
Techniques: Replication (spares), error coding, monitoring,
shielding

Safety-Critical Systems
Flight control computers, nuclear-plant shutdown, medical
monitoring, automobile braking control
Techniques: Replication with voting, time redundancy, design
diversity

High-Availability Systems
Telephone switching centers, server farms, banking systems,
e-commerce
Techniques: Hardware and Information redundancy, backup
schemes, hot-swap, recovery

Consumer Products?
PCs, PDAs, smart phones
Techniques: parity checks for memories, intrusion tolerance,
virus detection, low cost of replacement
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Historical Perspective

Dionysius Lardner

“The most certain and effectual check upon errors which arise
in the process of computation, is to cause the same
computations to be made by separate and independent
computers; and this check is rendered still more decisive if
they make their computations by different methods,”
Dionysius Lardner, “Babbage’s calculating engine,”
Edinburgh Review, vol. 59, no. 120, pp. 263–327, 1834.

Key Papers in 1956

Moore and Shannon, “Reliable circuits using less reliable
relays,” Bell System Technical Journal

von Neumann, “Probabilistic logic and synthesis of reliable
organism from unreliable components,” Annals of
mathematical studies, Princeton University Press
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Reliable Relay Networks

Shannon, 1956

Can be applied to MOS transistors

A single open or short of a transistor (relay) will be masked by
the network

Many multiple faults will also be tolerated
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NAND Multiplexing – Massive Redundancy

Inspired by 1956 von Neumann paper for logic implemented in
nanotechnologies

Approach

Similar to NMR, but voting carried out in a bundle

Executive stage – performs operations

Restorative stage – reduces degradation caused by errors from
the executive stage, acting as output “amplifier”
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Error-Detecting and Correcting Codes

One way of detecting (and correcting) errors in data transmission
and storage, is to encode data, with a subset of the words being
code words

Reasonable errors will change a code word to a non-code word, and
the errors will be detectable

Errors which transform one code word into another will not be
detectable

“Error Models” relate likely physical faults to the errors that they
could cause

Distance between two code words is the number of distinct
changes needed to change one code word into the other

Example: Parity codes
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Distance Properties

The Hamming Weight of a vector, X, W (X) is the number of
non-zero components of X

The Hamming Distance between two vectors, X and Y , d(X,Y ),
is the number of components in which they differ

The minimum distance of a code is the minimum of Hamming
distances between all pairs of code words

To detect d-bit errors, need a code with distance d+ 1, to correct
d-bit errors, need a code with distance 2d+ 1.
Example:
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Self-Checking Circuits

Self-Checking Circuits – encoded inputs and outputs, output
checker

ECE Department, University of Texas at Austin Lecture 16. Circuit Pitfalls, Resilient Systems Jacob Abraham, October 22, 2020 29 / 57

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, October 22, 2020



VLSI Design, Fall 2020
Circuit Pitfalls, Resilient Systems 16

Boeing 777 Primary Flight Computer
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Reliability, Availability, Safety

Reliability (R(t))
Conditional probability that a system provides continuous
proper service in the interval [0,t] given that it provided desired
service at time 0
Simple Reliability function (exponential): R(t) = e−λt,
Constant Failure Rate λ

Mean Time to Failure, MTTF
MTTF =

∫∞
0
R(t)dt

For an exponential reliability function, MTTF = 1/λ

Availability A(t)
Fraction of time that system is in the operational state
(providing service) during the interval [0,t]
Function of both failure rate (λ) and repair rate (µ)
Steady-State Availability, A = MTTF

MTTF+MTTR = λ
λ+µ

“Markov Chain” for a simple
system with repair
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Reliability

View a system as providing a service

Faults =⇒ Errors =⇒ Failures

Fault: an anomalous physical condition

Error: an incorrect logic value as a consequence of the fault

Failure: the condition where the system does not provide the
expected service
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Are “Fault Tolerance” and “Resilience” the Same?

Fault Tolerance

Errors (due to faults)
detected and corrected, fault
located, reconfiguration
around faulty unit

System designed to tolerate
classes of faults

User does not see anything
wrong (except perhaps an
additional delay)

Service does not suffer any
down time

Resilience

User may see errors during
the service, but the final
results are correct

System requires on-line error
detection, but may use
checkpoints, retry, etc., to
achieve resilience

Ability to deal with
“unknown” faults

Service may be down
intermittently
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Example of Resilience – Single Engine Airplane

From Malibu Jetprop pilot’s operating handbook

If loss of power occurs at altitude, trim the aircraft for best
gliding angle (90 KIAS) and look for a suitable field.

At best glide angle, no wind, with the engine stopped and the
propeller feathered, the aircraft will travel approximately 2
miles for each thousand feet of altitude.
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Achieving Resilience

Start with fault-free hardware

Testing after manufacturing

On-line tests to detect wearout and degradation

Detection is key

Detect errors in results of computations

Application-level results are, ultimately, what are important

Ensure correct results at the application level

Appropriate checks at different levels of the design

High-level checks tend to have lower overheads
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Application-Level Fault Tolerance

Reduce the cost of fault tolerance by looking at computations at a
higher level

Algorithm-Based Fault Tolerance (ABFT), (Huang and Abraham,
1984)

Encode data at a high level (application level)

Design algorithm to operate on encoded input data and
produce encoded output data

Distribute computation tasks among multiple computation
units, so that failure of a unit affects only a portion of the
output data, enabling the correct data to be recovered

Very general fault model: A computation unit can produce any
arbitrary logical output under failure

Communication paths checked using coding techniques
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Illustration of Application to Matrix Operations
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Checksum Calculations in High Performance Computing

ABFT applied to DGEMM

Source: Bosilca, Delmas, Dongarra and Langou, 2008.
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Performance Under Failure

Performance (GFLOPS/sec/proc) of PBLAS PDGEMM, ABFT
BLAS PDGEMM (0 failure), and ABFT BLAS PDGEMM (1
failure)
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Error Resilience in Non-Linear Control Systems
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Brake by Wire
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Error Detection and Correction in Non-Linear Control
Systems (Banerjee, 2019)

Brake by Wire algorithm executing on embedded processor
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Error Detection and Correction in Brake by Wire System

Approach to dealing with soft errors

When transient error is detected, results of the control loop
(output to actuator) ignored for a few cycles till no error is
seen.
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Constraints on Embedded Systems

Myriad of Intelligent systems

Cost, power consumption constraints

In critical applications, resiliency is very important

Example: self-driving cars

100 Million lines of code for software, sensing and actuation

64 TOPS for cognition and control functions
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Need a broader definition of resilience

Classic definitions of resiliency have been narrow

Focused on hardware failures

What about design bugs?

Duplication (such as in ISO 26262) will not be sufficient

Resilience to external attacks?
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Design Bugs

Logic bugs

Verification is dominating the design cycle

Unlikely that all design bugs are caught before deployment

Diversity is necessary to deal with design bugs

Design margins

Effects of real bugs are not easy to duplicate (in many cases,
error latencies of many millions (or billions) of cycles)

Gray: concepts of Bohr bugs (repeatable) versus Heisenbugs
(not seen to be repeatable)

Bugs and design margins could be exploited by an attacker
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Errors Not Repeatable – “Heisenbugs”
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Dealing with Security – Very Different From Dealing with
Physical Faults or Errors

Attacks are Intentional

Faults and Errors related to design or physical causes are
systematic or random

Attacks are deliberate
Initiated by a clever adversary
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Security Attacks

Hardware Trojans

Malicious modification of designs

Example of analog circuitry modifying a digital chip –
extremely difficult to identify

Design diversity may be a solution

External attacks

Classic work (Abadi) suggested control flow checking to
detect execution of undesired code

Effects of attacks could include modification of data,
execution sequences, denial of service, etc.

Require data checks in addition to control-flow checks
Need to detect DoS attacks during operation – example,
shutting down GPS system (or spoofing GPS position)
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Example: Attacks on Automobiles

Automotive Bus – CAN

Controller Area Bus (CAN) – robust vehicle bus standard

Allows applications in microcontrollers and devices to
communicate with other applications without a host computer

Attacks on CAN bus

Allows the attacker to control the operation of an automobile
over a WiFi network

Attack was facilitated by the sharing of critical functions with
automobile entertainment system
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IC Design Process with Possible Attacks

Source: Yang et. al, Communications of the ACM, September 2017.
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Trojans Could be Extremely Difficult to Detect

Analog Trojan in a Digital System

Fabrication-time attack with trigger in the analog domain

Based on charge accumulating on a capacitor from infrequent
events inside the processor

Very small area, and low impact on power and timing
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Control Flow Deviation Detection for Application Level
Security

Attacks subvert the control flow of the software

Insert control-flow checks in the code (particularly useful for
embedded software)

Run-time signatures and checks can be inserted automatically
during compile time

Implementation

Signature update instructions inserted at the beginning and
end of each function, as well as before and after the call
instructions

Illegal branches will result in signature mismatches

Proposed in 2005 (Abadi)
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Attacks on Embedded Systems

Source: Papp et al, Thirteenth Annual Conference on Privacy, Security and

Trust (PST), 2015.
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Types of Attacks

Control hijacking attacks

Reverse engineering

Malware

Injected crafted packets or inputs

Eavesdropping

Brute-force search attacks

Attacks during normal usage
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Effects of Attacks

Denial of service

Code execution

Integrity violation

Information leakage

Illegitimate access

Financial loss

Degraded level of protection

Miscellaneous
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Android Pixel 2 Security Module

Tamper Resistant Hardware

Discrete chip separate from the SoC, with its own flash, RAM

Can control its own execution, and is robust against side
channel information leakage attacks

Loads its OS and software directly from internal ROM and
flash, and controls all updates

Resilient against fault injection and side channel attacks

Source: X. Xin, Android Developers Blog, 13 November 2017
ECE Department, University of Texas at Austin Lecture 16. Circuit Pitfalls, Resilient Systems Jacob Abraham, October 22, 2020 57 / 57

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, October 22, 2020


