23. Skew-Tolerant Design

J. A. Abraham
Department of Electrical and Computer Engineering
The University of Texas at Austin
VLSI Design
Fall 2015
November 18, 2015

Clocking

- Synchronous systems use a clock to keep operations in sequence
 - Distinguish this from previous or next
 - Determine speed at which machine operates
- Clock must be distributed to all the sequencing elements
 - Flip-flops and latches
- Also distribute clock to other elements
 - Domino circuits and memories
Clock Distribution

- On a small chip, the clock distribution network is just a wire
 - And possibly an inverter for `clk_b`
- On practical chips, the RC delay of the wire resistance and gate load is very long
 - Variations in this delay cause clock to get to different elements at different times
 - This is called clock skew
- Most chips use repeaters to buffer the clock and equalize the delay
 - Reduces but doesn’t eliminate skew

Example

- Skew comes from differences in gate and wire delay
 - With right buffer sizing, `clk_1` and `clk_2` could ideally arrive at the same time
 - But power supply noise changes buffer delays
 - `clk_2` and `clk_3` will always see RC skew
Review: Skew Impact

- Ideally full cycle is available for work
- Skew adds sequencing overhead
- Increases hold time too

\[t_{pd} \leq T_c - (t_{\text{setup}} + t_{\text{pcq}} + T_{\text{skew}}) \]

\[t_{cd} \geq t_{\text{hold}} - t_{\text{ccq}} + t_{\text{skew}} \]

Cycle Time Trends

- Much of CPU performance comes from higher \(f \)
 - \(f \) improving faster than simple process shrinks
 - Sequencing overhead is bigger part of cycle
Solutions

- Reduce clock skew
 - Careful clock distribution network design
 - Plenty of metal wiring resources
- Analyze clock skew
 - Only budget actual, not worst case skews
 - Local vs. global skew budgets
- Tolerate clock skew
 - Choose circuit structures insensitive to skew

Clock Distribution Networks

- Ad hoc
- Grids
- H-tree
- Hybrid

Clock Grids

- Use grid on two or more levels to carry clock
- Make wires wide to reduce RC delay
- Ensures low skew between nearby points
- But possibly large skew across die

Alpha Clock Grids
H-Trees

- Fractal structure
 - Gets clock arbitrarily close to any point
 - Matched delay along all paths
- Delay variations cause skew
- A and B might see big skew

Itanium 2 H-Tree

- Four levels of buffering
 - Primary driver
 - Repeater
 - Second-level clock buffer
 - Gater
- Route around obstructions
Hybrid Networks

- Use H-tree to distribute clock to many points
- Tie these points together with a grid
- Example: IBM Power4, PowerPC
 - H-tree drives 16-64 sector buffers
 - Buffers drive total of 1024 points
 - All points shorted together with grid

Skew Tolerance

- Flip-flops are sensitive to skew because of hard edges
 - Data launches at latest rising edge of clock
 - Must setup before earliest next rising edge of clock
 - Overhead would shrink if we can soften edge
- Latches tolerate moderate amounts of skew
 - Data can arrive any time latch is transparent
Skew: Latches

- **2-Phase Latches**
 \[t_{pd} \leq T_c - (2t_{pdq}) \]

- **Pulsed Latches**
 \[t_{pd} \leq T_c - \max(t_{pdq}, t_{pcq} + t_{setup} - t_{pw} + t_{skew}) \]

Dynamic Circuit Review

- Static circuits are slow because fat pMOS load input
- Dynamic gates use precharge to remove pMOS transistors from the inputs
 - Precharge: \(\phi = 0 \), output forced high
 - Evaluate: \(\phi = 1 \), output may pull low
Domino Circuits

- Dynamic inputs must monotonically rise during evaluation
- Place inverting stage between each dynamic gate
- Dynamic/static pair called domino gate
- Domino gates can be safely cascaded

![Domino AND gate diagram]

Domino Timing

- Domino gates are 1.5 – 2x faster than static CMOS
 - Lower logical effort because of reduced C_{in}
- Challenge is to keep precharge off critical path
- Look at clocking schemes for precharge and evaluate
 - Traditional schemes have severe overhead
 - Skew-tolerant domino hides this overhead
Traditional Domino Circuits

- Hide precharge time by ping-ponging between half-cycles
- One evaluates while other precharges
- Latches hold results during precharge

\[t_{pd} = T_c - 2t_{pdq} \]

Clock Skew

- Skew increases sequencing overhead
- Traditional domino has hard edges
- Evaluate at latest rising edge
- Setup at latch by earliest falling edge

\[t_{pd} = T_c - 2t_{pdq} - 2t_{skew} \]
Time Borrowing

- Logic may not exactly fit half-cycle
 - No flexibility to borrow time to balance logic between half cycles
- Traditional domino sequencing overhead is about 25% of cycle time in fast systems!

Relaxing the Timing

- Sequencing overhead caused by hard edges
 - Data departs dynamic gate on late rising edge
 - Must setup at latch on early falling edge
- Latch functions
 - Prevent glitches on inputs of domino gates
 - Holds results during precharge
- Is the latch really necessary?
 - No glitches if inputs come from other domino
 - Can we hold the results in another way?
Skew-Tolerant Domino

- Use overlapping clocks to eliminate latches at phase boundaries
 - Second phase evaluates using results of first

- Full Keeper
 - After second phase evaluates, first phase precharges
 - Input to second phase falls
 - Violates monotonicity?
 - But we no longer need the value
 - Now the second gate has a floating output
 - Need full keeper to hold it either high or low
Time Borrowing

- Overlap can be used to
 - Tolerate clock skew
 - Permit time borrowing
 - No sequencing overhead

\[
 t_{pd} = T_c
 \]

Multiple Phases

- With more clock phases, each phase overlaps more
 - Permits more skew tolerance and time borrowing
Clock Generation

![Clock Generation Diagram]

Opportunistic Time Borrowing

U. S. Patent no. 5517136 (Harris et al., May 14, 1996, assigned to Intel Corporation)

Pipelined domino logic allowing a slow stage to “borrow” from the time normally allocated to a faster stage.

![Opportunistic Time Borrowing Diagram]
Clocking of Time-Borrowing Pipeline

- Delayed falling edges on clocks allow evaluation to continue into subsequent half cycle
 - Time delay t_d should be greater than or equal to the hold time of the domino logic gate plus any global clock skew
- Can generate the clocks by a local reference driven by the chip’s global reference clock signal

![Clocking Diagram](image)

Example of an OTB Pipeline

- Half-cycles 1 and 3 evaluate when CLK is high, half-cycle 2 when CLK is low

![Example Diagram](image)
Soft-Edge Flip-Flops for Improved Timing

Combinational Logic

Slower stage

FF

Time borrowing

Combinational Logic

Setup OK

Transparent window for delayed signal

Soft-Edge Flip-Flop