# 8. Design of Adders

#### Jacob Abraham

#### Department of Electrical and Computer Engineering The University of Texas at Austin

VLSI Design Fall 2020

September 22, 2020

# Single-Bit Addition

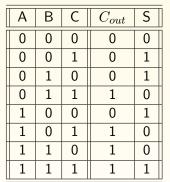




 $\begin{bmatrix} A & B & C_{out} & S \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ 

Full Adder  $S = A \oplus B \oplus C$  $C_{out} = MAJ(A, B, C)$ 





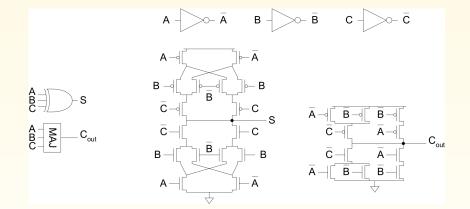
ECE Department, University of Texas at Austin

Lecture 8. Design of Adders

Jacob Abraham, September 22, 2020 1 / 31

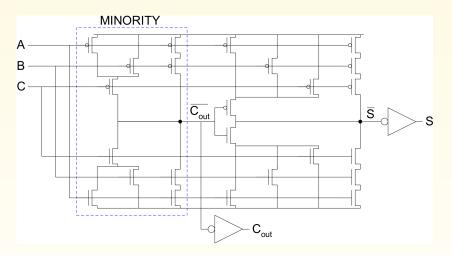
### Full Adder Design I

Brute force implementation from equations  $S = A \oplus B \oplus C$  $C_{out} = MAJ(A, B, C)$ 



### Full Adder Design II

- Factor S in terms of Cout
  - $S = A \cdot B \cdot C + (A + B + C) \cdot \overline{C_{out}}$
- Critical path is usually C to  $C_{out}$  in ripple adder

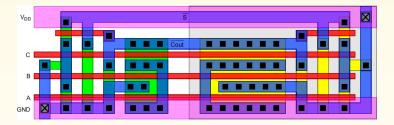


ECE Department, University of Texas at Austin

### Layout of Full Adder

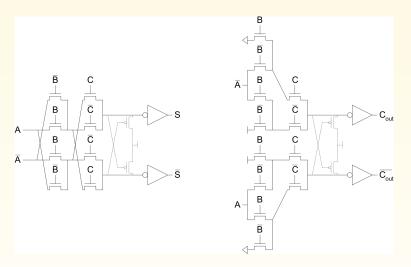
• Clever layout circumvents usual line of diffusion

- Use wide transistors on critical path
- Eliminate output inverters



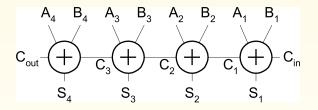
# Full Adder Design III

- Complementary Pass Transistor Logic (CPL)
  - Slightly faster, but more area



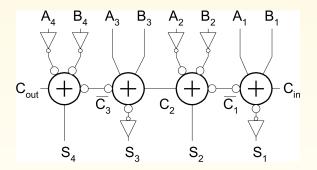
# **Ripple Carry Adder**

- Simplest design: cascade full adders
  - Critical path goes from  $C_{in}$  to  $C_{out}$
  - Design full adder to have fast carry (small delay for carry signal)



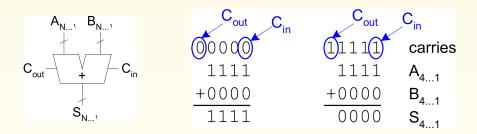
#### Deal with Inversions to Speed Up Carry Path

- Critical path passes through majority gate
  - Built from minority + inverter
  - Eliminate inverter and use inverting full adder



## Carry Propagate Adders

- N-bit adder called CPA
  - Each sum bit depends on all previous carries
  - How do we compute all these carries quickly?



# Carry Propagate, Generate, Kill (P, G, K)

#### For a full adder, define what happens to carries

• Generate:  $C_{out} = 1$ , independent of C

• 
$$G = A \cdot B$$

• **Propagate**: 
$$C_{out} = C$$

• 
$$P = A \oplus B$$

• Kill: 
$$C_{out} = 0$$
, independent of C

•  $K = \overline{A} \cdot \overline{B}$ 

#### Generate and Propagate for groups spanning i:j

• 
$$G_{i:j} = G_{i:k} + P_{i:k} \cdot G_{k-1:j}$$

• 
$$P_{i:j} = P_{i:k} \cdot P_{k-1:j}$$

• 
$$G_{i:i} \equiv G_i = A_i \cdot B_i$$
,  $G_{0:0} = G_0 = C_{in}$   
•  $P_{i:i} \equiv P_i = A_i \oplus B_i$ ,  $P_{0:0} = P_0 = 0$ 

• Sum:  $S_i = P_i \oplus G_{i-1:0}$ 

# Carry Propagate, Generate, Kill (P, G, K)

#### For a full adder, define what happens to carries

• Generate:  $C_{out} = 1$ , independent of C

• 
$$G = A \cdot B$$

• **Propagate**: 
$$C_{out} = C$$

• 
$$P = A \oplus B$$

• Kill:  $C_{out} = 0$ , independent of C •  $K = \overline{A} \cdot \overline{B}$ 

#### Generate and Propagate for groups spanning i:j

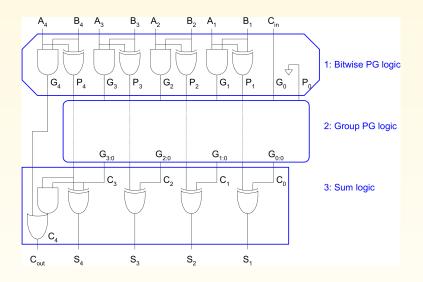
• 
$$G_{i:j} = G_{i:k} + P_{i:k} \cdot G_{k-1:j}$$

• 
$$P_{i:j} = P_{i:k} \cdot P_{k-1:j}$$



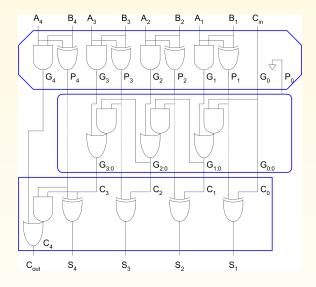
• 
$$G_{i:i} \equiv G_i = A_i \cdot B_i$$
,  $G_{0:0} = G_0 = C_{in}$   
•  $P_{i:i} \equiv P_i = A_i \oplus B_i$ ,  $P_{0:0} = P_0 = 0$ 

• Sum:  $S_i = P_i \oplus G_{i-1:0}$ 



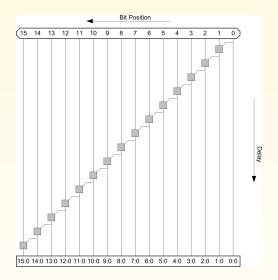
# Ripple Carry Adder Revisited in the PG Framework

$$G_{i:0} = G_i + P_i \cdot G_{i-1:0}$$



# Ripple Carry PG Diagram

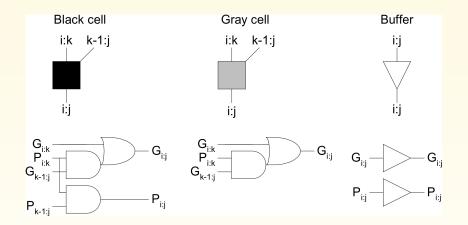
 $t_{ripple} = t_{pg} + (N-1)t_{AO} + t_{xor}$ 



ECE Department, University of Texas at Austin

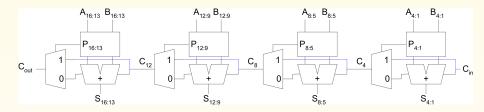
Lecture 8. Design of Adders

### **PG** Diagram Notation

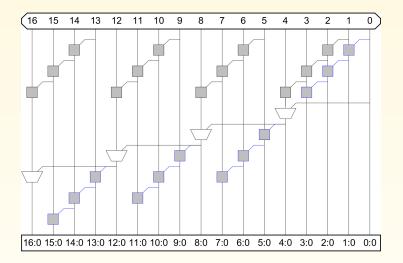


# Carry-Skip Adder

- Carry-ripple is slow through all N stages
- Carry-skip allows carry to skip over groups of n bits
  - Decision based on n-bit propagate signal



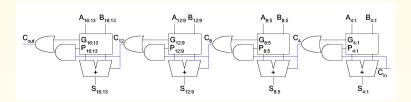
# Carry-Skip PG Diagram



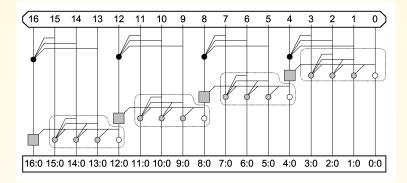
For k n-bit groups 
$$(N = nk)$$
  
 $t_{skip} = t_{pg} + [2(n-1) + (k-1)]t_{AO} + t_{xor}$ 

ECE Department, University of Texas at Austin

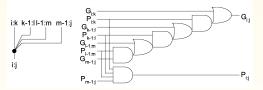
- Carry-lookahead adder computes  $G_{i:0}$  for many bits in parallel
- Uses higher-valency cells with more than two inputs



# CLA PG Diagram



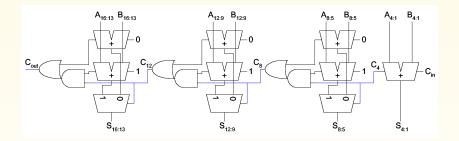
Higher Valency Cells



ECE Department, University of Texas at Austin

### Carry-Select Adder

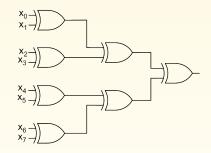
- Trick for critical paths dependent on late input X
  - Precompute two possible outputs for X = 0, 1
  - Select proper output when X arrives
- Carry-select adder precomputes n-bit sums for both possible carries into n-bit group



# Tree Adders

- Tree structures can be used to speed up computations
- Look at computing the XOR of 8 bits using 2-input XOR-gates



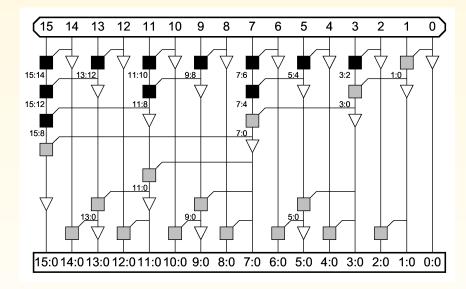


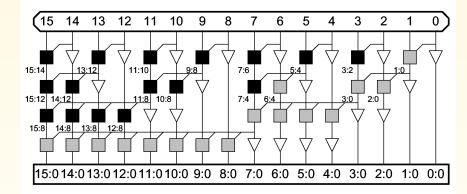
- If lookahead is good for adders, lookahead across lookahead!
  - Recursive lookahead gives O(log N) delay
- Many variations on tree adders

ECE Department, University of Texas at Austin

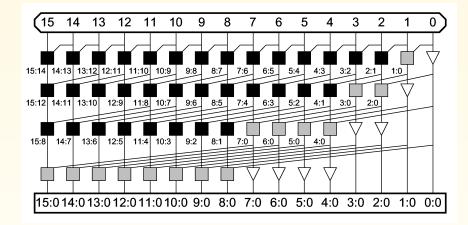
Lecture 8. Design of Adders

# Brent-Kung Adder





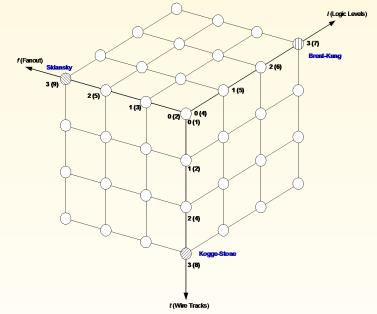
# Kogge-Stone Adder



#### • Ideal N-bit tree adder would have

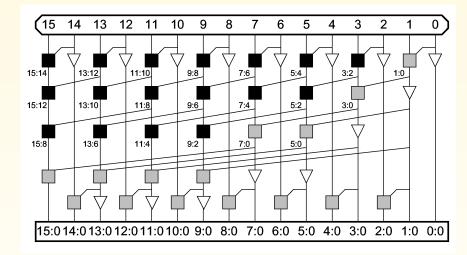
- L = log N logic levels
- Fanout never exceeding 2
- No more than one wiring track between levels
- Describe adder with 3-D taxonomy (l, f, t)
  - Logic levels: L + l
  - Fanout: 2f + 1
  - Wiring tracks: 2<sup>t</sup>
- Known tree adders sit on plane defined by l + f + t = L 1

#### Tree Adder Taxonomy, Cont'd

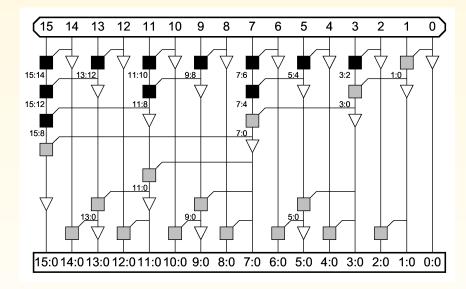


ECE Department, University of Texas at Austin

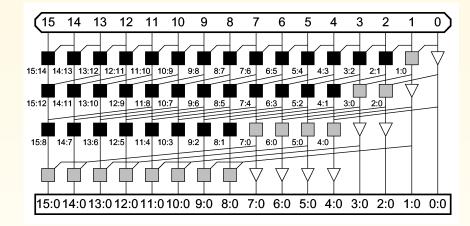
### Han-Carlson Adder



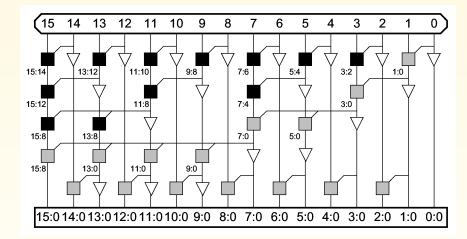
# Brent-Kung Adder



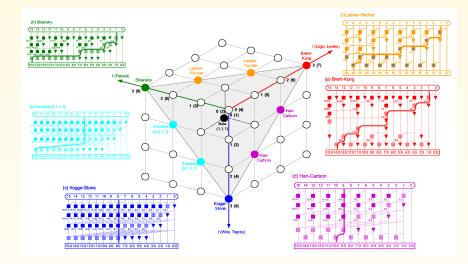
# Knowles [2,1,1,1] Adder



### Ladner-Fischer Adder



### Tree Adder Taxonomy Revisited



#### Adder architectures offer area/power/delay tradeoffs

Choose the best one for your application

| Architecture    | Classifi- | Logic lev-  | Max.   | Tra- | Cells        |
|-----------------|-----------|-------------|--------|------|--------------|
|                 | cation    | els         | fanout | cks  |              |
| Ripple Carry    |           | N-1         | 1      | 1    | Ν            |
| Carry-skip(n=4) |           | N/4 + 5     | 2      | 1    | 1.25N        |
| Carry-inc.(n=4) |           | N/4 + 2     | 4      | 1    | 2N           |
| Brent-Kung      | (L-1,0,0) | $2log_2N-1$ | 2      | 1    | 2N           |
| Sklansky        | (0,L-1,0) | $log_2N$    | N/2+1  | 1    | $0.5Nlog_2N$ |
| Kogge-Stone     | (0,0,L-1) | $log_2N$    | 2      | N/2  | $Nlog_2N$    |