
VLSI Design

Fall 2020
Final Project Information

1 Introduction

Your task in this project is to use the skills you have been acquiring through the lectures and labs to
design a fairly sophisticated module–an intellectual property (IP) core. The project should result
in a VLSI design with

• Experimental results on the efficacy of the proposed VLSI architectures, and

• Suggestions for improving these architectures.

Projects can be done in groups of 3–4; naturally, I will expect more from projects from larger
groups.

2 Timeline

Selecting a project

You need to decide on the project topic soon. Although we have only covered some of the informa-
tion you need to complete the project at this time in the semester, this deadline is intended to get
you started. You only need to decide on what you will be designing, and you’ll learn the how by
the time you need to implement your project. For the topic, you could think of interesting areas
where VLSI chips can be applied (just focus on the digital parts of the real-world applications), or
base the topic on something that interested you in your research or work experience.

You only need to turn in a sheet of paper with your topic, a brief description of what you would
like to implement, and the names of the teammates at for the project outline. For the final project
report, submit a brief report (one per team), with design files, simulation data, etc. by Dec. 15,
2017. The report could be in the form of a presentation (slides) if you wish. I will work with each
of the teams to converge on the final deliverables. Please don’t worry about the project being too
big (or complex); we’ll carve out a piece that can be implemented in a semester, and from which
you will learn a great deal.

Final report

The final report should include the following.

• Specifications document

• Design document

• User document

1



• Testing strategy and results

• Optimization strategy and results

• Source code and layout

Details of each of these items are given below.

Deadlines

– Week of Sept. 17, 2020: Teams meet with Prof. Abraham to discuss specification of project,
roles of team members in project

– Oct. 8, 2020: Detailed outline of project, deliverables

– Week of Nov. 12, 2020: Teams meet with Prof. Abraham with Interim project report
(Preliminary design document, results of design review)

– Dec. 8, 2020: Final project report; projects should have been demonstrated to the instructor
or TA previously (lab sessions are a good venue to demonstrate the projects)

3 Details of Final Report

3.1 Specifications

The specifications document should include a high-level overview of the IP block you are imple-
menting; a description based on a diagram or set of diagrams is the best way to do this. It should
also include the summary of the logical interface the block presents to its environment.

In addition, the document should include the area, power, and performance numbers you are
targeting. If you base your work on an existing design, you should be able to come up with estimates
on these parameters; otherwise, back-of-the-envelope calculations are fine. It’s not imperative that
you meet the numbers in the specification document.

The specifications document should not discuss the implementation; its focus is the functionality
that you will implement, and the cost of this functionality.

3.2 Design

The design document should include a description of how you will implement the specification —
a set of figures is the best way to convey this. The implementation discussion should include the
basic architecture and algorithms, as well as the floorplan, and circuit technology, etc.

You should also make notes on the optimization techniques you expect to use and their implications
to your design, and the trade-offs they will entail. For example, if you have long interconnects, you
may want to state that you intend to overcome problems resulting from crosstalk by shielding, and
hence all long nets should have enough space between them for such shielding lines. All choices
should be justified, on the basis of references to portions of the book/research papers, and by logical
arguments.

2



The design document should also include an overview of the tool suite you will be using, the nam-
ing conventions for variables/modules/files, the regression control strategy, and an issue tracking
mechanism (which could be just entries in a text file).

Think of the design document as something you would give to an engineer just joining the project to
help him/her come up to speed. Design documents also spell out a regular system of “code reviews,”
where designers have to explain what they have done to their colleagues, at a very detailed level,
e.g., a walk-through of RTL code. We will not have a formal review process, since it is probably
too involved for a class project, and the class size is too large. However, each team should conduct
their own reviews.

The specifications and design documents do not have to be exactly what you turned in; indeed I
would expect the design document to evolve as you discover problems and find improvements with
your approach.

3.3 User document

The user document describes how end-users are to integrate the IP block into their designs – think
of it as being like the datasheet you get with a chip.

In particular, the user document should include detailed information on interfacing to the block,
i.e., the timing on the different signals. It should describe the power, area, delay numbers at various
operating points, and the loading capacitance and drive strengths on the input-output signals.

3.4 Testing

In this section, you are to describe the set of tests you applied to your design to check for logical
errors, and your coverage metrics. Classify the bugs you encountered, and how you corrected for
them. In addition, discuss the traces you applied to determine the critical path, and compute the
delays.

For some projects it may make sense to write a high-level model in C or C++ and do performance
simulations (e.g., determine the average latency and drop rate through the Benes fabric as a function
of load, and buffering). If this is the case, include results from these simulations.

3.5 Optimization

Include a discussion of all the steps you took to improve performance, and the magnitude of
improvements that you saw. I am particularly interested in novel techniques that gave your better
performance that the descriptions on which based your approach.

4 Project Topics

The following is a list of topics compiled from faculty, graduate students and projects in previous
semesters. I encourage you to pursue your own ideas, and talk to me if you have any that are not
listed here.

3



4.1 SRAM with Sleep Transistors

One of the major techniques used to control sub-threshold leakage is using sleep transistors. In
essence, sleep transistors are used for power gating. Logic runs at low Vt, and the gates are faster
and leaky; sleep transistors are high Vt. They are switched off when idle (usually NMOS alone is
used) and can save 2-1000× leakage power.

Your goal is to design a 32 kbit SRAM (128 rows, 256 columns, 8 bit words) which uses sleep
transistors to reduce leakage power. There are a number of ways you can go: a single huge sleep
transistor, a sleep transistor per cell, or a sleep transistor per 4 cells, etc. There are power–delay
tradeoffs between these, which you should explore.

Some papers that may help:

• B. Mohammad, M. Saint-Laurent, P. Bassett and J. A. Abraham, “A Cache Design for Low
Power and High Yield,” ISQED, 2008, pp. 1-10.

• B. H. Calhoun, F. A. Honore and A.P. Chandrakasan, “A Leakage Reduction Methodology
for Distributed MTCMOS,” IEEE JSC, vol. 39, May 2004, pp. 818-826.

• A. Ramalingam, B. Zhang, D. Z. Pan and A. Devgan, “Sleep Transistor Sizing Using Timing
Criticality and Temporal Currents,” Proc. Asia South Pacific Design Automation Conference
(ASPDAC), vol. 2, Jan. 2005, pp. 1094-1097.

• S. Vangal, M. Anders, N. Borkar and E. Seligman, “5-GHz 32-bit integer execution core in
130-nm dual-Vt/CMOS,” IEEE Journal of Solid State Circuits, Nov. 2002, pp. 1421-1432.

• V. Khandelwal and A. Srivastava, “Leakage Control Through Fine-Grained Placement and
Sizing of Sleep Transistors,” IEEE Transactions on Computer-aided design of integrated cir-
cuits and systems, 2007, pp. 533-536.

4.2 Divider

Division is the hardest of the four basic arithmetic operations. As Intel famously demonstrated,
implementation of division algorithms is not always straightforward. Nonrestoring, SRT, Newton-
Raphson, and Goldschmidt are all possible methods for the implementation of division.

For this project, review all of these methods. Select at least one to implement. Provide both
hand worked examples and simulation results demonstrating the correctness of your approach and
implementation. Additionally contrast your implementation with each of the other methods and
provide the reasons for your selection, as well as the advantages and disadvantages provided by
your approach.

Some references:

• B. Parhami, “Computer Arithmetic,” Oxford University Press, 2000.

• J. E. Robertson, “A new class of digital division methods,” IRE Trans. Electronic Computers,
1958, pp. 218-222.

• K.D. Tocher, “Techniques of multiplication and division for automatic binary computers,”
Quarterly Journal of Mechanics and Applied Mathematics, 1958.

4



4.3 Fast Fourier Transform Kernel

During the last 10 years, a lot of effort has been concentrated on mapping the FFT architecture
to silicon while making tradeoffs in performance, silicon area, the number of I/O pins, and other
manufacturing issues. The objective of this project is exploring a FFT architecture and implement
it.

Implementation. The chip should take the time-sampled data input at a set sampling frequency
of your choice and output the correct bin counts for all the points in the FFT, within the range
of error tolerance. For real-world applications, you are encouraged to aim for 64/128-point high
precision FFT kernels which are compatible with the wireless industry’s protocols. However, to keep
the project simple, 16/32-point precision would be good enough. Make your own specification for
precision, power, area, and I/O bit width. After completing the FFT design, verify it by following
the next paragraph.

Testing. Create a testing benchmark structure to test the FFT core with reasonably good coverage
using all types of signals (sine waves, noise, dc) and their random combinations, below the chosen
Nyquist frequency.

At the algorithm level, you may choose from radix-2, radix-4, and specialized FFT implementations,
etc. The final chip must be presented in layout level after synthesis, and a code file alone would
not be sufficient.

Project deliverables will include the FFT specification definitions, test files, testing benchmark,
test outputs reports (both simulated and physical), a Cadence layout of the FFT hardware, code,
or a schematic abstraction of your layout, and a report of your algorithm (in the form of a paper
or pseudo-code).

Below are several references on FFT hardware implementations.

• E. E. Swartzlander, W. K. W. Young and S. J. Joseph, “A radix 4 delay commutator for fast
Fourier transform processor implementation,” IEEE Journal of Solid-State Circuits, vol. 19,
Oct. 1984, pp. 702-709.

• K. Maharatna, E. Grass and U. Jagdhold, “A 64-point Fourier transform chip for high-speed
wireless LAN application using OFDM,” IEEE Journal of Solid-State Circuits, vol. 39, Mar.
2004, pp. 484-493.

• M. Sala, F. Salidu, F. Stefani and C Kutschenreiter, “Design Considerations and Implemen-
tation of a DSP-Based Car-Radio IF Processor,” IEEE Journal of Solid State Circuits, Jul.
2004, pp. 1110-1118.

• S. Ishiwata and T. Yamakage, “A single-chip MPEG-2 codec based on customizable media
embedded processor,” IEEE Journal of Solid State Circuits, Mar. 2003, pp. 530-540.

4.4 All Digital PLL

Phase-locked loops (PLLs) are used to recover timing information from a signal—they are ubiqui-
tous in communications, and are also used for timing recovery on boards and chips. Analog PLLs
are very hard to design because they use feedback, and are very sensitive to noise and operating
parameters.

5



The goal of this project is to design an “all digital PLL” which is an implementation of the PLL
with all digital components, and compare its performance (measured in lock time and phase noise)
and costs (in terms of area, power, delay) to a traditional analog PLL.

References:

• R. J. Baker, H. W. Li, D. E. Boyce, “CMOS Circuit Design, Layout, and Simulation,” IEEE
Press, 2007.

• R. B. Staszewski et al., “A First Digitally-Controlled Oscillator in a Deep-Submicron CMOS
Process for Multi-GHz Wireless Applications,” IEEE Dig. RFIC Symp., June 2003, pp.
81-84.

• R. B. Staszewski et al., “Digitally-Controlled Oscillator (DCO)-Based Architecture for RF
Frequency Synthesis in a Deep-Submicron CMOS process,” IEEE Trans. Circuits and Sys-
tems II, vol. 50, Nov. 2003, pp. 815-828.

• R. B. Staszewski, et al., “All-digital PLL and transmitter for mobile phones,” IEEE J.SSC,
vol. 40, Dec. 2005, pp. 2469-2482.

4.5 Design of Robust CMOS Circuits for Soft-error Tolerance

With the continued scaling of technology, lower supply voltages and increasing operating frequency,
integrated circuits become increasingly susceptible to single event upsets (SEU) caused by transient
noise or high energy particles. A SEU may cause a bit flip in some latch or memory element, thereby
altering the state of the system, leading to a ‘soft error’. The main objective of this project is to
introduce more robustness with some redundancy in circuits to make them less susceptible to
undesired errors. The focus is to explore various circuit level as well as system level techniques to
reduce the effect of soft errors for logic and memory circuits.

Some of the references are:

• R. C. Baumann, “Soft errors in advanced computer systems,” IEEE Des. Test. Computer,
vol. 22, May/Jun. 2005, pp. 258-266.

• R. C. Baumann, “Radiation-Induced Soft Errors in Advanced Semiconductor Technologies,”
IEEE Trans. Device and Materials Reliability, vol. 5, Sept. 2005, pp. 305-316.

• A. U. Diril, “Circuit Level Techniques for Power and Reliability Optimization of CMOS
Logic,” PhD Dissertation, Department of Electrical and Computer Engineering, Georgia In-
stitute of Technology, May 2005.

4.6 FIR Filter

Digital filtering is one of the fundamental operations of digital signal processing. Digital filters can
be used to improve signal quality, separate multiple signals, or extract information from within a
signal. Applications include audio processing, video processing, and image processing.

6



A basic FIR filter implements the following function:

y(n) =

N−1∑
k=0

h(k)x(n− k)

Filter design involves the following steps.

• Determination of the requirements for the filter

• Filter coefficient calculation

• Realization of the filter structure

• Analysis of the filter performance

• Hardware implementation

For this project, select a digital filtering application, then research the current state of research for
these filters using IEEE Xplore. Recent issues of the IEEE Transactions on Solid State Circuits
are a suggested starting point. You may implement an improvement to a published filter design, or
implement two (or more) published designs contrasting and comparing the tradeoffs between the
designs.

Your report should include discussion of the specifications that your filter design will meet such as
data rates and frequency. A description of the coefficient calculation and a graphical representation
of the structure of your filter design should be included as well as a discussion of the word length
choice. Finally the hardware implementation and testbench should be provided and discussed in
detail.

A general reference:

• R. E. Crochiere and L. R. Rabiner, “Interpolation and decimation of digital signals - A tutorial
review,” Proceedings of the IEEE, vol. 69, March 1981, pp. 300-331.

Some recently published research:

• Y. Wang and K. Roy, “CSDS: A New Complexity Reduction Technique for Multiplierless
Implementation of Digital FIR Filters, ” IEEE Transactions on Circuits and Systems - I, vol
52, September 2005, pp. 1845-1853.

• F. Bruekers and T. Kalker, “Reduction of Symmetric Complex Filters, ” IEEE Transactions
on Signal Processing, vol 58, January 2010, pp. 200-208.

4.7 On-chip Interconnection Network

In this project, you will get an in-depth understanding of the VLSI design of modern on-chip
interconnection network. To begin with, the following article serves as a good introduction: “Ar-
chitectural Choices in Large Scale ATM Switches,” by J. Turner and N. Yamanaka, in the IEICE
Transactions, 1998.

7



The major task of this project is to select and implement a switching architecture. For instance, in
the article above, a Batcher-Banyan based, self-routing network is chosen. Many techniques have
been proposed; please spend some time on selecting among them. You are encouraged to invent
new architectures and algorithms and analyze their strengths and drawbacks. Here are some more
articles that may be useful.

• Shin and Hodges, “A 250-Mbit/s CMOS Crosspoint Switch,” IEEE JSSC, vol. 24, April
1989, pp. 478-486.

• Akata et al., “A 250-Mb/s CMOS Crosspoint LSI for ATM Switching,” IEEE JSSC, vol. 25,
Dec. 1990, pp. 1433-1439.

• Chemarin et al., “A High-speed CMOS Circuit for 1.2-Gb/s 16x16 ATM Switching,” IEEE
JSSC, vol. 27, July 1992, pp. 1116-1120.

• O’Neill et al., “A 200Mhz CMOS Broad-Band Switching Chip,” IEEE JSSC, vol. 28, March
1993, pp. 269-275.

Please actively search IEEE Xplore or Google for new ideas and build upon them!

Once the architecture is defined, you may employ the skills developed in the labs to implement
a prototype (physical level). In view the limited time, you may put most of the efforts on the
core algorithm and structure and size down the whole system. Please consider how to establish
your testing benchmark of your switch from the very beginning. Again, your testing benchmark
should have fairly good coverage. As to the benchmark setup, you may use C/C++, or scripture
languages like TCL/TK, PERL, etc. As this is more in the flavor of an open topic, your final grade
will be based on your ideas, implementation workload, and testing mechanisms, etc. Especially,
your implementation should demonstrate fair workload worthy of a serious project in our graduate
class.

4.8 Design of Circuits for Sub-threshold Voltages

For ultra low power and portable applications, design of digital subthreshold logic has been inves-
tigated with transistors operated in the subthreshold region (supply voltage corresponding to logic
1, which is less than the threshold voltage of the transistor). In this technique, the subthreshold
leakage current of the device is used for computation. Standard design techniques suitable for
superthreshold design can be used in the subthreshold region. However, it has been shown that a
complete co-design at all levels of hierarchy (device, circuit, and architecture) is necessary to reduce
the overall power consumption while achieving acceptable performance (hundreds of kilohertz) in
the subthreshold regime of operation. Your goal in this project is to choose a suitable application,
such as an adder, multiplier, FFT module etc, and implement it using sub-threshold voltage logic.

Some references:

• A. Wang and A. Chandrakasan, “A 180mV FFT Processor Using Subthreshold Circuit Tech-
niques,” Proc. IEEE ISSCC, Feb. 2004, pp. 292-529.

• H. Soeleman and K. Roy, “Ultra Low Power Digital Sub-Threshold Logic”, Int’l Symp. Low-
Power Elect. and Design, Aug. 2009, pp. 94-96.

8



• H. Soeleman and K. Roy, “Digital CMOS Logic Operation in the Sub-Threshold Region”,
IEEE Great Lakes Symp. VLSI, March 2000, pp. 107-112.

• H. Soeleman, K. Roy, and B. Paul, “Robust Sub-Threshold Logic for Ultra-Low Power Op-
eration”, IEEE Trans. VLSI Sys., Feb. 2001, pp.90-99.

• B. Paul, H. Soeleman, and K. Roy, “An 8X8 Sub-Threshold Digital CMOS Carry Save Array
Multiplier”, European Solid State Circuits Conf., Sept. 2001. pp. 377-380.

4.9 Implement a Sub-threshold Voltage Cell Library

A standard cell library (SCL) contains the basic building blocks for designing an integrated circuit.
It has a fixed set of well-characterized logic blocks. Once an integrated circuit is built using
the library, the behavior of circuit can be determined based on information within the individual
cells from the library. This information includes parasitic capacitance, area, and delay. In order
to qualify as a standard cell library, it has to include NAND, NOR, inverter, and D flip-flops.
SCLs are commonly employed by Application Specific Integrated Circuit (ASIC) designers due to
robustness and flexibility of the library, resulting in quick turnaround times.

This purpose of this project is to build a low power standard cell library using sub-threshold
voltages. One direction is to base the library on the 45nm technology library available for the
course. Another possibility is to base it on a TSMC 0.18µ library (you would need to discuss this
with the instructor and sign an NDA). Your report should explain in detail how you created the
library. Some supporting material is available from past projects (see the reference below).

Some references:

• S. Sundareswaran, J. A. Abraham, A. Ardelea, and R. Panda, “Characterization of Standard
Cells for Intra-Cell Mismatch Variations,” ISQED, 2008, pp. 213-219.

• H. Soeleman and K. Roy, “Ultra Low Power Digital Sub-Threshold Logic,” Int’l Symp. Low-
Power Elec. and Design, Aug. 1999, pp. 94-96.

• H. Soeleman and K. Roy, “Digital CMOS Logic Operation in the Sub-Threshold Region,”
IEEE Great Lakes Symp. VLSI, March 2000, pp. 107-112.

4.10 Complex Arithmetic Functions (CORDIC)

In this class the implementation of adders and multipliers are discussed in detail. However, there
is no discussion of how complex functions are implemented. It would be grossly inefficient to use
Taylor series expansions for computing transcendental functions. Instead there are much better
representations, and CORDIC makes use of one particular representation, which allows sines and
cosines to be computed with nothing more than additions, shifts, and a single multiplication (by
a constant); it provides very high precision with very little computational cost (O(n) work for n
bits).

The text book talks about computing CORDIC in Chapter 8. And, note that the reference article
sidesteps the issue of approximability of angles by the sum

∑
i = N(−1)ai ·tan−12−i. The approach

works because tan−12−i < 2 · tan−12−(i+1), so each successive iteration yields an angle that is less
than half of what it was before.

9



References:

• http://en.wikipedia.org/wiki/CORDIC

• J. E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE Trans. on Electronic
Computers, 1959, pp. 330-334.

• S. Abdulla, N. Haewoon, M. McDermott and J. Abraham, “High Throughput FFT Processor
with no Multipliers” Proceedings, Int’l Conference on Computer Design (ICCD), 2009, pp.
485-490.

4.11 Hardware Accelerated Monte Carlo Simulation

In its simplest form, an option gives the purchaser the right to buy an object (which could be a
stock, or a commodity, we’ll assume stock for simplicity) for a fixed price at a given time in the
future. More generally, options exist wherein the purchaser can buy the commodity for a fixed
price at any point up to a given time, or at the lowest price up to the given time, etc.

When the purchase time is fixed, interest rates are constant, and the object price follows Brownian
motion, the Black-Scholes formula gives an analytical way to determine the fair price of the option.
This situation is rare, and analytical techniques do not exist for general option pricing.

Monte Carlo simulation can be used to get an idea of the fair price; it is computationally challenging,
and the goal of this project is to use hardware acceleration for pricing. It is most natural to use a
finite time step for the simulation.

One approach is to derive the exact distribution of the stock price. Given a distribution for a discrete
random variable X (the stock price), and a distribution for a discrete random variable Y (its change),
the distribution for X+Y is derived by convolving the two distributions – direct convolution can
get expensive (quadratic in the range of the two variables), and FFT-based convolution may be a
good way to proceed. You may want to consider various distributions for the increment, not just
binomial, but something with a heavy tail.

Another approach is to simulate a large number of trials, and determine a distribution based on
the trial outcomes.

Some references:

• http://en.wikipedia.org/wiki/Binomial_options_pricing_model

• P. Chalasani, S. Jha, and I. Saias, “Approximate Option Pricing,” Algorithmica, 1999.

• M. Capinski and T. Zastawniak, “Mathematics for Finance: An Introduction to Financial
Engineering,” Springer, 2003.

• R. Motwani and P. Raghavan, “Randomized Algorithms,” Cambridge University Press, 1995.

4.12 Synthesis of Niagara Processor Core

The intent of this project is to do a top-down design of a synthesizable block in the processor
core and to achieve low power. One of the following blocks in SPARC-T1 core from SUN will

10

http://en.wikipedia.org/wiki/CORDIC
http://en.wikipedia.org/wiki/Binomial_options_pricing_model


be used as a target module for this project: EXU (Execution Unit), LSU (Load Store Unit) and
IFU (Instruction Fetch Unit). You are expected to design it using 45nm technology. The project
activities will include reducing leakage and dynamic power, and estimating area.

References:

• http://www.opensparc.net/opensparc-t1/download.html

• www.opensparc.net/pubs/t1/docs/OpenSPARCT1_DVGuide.pdf

• users.ece.utexas.edu/~mcdermot/vlsi-2/OpenSPARCT1_Micro_Arch.pdf

4.13 On-silicon Delay Characterization

As variability increases, there is growing interesting in making adaptive chips, where parameters
such as supply voltage and body biases can be set post-manufacturing to overcome the effects of
parametric variation.

The goal of this project is to study the cost and accuracy of on-chip delay characterization struc-
tures. You should survey the state-of-the-art, as well as perform your own experiments.

For example, Dhar et al. introduce an adaptive voltage scaling controller that uses an inexpensive
ring oscillator to measure speed. There could be multiple ring oscillators placed throughout the
design. The gate delay would be approximated based on the delay of the nearest ring oscillator.

Another promising approach would be to implement delay characterization based on Razor by
Ernst et al. By using a shadow latch and comparator logic, Razor has mechanisms to monitor
when a delay error has taken place. In the context of an FPGA, a test input could run through the
CLB in successively faster clock cycles until there is a delay error. Additionally, neighboring CLBs
could perform the shadow latching and comparator logic need for Razor testing using existing CLB
resources. The test literature (International Test Conference, Fault-Tolerant Computing) would
also be a good places to review.

References:

• R. Tayade and J. A. Abraham, “On-chip programmable capture for accurate path delay test
and characterization,” Int’l Test Conf., 2008, pp. 1-10.

• S. Dhar, D. Maksimovic and B. Kranzen, “Closed-loop adaptive voltage scaling controller for
standard-cell ASICs,” Int’l Sym. Low Power Elec. and Design, 2002, pp. 103-107.

• D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. Kim and K. Flautner, “Razor:
Circuit-Level Correction of Timing Errors for Low-Power Operation,” IEEE Micro, vol. 24,
2004, pp. 10-20.

4.14 Comparison of Circuit Families

There are many kinds of circuit families used in digital systems. One of the famous logic families
is static CMOS. It has good noise margins, is fast, consumes relatively lower power, insensitive to
device variations, easy to design, and widely supported by CAD tools. Other circuit families are

11

http://www.opensparc.net/opensparc-t1/download.html
www.opensparc.net/pubs/t1/docs/OpenSPARCT1_DVGuide.pdf
users.ece.utexas.edu/~mcdermot/vlsi-2/OpenSPARCT1_Micro_Arch.pdf


also used for the high speed operation. For example, the dynamic circuit families were used in high
performance processors.

Compare Static CMOS, Pseudo-nMOS, CVSL, Dynamic, Domino, Dual-rail Domino, CPL, DCVSPG
and so on with different criteria: the number of transistors (area), static power consumption, ability
to cascade (compose), robustness, and the existence of dynamic nodes. Find suitable applications
for each of them by using HSPICE.

The textbook, Chapter 6 would be a starting point.

Mentor:

4.15 Logic Built-In Self-test (BIST)

With development of the VLSI technology, the process scale goes down. Moreover, the logic becomes
highly complex. In this situation, it is difficult to test the VLSI logic. It is because the test stimuli
through external pins of the chip cannot access to the internal logic of the chip completely.

Furthermore, the outputs of the complex sequential logic are determined based on its current state.
Thus, the complete test for the chip through its external pin may be impossible. To solve these
problems, several testing methods were suggested such as ad-hoc, scan and BIST. BIST has an
advantage against them, especially for complex systems on a chip. BIST is an inexpensive testing
method with the high fault coverage. The following picture shows a typical BIST system.

You could start with the information on test in the textbook. Some other references are:

• S. Hwang, J. A. Abraham, “Optimal BIST Using an Embedded Microprocessor,” IEEE ITC,
2002. pp. 736-745.

• A. Chatterjee and J. A. Abraham, “Test generation, design-for-testability and built-in self-test
for arithmetic units based on graph labeling,” J. Electronic Testing, 1999, pp. 351-372.

• R. Dandapani, J. H. Patel and J. A. Abraham “Design of Test Pattern Generators for Built-In
Test,” IEEE ITC, 1984, pp. 315-319.

• L.-T. Wang, C.-W. Wu and X. Wen, “VLSI Test Principles and Architectures: Design for
Testability,” Morgan Kaufmann, 2006.

12



• M. Abramovici, M. A. Breuer and A. D. Friedman, “Digital Systems Testing and Testable
Design,” IEEE Press, Piscataway, NJ, 1994.

4.16 Sequential Circuit Design

If one can design sequential logic which is 1.3x faster, this would represent 10%-15% performance
improvement. This is why minimizing sequential overhead is important in pipelined systems. Se-
quential circuits commonly used for synchronization in pipelines are flip-flops and latches.

The intention of this topic is designing your own optimized sequential elements. Please refer to
some sequential logic such as hybrid-latch flip-flop, semi-dynamic flip-flop and sense amplifier flip-
flop. You can characterize your circuit and measure its setup time, hold time, clock to Q delay,
data to Q delay, PDP and EDP.

Make an effort to design a low-power or high performance one. It will also be a good experience
for you to compare the latch based design and the flip-flop based design with your own elements.

References:

• S. Sundareswaran, R. Panda, J. A. Abraham, Y. Zhang and A. Mittal, “Characterization
of sequential cells for constraint sensitivities,” Int’l Symp. Quality Elec. Design, 2009, pp.
74-79.

• V. Stojanovic and V. G. Oklobdzija, “Comparaive Analysis of Master-Slave Latches and
Flip-Flop for High-Performance and Low-Power Systems,” IEEE J.SSC, 1999, pp. 536-548.

4.17 Implementation of AMBA3 AXI

The complexity of the embedded systems has increased dramatically, and they need a high speed
and smart bus system. The reason is that in an embedded system, the communication architecture
such as the bus plays an important role in orchestrating data and control signal transactions among
the system components. Recently, the AMBA 3 bus protocol was introduced by ARM Inc., and
it provides several advanced features, such as multiple outstanding requests, which accelerate its
system performance by reducing the bus-waiting time for each component.

The objective of this project is to design your own AMBA AXI interconnect. The AMBA3 AXI
bus system needs several elements such as decoder, arbiter, slave interface, and master interface. It
is very similar to the wishbone bus in that it is using a handshaking protocol. The following figure
shows the interface and interconnection of the bus system.

References:

13



• ARM Ltd., “AMBA R©AXI Protocol v1.0 Specification,” March 2004.

• ARM Ltd., “AMBA R©specification (rev2.0),” 1999.

• M. Posner and D. Mossor, “Designing Using the AMBATM3 AXITM Protocol,” Synopsys,
April 2005.

4.18 Specialized hardware for Artificial Intelligence

According to Wikipedia, an AI accelerator is a class of specialized hardware accelerator or computer
system designed to accelerate artificial intelligence applications, especially artificial neural networks,
recurrent neural network, machine vision and machine learning. This is a very broad and growing
topic. New accelerators are being proposed for different applications, for increased performance
and reduced power consumption.

In order to make the project feasible, the team should pick one class of accelerators and design
it (ideally using a Hardware Description Language, Verilog for example). A couple of very recent
tutorials (below) can serve are the start.

References:

W. J. Dally, C. T. Gray, J. Poulton, B. Khailany, J. Wilson and L. Dennison, ”Hardware-Enabled
Artificial Intelligence,” 2018 IEEE Symposium on VLSI Circuits, Honolulu, HI, 2018, pp. 3-6, doi:
10.1109/VLSIC.2018.8502368.

Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, Jeremy Kepner
“Survey of Machine Learning Accelerators” Arxiv:2009.00933.

14


	Introduction
	Timeline
	Details of Final Report
	Specifications
	Design
	User document
	Testing
	Optimization

	Project Topics
	SRAM with Sleep Transistors
	Divider
	Fast Fourier Transform Kernel
	All Digital PLL
	Design of Robust CMOS Circuits for Soft-error Tolerance
	FIR Filter
	On-chip Interconnection Network
	Design of Circuits for Sub-threshold Voltages
	Implement a Sub-threshold Voltage Cell Library
	Complex Arithmetic Functions (CORDIC)
	Hardware Accelerated Monte Carlo Simulation
	Synthesis of Niagara Processor Core
	On-silicon Delay Characterization
	Comparison of Circuit Families
	Logic Built-In Self-test (BIST)
	Sequential Circuit Design
	Implementation of AMBA3 AXI
	Specialized hardware for Artificial Intelligence


