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Perturbation-Based Computing for Next-Generation
Embedded IT Targeted at Emerging Nanoelectronics

Andrey Zykov, Margarida Jacome, and Gustavo de Veciana
Department of Electrical & Computer Engineering

The University of Texas at Austin

Abstract—This paper makes the case for perturbation-based
computational models as a promising choice for implementing
next generation ubiquitous information technology on unreliable
nanotechnologies. We show the inherent robustness of such
computational models to high defect densities and performance
uncertainty which, when combined with low manufacturing
precision requirements, makes them particularly suitable for
emerging nanoelectronics. We propose a hybrid eNano-CMOS
perturbation-based computing platform relying on a new style
of configurability that exploits the computational model’s unique
form of unstructured redundancy. We consider the practicality
and scalability of perturbation-based computational models by
developing and assessing initial foundations for engineering such
systems. Specifically, new design and decomposition principles
exploiting task specific contextual and temporal scales are pro-
posed and shown to substantially reduce complexity for several
benchmark tasks. Our results provide strong evidence for the
relevance and potential of this class of computational models
when targeted at emerging unreliable nanoelectronics.

Index Terms—Nanotechnology, Real time systems, Signal pro-
cessing

I. INTRODUCTION

Advances in the synthesis and self-assembly of nanoelec-
tronic devices suggest that the ability to manufacture dense
nanofabrics is on the near horizon [1], [2], [3], [4], [5], [6],
[7]. Yet, effective ways of utilizing emerging nanoelectronic
technologies still elude us. The tremendous increase in device
densities afforded by nanotechnologies is expected to be
accompanied by substantial increases in defect densities, per-
formance variability, and susceptibility to single event upsets
caused by cosmic radiation (energetic neutrons) and alpha
particles [2], [8], [5]. System-level design adhering to cur-
rent computational models may thus soon reach fundamental
scaling limits, where the increased densities are countered by
overheads associated with achieving defect- and fault-tolerant
designs that are robust to performance variability [8], [9], [10],
[11]. Thus, it is critical to consider and explore alternative
computational models that can operate under such difficult
conditions.

Additionally, the nature of next generation ubiquitous in-
formation technology (IT) – including many challenging real-
time streaming media applications, such as voice and image
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recognition, as well as a myriad of automation/control and
robotics applications – also calls for rethinking current compu-
tational models and associated design paradigms. Specifically,
in order to enable the massive embedded systems’ deployment
required by next generation ubiquitous IT, it is imperative
to rely on low design cost/complexity platforms that can be
easily configured to implement the many tasks at hand, with
acceptable performance. Unfortunately, the cost and complex-
ity of system-level design adhering to current computational
models continues to increase dramatically, conflicting with
these requirements.

Contributions. In this paper, we investigate a promising new
class of non-Turing computational models, called perturbation-
based, and show its potential to synergistically address the
two sides of the complex system design equation: technology
and applications. Our argument on the suitability of this
computational model for next generation IT systems targeted
at nanotechnologies is based on five main points – the first
three relate to technology issues while the remaining address
system-level design and application issues. Specifically, as will
be seen, the suitability of perturbation-based computing for
emerging nanoelectronics (‘eNano’) technologies is predicated
on: (1) its reliance on a computational core that can, to a
large extent, be ‘randomly assembled’, thus relaxing strict
manufacturing precision and stability requirements; (2) its
inherent tolerance to manufacturing defects or hard faults –
these become simply part of the (desirable) randomness in
the structure of the computational core; and (3) its natural
robustness to structural noise caused by performance vari-
ability/fluctuations, which, as will be seen, can be effectively
‘filtered out’ during the task-dependent machine configura-
tion phase. These three points make perturbation-based com-
puting very promising for technologies exhibiting the high
defect densities and substantial performance and structural
uncertainty projected for emerging nanoelectronics. At the
same time, characteristics of perturbation-based computing
that make it promising to address the challenges and needs
of next generation IT systems, include: (4) its suitability for
implementing the many soft real-time stream processing and
reactive control tasks that will comprise such systems; and
(5) the limited design effort required, in that, as we will
show, this computational model can be realized/implemented
on configurable platforms, usable for many different tasks.

To establish the promise and potential of perturbation-
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based computing, this paper proposes a novel hybrid eNano-
CMOS platform for realizing such machines – as will be seen,
the platform relies on a new style of configuration that, we
believe, can directly leverage the strengths and circumvent the
limitations of technologies characterized by high density but
also high structural and performance uncertainty. We further
identify and demonstrate a new set of fundamental design
principles and decomposition strategies which are effective for
perturbation-based computing platforms, and propose a multi-
core machine architecture which exposes these principles. The
importance and impact of this second set of contributions lies
in establishing that this new class of computational models will
scale and is amenable to systematic design, two key practical-
ity concerns. These points are empirically demonstrated for
a representative set of soft real-time processing tasks from a
variety of domains.

To perform these experiments, we substantially enhanced a
publicly available simulation tool [12], so that it could support
the large variety of machine configurations relevant to our
study, including: (1) distinct computational core realizations
(e.g., using different processing nodes and/or connectivity
constraints); (2) operation in discrete and continuous time;
and (3) multi core machines organizations, exposing multi-
ple/differentiated core dynamics – see Sections II and IV for
details.

Note that the class of computational models investigated
in this paper was recently discovered, independently, by two
research groups [12], [13]. Yet, their work was driven by
research pursuits and objectives quite different from those
in this paper. Section V gives details on such prior work
and establishes the uniqueness and novelty of our paper’s
contributions.

Organization. The remainder of this paper is organized as
follows. Section II provides background on perturbation-based
computational models. Section III introduces our proposed hy-
brid eNano-CMOS configurable platform and makes the case
for its use for next generation IT. Section IV presents a novel
set of design and decomposition principles for perturbation-
based computing, a machine architecture exposing such prin-
ciples, and demonstrates their effectiveness using concrete
experimental data. Section V contrasts the work presented in
this paper to relevant previous contributions, and Section VI
concludes with a discussion on future work and challenges.

II. BACKGROUND: THE PRINCIPLES OF
PERTURBATION-BASED COMPUTING

Key idea. Perturbation-based computational models are
ideal for implementing complex non-linear filters (operators)
associated with real-time information processing. The key idea
is to perform a non-linear projection of the input stream into a
high dimensional space using a complex dynamical system. If
the pool of dynamics capturing information about current and
past stimuli is sufficiently rich, any desired non-linear filtering
task’s output(s) can be derived, or ‘composed’ from it. Below
we develop this basic idea in a more rigorous manner.

Mathematical foundations. The fundamentals of
perturbation-based computational models can be traced
back to a result of Boyd and Chua on approximating time
invariant nonlinear operators that have fading memory[14].

Fig. 1. A Perturbation-based machine.

Namely, they showed that such operators on bounded
Lipschitz continuous (i.e., slew limited) inputs can be
approximated arbitrarily closely by a finite Volterra series
operator. As informally stated by Volterra, see [14], the fading
memory1 requirement means that “the influence of the input
a long time before the given moment gradually fades out.”

Maass [12], one of the original proponents of this com-
putational model, essentially re-states the above result for
multidimensional inputs, as follows: a continuous, multidi-
mensional time invariant operator F : R

R
n

→ R
R

k with fading
memory can be approximated arbitrarily closely by an operator
F m : R

R
n

→ R
R

k consisting of two elements [12]. The first is
a finite set of basis operators Dm =< O1, · · · , OM > where
Oi : R

R
n

→ R
R are selected from any family O of opera-

tors with fading memory satisfying the pointwise separation
property. This requires that O have sufficient ‘discriminating
power’ – specifically, given any two distinct inputs u, v, there
exists an operator O ∈ G such that Ou 6= Ov. There are many
families of operators satisfying this property, including: the
class of all delay operators Uτ where Uτu(t) = u(t− τ); the
class of all linear operators with exponential impulse responses
h(t) = e−at, with a > 0; and the class of non-linear operators
defined by standard models for dynamic synapses [12]. Given
an input u ∈ R

R
n , we let xm(t) ∈ R

m denote the vector
output of these operators at time t, i.e.,

xm(t) = (Dmu)(t) =< (O1u)(t), ..., (Omu)(t) > .

The second element is a memoryless polynomial readout
function fm, or approximation thereof. The output at time
t is denoted by y(t) ∈ R

R
n and given by a composition of the

set of operators and the memoryless function :

y(t) = fm(xm(t)) = fm((Dmu)(t)).

Additionally, one can show that the discrete time counterpart
of this problem is fairly simple, in that the approximation can
be realized by a simple nonlinear moving average operator
[14].

Perturbation-based machines. Fig. 1 symbolically depicts
a perturbation-based machine M . As can be seen, it maps

1Formally, an operator with fading memory satisfies a slight strengthening
of the natural continuity condition. Specifically, an operator is said to be
continuous if input signals that are close (i.e., have a small peak deviation
over all past time) have present outputs which are also close. However, in the
case of an operator with fading memory, it suffices for the inputs to only be
close in the recent past for the outputs to be close [14].
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an input function u(·) to an output function y(·), relying on
two key components: a high dimensional dynamical system,
implementing the machine’s computational core DM , and an
output stage fM . The key premise underlying perturbation-
based computing is that, by using computational cores realized
by sufficiently complex, even random, dynamical systems, one
can essentially project inputs over a sufficiently large family
of basis operators for any given set applications and desired
approximation level [12]. A machine’s DM is thus a dynamical
system realizing a very large pool of candidate operators,
while the abovementioned Dm denotes a specific set of basis
operators required for a given approximation. As such, the
same computational core DM can be used in realizing various
tasks. The output stage is the task dependent part of this
machine, playing the role of both selecting and composing
the ‘relevant’ basis operators through a memoryless function.

As shown in Fig. 1, the computational core DM generates
an internal state xM (t), corresponding to a causal response
to the input u. This is a non-linear projection of the input
stream on a high dimensional space, generated by exciting
the dynamical system associated with DM . Note that no
stable internal states are required in the computational core,
it suffices to generate a sufficiently rich pool of transient
dynamics. As such, one can say this computational model is
non-Turing – a key departure from conventional computational
models. The output stage fM maps the internal transient state
to a specific output.

Performance limits and approximation. Based on Boyd
and Chua’s fundamental result, Maass established that
perturbation-based machines have universal computing power
– that is, machines operating ‘natively’ under this compu-
tational model can approximate arbitrarily closely any time
invariant fading memory operator [12]. Still, although Boyd’s
result tells us that the number of basis operators required
by any such approximation is finite, it says nothing about
how many such operators may be required in each case. If
very high precision is required, the number of operators may
be relatively high for certain tasks. It is however important
to note that such cost/accuracy tradeoffs may be of interest
in certain applications. Indeed the proposed computational
model is inherently based on realizing approximations, so,
with the exception of very simple functions/operators, it is
not expected that to operate without error. Thus we target
applications where this is unacceptable, and in fact presents
an opportunity to tradeoff error rate against other costs, e.g.,
manufacturing cost, power consumption etc. An example of
such a task would be real-time searches for block matching
across video frames, a task which is essential in video com-
pression. When the best match is missed, the algorithm does
not fail, instead a temporarily lower compression rate results.
Another class of applications involves systems with feedback,
where occasional errors can be subsequently compensated
via feedback resulting in an overall negligible effect. Real-
time multimedia processing and control applications will be
a pervasive and important subset of the emerging classes
embedded information processing infrastructure.

Modeling perturbation-based machines. In practice, the
dynamical system comprising the machine’s computational

Fig. 2. Computational core and output stage of a small discrete-time
perturbation-based machine.

core, DM , can, for example, be realized by a complex (ran-
domly generated) recurrent network of non-linear operator
nodes [12], [13]. In fact, given the rich pool of dynamics
generated by such networks, the machine’s task dependent
output function can, in general, be quite simple, e.g., linear.
Accordingly, for all experiments reported in this paper, only
linear readout maps were considered. As such, we have used
standard linear techniques to determine appropriate output
functions: linear regression for tasks with real-valued outputs,
and linear classification for discrete outputs [15].

Relying on the formal definition and broad principles given
above, one can still build many variants of a perturbation-based
machine, e.g., operating in discrete or continuous time, relying
on different types of non-linear nodes, etc. For illustrative
purposes, Fig. 2 shows an instance of a perturbation-based
machine operating in discrete time, where each of the core’s
nodes apply a sigmoid function (scaled to the range [−1, 1])
to a weighted sum of their inputs. Due to space limitations,
we depict a very simple computational core comprised of
a recurrent network with only 4 nodes. (For the actual ex-
periments reported later in the paper, much larger sparse
incidence matrices defining the connections and weights of the
corresponding recurrent networks were randomly generated.)2

As shown in Fig. 2, the next state of the computational core
(i.e., of each of its nodes xM

i
(n)) is computed based on the

core’s previous state and the current inputs. In turn, the task
dependent linear readout function at the machine’s output stage
is defined by assigning a corresponding weight (in the picture,
denoted ki for node ni) to each of the core nodes.

Representative perturbation-based machine. Most exper-
imental results presented in this paper were generated by
simulating machines operating under the discrete time model
illustrated in Fig. 2. This model is very similar to the ECHO
model proposed in [13], except that in our case: (1) node-to-

2Note that in order to avoid chaotic behavior, such randomly generated
sparse matrices were then scaled, so that the absolute magnitude of the
maximum eigenvalue is 0.95, see details in [15].
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Fig. 3. Average task error rates for a pool of machines with randomly
generated computational cores, operating under ECHO-like and LSM models.

node connections within the computational core where gener-
ated introducing a strong bias towards local connections, so as
to reflect practicality concerns3; and (2) there is no feedback
loop projecting the output back to the computational core,
as in the standard ECHO model. This machine is somewhat
abstract, since the sigmoid non-linearities would be complex
to implement in practice. We also experimented with another
radically different network and node model, based on leaky-
integrate-and-fire nodes operating in continuous time, as in
[12] – we refer to this as the LSM model. The performance
results in Fig. 3 exhibit the error rates for the LSM and ECHO-
like models, across several tasks. (The set of benchmark tasks
and experimental methodology are detailed in the Appendix.)
As can be seen, we systematically obtained equivalently good
results, supporting our claim that the specifics of the internal
network dynamics are not of great importance, as long as they
are sufficiently rich. Since simulation of discrete machines
with sigmoid nodes is much faster, subsequent results in this
paper will be based on our ECHO-like model [13], which we
deem to be broadly representative.

III. A HYBRID ENANO-CMOS CONFIGURABLE
PLATFORM FOR PERTURBATION BASED COMPUTING

Proposed configuration paradigm. Perturbation-based com-
putational models enable a new configuration paradigm that
is uniquely suited for technologies characterized by high
densities and high manufacturing and performance uncertainty.
As mentioned earlier, our intent is not to design dynamical
systems to realize specific base operators for a given task.
Instead, we propose to embrace the inherent uncertainty
intrinsic to nanoscale technologies, and generate a random
pool of candidate basis operators which is sufficiently rich
to approximate the task at hand. The proposed configuration
paradigm is thus as follows: design machines with dynamical
systems which provide a large pool of possible basis operators,
and then select/discover the subset needed to approximate the
task of interest. Extensive empirical data generated by Maass,
Jaeger, and others, including ourselves, shows that randomly
generated complex recurrent networks provide sufficiently rich
pools of base operators – see experimental results below.
Note that in the aforementioned experiments, connections and

3Concretely, when generating a machine core, we embed its corresponding
nodes on the integer points of a 2D or 3D grid. Then, as done in [Maass],
relying on the resulting Euclidian distances between core nodes, we ran-
domly choose connections between them, using a probability low favoring
shorter/local connections.

Fig. 4. Hybrid eNano-CMOS configurable platform for perturbation-based
computing.

weights amongst nodes in recurrent networks were randomly
generated, yet the effect of structural uncertainty can be
further incorporated into heterogeneity in the non-linearities
associated with nodes themselves.

From function to functional approximations. Typical ap-
proaches to function/classifier approximation are based on
selecting a good approximation from a parameterized set of
functions. In general selecting the best approximation may
involve solving an optimization that is not necessarily convex,
i.e., may have local minima. A typical example is multi-level
perceptron. When gradient descent is used to train it, one
can end up in some local minimum. A special case is that
where approximations are based on weighted combinations
of a set of finite set of possibly nonlinear basis functions.
With typical approximation costs, and a linear dependence
the weights a unique solution can be determined via gradient
descent with a hardware friendly implementation. In principle
one could consider taking linear combinations of random basis
functions. In this case one can still argue training would
converge to a global minimum. Though we can not expect
very high approximation accuracy if complex functions are
being approximated, or the sample space of basis functions
is not sufficiently rich. The usefulness of this approach lies
elsewhere; in its simplicity, generality, and the potential to
make it hardware friendly. When faced with the task of approx-
imating or learning dynamics, i.e., functionals or operators,
one can use a similar approach. The random basis functions
are now replaced by random basis operators that are used to
approximate desired operator using linear combinations. One
can not expect very high approximation accuracy of complex
operators at small cost. Yet the basic approach can be used
as general building block to implement such operators using
higher level techniques (e.g. using hierarchical task structure
or some other structure). The realization of such functional
approximations based on randomly assembled networks, i.e.,
sets of basis functions, is the key idea in this paper.

Hybrid platform. Given the previous configuration
paradigm, we propose the use of a hybrid eNano-CMOS
platform for perturbation-based machines, where the ma-
chine’s computational core is implemented on an emerging
nanoelectronic fabric while CMOS is used to implement the
simple (e.g., linear) read out function at the output stage
and support the machine configuration/training process. Fig. 4
shows an abstract view of such a platform, with the key
basis operators in the pool highlighted in bold. Clearly,
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Fig. 5. Average and standard deviation of task error rates obtained for a pool
of machines with randomly generated computational cores of a target size.

this platform can directly leverage the formidable densities
achieved by nanotechnologies to create computational cores
of essentially arbitrary size. Furthermore, since the recurrent
networks used to implement such dynamic systems would in
principle be ‘randomly’ assembled, the need to design and
precisely manufacture structured circuits is to a large extent
circumvented. Fig. 5 empirically supports this argument. It
shows that, given a benchmark task, machines with randomly
generated computational cores of a similar (sufficiently large4)
size exhibit negligible variation in their ability to perform the
task, i.e., have essentially the same computational power –
assessed based on task error rates. Details on the experiment’s
eight benchmark tasks and experimental methodology are
given in the Appendix.

The proposed approach requires one to perform a training
step for each chip. This is indeed a costly requirement. Yet
these overheads might be ‘similar’ to those associated with
typical defect tolerance approaches. Indeed the typical require-
ments in the latter are to detect, i.e., map out, defects for each
chip and then resynthesize the function to avoid defects. Defect
mapping is typically done using test patterns that are either
obtained/generated off chip or stored on chip. Resynthesis
involves reprogramming the function around the defects on the
chip. In our case rather than defect mapping and resynthesis
steps we require a training step. Such training will involve
access to input-output pairs that can also be provided either
off-chip or on-chip. A comparison of the cost of mapping an
resynthesis vs training is at this point premature.

Robustness to structural uncertainty: defects and per-
formance variability. Another important advantage of this
computational model is that defective nodes in the compu-
tational core are naturally circumvented when the relevant
basis operators are selected during the configuration process.
Accordingly, the high density of hard defects projected for
nanotechnologies would simply become an integral part of the
structural heterogeneity of the recurrent network(s) implement-
ing the cores, posing no harm to the eventual performance of
the machine.

As will be shown, dynamic performance variability, which
is intrinsic to nanoscale regimes, is also naturally tolerated by
perturbation-based machines. Such variability is likely to be
observed in the operation of, both, nodes and interconnects
and should can be viewed as additional ‘run-time’ structural

4See the Appendix for a discussion on the core sizes selected for this
experiment.
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Fig. 6. Average task error rates for a pool of machines with randomly
generated computational cores, operating under three noise regimes.

noise impacting the ‘nominal’ response of each element
defined upon fabrication.5 Accordingly, we assessed machine
performance (task error rates) in the presence of structural
noise resulting from dynamic performance variability in the
computational core. Fig. 6 exhibits results for the following
three noise regimes (assuming identical core sizes in all cases):

Scenario 1: no noise, serves as our baseline.
Scenario 2: zero mean additive (uniformly distributed) white
noise affecting all nodes of the machine’s processing core,
intended to model signal perturbations resulting from device
and interconnect variability. Level of noise is within 1% of
the actual signal range.
Scenario 3: same as above, with noise ranging within 2% of
the actual signal range.
Scenario 4: same as above, with noise ranging within 4% of
the actual signal range.

As can be seen on the top in Fig. 6, even for the highest
noise level, the error rate increases are in most cases fairly
small for identical core sizes, supporting our claim that this
computational model operates well under this type of persis-
tent performance variability. Furthermore, on the bottom in
Fig. 6 we show how the error rate increases for tasks which
were not robust to noise can be dramatically reduced by simply
increasing core size and density of connectivity – in this case
by a factor of two and three, respectively. Thus, the design
of cores can mainly rely on proper broad sizing of the core’s
network to achieve the desired reliability under performance
uncertainty – we refer to this as ‘unstructured redundancy.’
This should be contrasted with the design complexity asso-
ciated with the structured redundancy required by machines
operating under traditional computational models.

5Indeed, at such reduced scales, the discrete nature of atomic matter and
charge becomes significant, and nanodevices and interconnects will exhibit
great sensitivity to fluctuations in the local electrostatic environment, e.g., even
a single charge may significantly impact a nanodevice’s timing/performance.
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Fig. 7. Multi-core machine architecture.

IV. A MACHINE ARCHITECTURE FOR
PERTURBATION-BASED COMPUTING

So far our discussion of perturbation-based machines as-
sumes that they would contain a single monolithic compu-
tational core, yet in what follows we show that the overall
flexibility and scalability of this computational model can
be greatly enhanced by considering machine architectures
incorporating a multi-core organization, see e.g., Fig. 7.

Proposed multi-core machine architecture. A shown in
Fig. 7, we envisage an architecture that has multiple com-
putational cores (i.e., reservoirs of dynamics) of one or two
basic standard sizes, and where the dynamics’ speed of the
cores can be tailored to specific classes of applications. Ac-
cordingly, each core has a rate parameter, τi, representing
the inherent speed of its dynamics, e.g. for a discrete system
it might simply correspond to slow updates, whereas for a
continuous system corresponds to the dynamics’ relaxation
time. The importance of this parameter will become clear in
the sequel. Additionally, as shown in the figure, each core can
be individually excited by a subset, or all, of the inputs, and
may access state information from other (neighboring) cores,
through a strong or weak coupling. Finally, the task’s readout
function in the output stage may rely on state from all or just a
subset of the computational cores. In the sequel, we illustrate
a number of different machine configurations along with basic
decomposition principles.

Combined core size and computational power. Consider
first a perturbation-based machine comprised of a single
monolithic computational core. As one would expect, the
computational power of such a machine can be enhanced by
increasing the size of its computational core, thus creating a
richer pool of operators. Experimental results for monolithic
machines shown in Fig. 8 (denoted by an m in the figure’s
legend) illustrate this – as can be seen, machine performance
for a set of benchmark tasks improves with the size of the
underlying computational core, until it nearly saturates, once
a sufficiently rich pool of dynamics is generated.6 In addition,
Fig. 8 shows the same set of results, but now generated using
a multicore machine (denoted by c in the legend) with a

6After this saturation point, increasing accuracy relying strictly on the
random nature of the computational core, becomes increasingly expensive.

Fig. 9. Vision task: predicting object movement on an 8x8 array of sensors.

combined core size identical to that of the original monolithic
machine – in this experiment, each individual core has 100
nodes, and thus a 200 node machine uses two cores, a 400 node
machine uses four, and so forth. Furthermore, a decoupled core
configuration was adopted, i.e., the internal state of a core is
not accessed by any other core. As can be seen in Fig. 8,
the performance of the multicore machines is essentially the
same of the monolithic core machines, suggesting that one
may create flexible platforms with many small cores, and
then use/configure only those necessary to achieve the required
computational power for the task(s) at hand.

Note further that, depending on the task, simply increasing
the combined core size, even before the saturation point
alluded to above is reached, may be a poor design strategy, and
may also unnecessarily bound the practically attainable task
accuracy. That is, task performance may be more effectively
enhanced by imposing a more suitable alternative decomposi-
tion on the multiple computational cores.

Core decomposition driven by inherent structural/physical
locality characteristics of a task. For some real-time process-
ing tasks, there is a natural partition of inputs into subgroups
which are known a priori to capture features whose dynamics
need not have a strong interaction in performing the resulting
task. Observe that this does not mean that the output does
not depend jointly on all input subgroups, but rather that
relations between the intrinsic dynamics of the input subgroups
are essentially ‘independent’ features on which the readout
function should draw. When this is the case, rather than jointly
project all input streams into a common set of shared cores,
it is more computationally effective to feed these inputs into
separate subsets of cores which are only weakly connected, if
at all.

Task 8 is used to illustrate the effectiveness of this decom-
position principle, and how it can be applied in practice. This
is a motion prediction benchmark – a moving object crosses an
8× 8 field/array of sensors, with a random but constant speed
and direction – see Fig. 9, where we use color intensity to
represent the percentage of each sensor field currently covered
by the moving object [16]. With equal probability, the object is
a ball or a bar. The task is to predict the readings of the inner
6 × 6 array of sensors, one step in advance. We performed
two experiments for this task, one where the machine has a
single monolithic core and a second where it has multiple
cores. The monolithic core has 16×16×3 nodes (totaling 768
nodes) [16]. In turn, reflecting the structural characteristics of
the sensor field in Task 8, the multi core machine comprises
one core per sensor – thus a total of 64 cores with 2 × 2 × 3
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Fig. 8. Test error rates for benchmark tasks, considering monolithic core machines (‘m’) with increasing core sizes, and multi-core machines (‘c’) with the
same combined core sizes.

nodes each – giving the same total of 768 nodes. Each small
core is weakly connected to its four nearest neighbors in the
grid, receives only its own local input, i.e., the corresponding
sensor reading, and outputs the next step reading prediction
for that sensor. For simplicity, our predictions consider only
two possible values: ON, corresponding to most of the sensor
field (i.e., > 60%) covered by the object at the next time step;
or otherwise OFF. All cores operate at the same speed.

For this experiment, the monolithic core machine gave test
error rates of 2.55% for ON predictions and 0.10% for OFF
predictions, while the multi core machine gave test error rates
of 2.63% for ON predictions and 0.10% for OFF predictions,
i.e., delivered similar performance to that of the machine with
the large monolithic core. The advantages of this arrangement,
from a scalability and efficiency standpoint, should be clear,
in particular if one considers larger fields of sensors.

Core decomposition driven by task dynamics which are
‘nearly decomposable’. It is not unusual for real-time dy-
namical systems to exhibit a ‘nearly decomposable’ structure
[17]. For example, the input streams might be divided into
subgroups associated with characteristics that are varying on
different timescales. In this case, rather than directly mixing
input streams with different timescales in shared cores, it may
be more effective to structure the computational resources
to reflect the task at hand. For example, consider a system
with two intrinsic dynamical time scales, a fast and a slow
one. If, from the perspective of a task, these characteristics
were independent, i.e., decomposable, then one might feed
associated inputs into independent sets of cores and allow the
readout function to draw from the two types of reservoirs.
Alternatively, one might have fast dynamics which are con-
ditioned on slow dynamics in a system. In other words, the
slowly varying input characteristics set the broader ‘context’
for fast varying characteristics of the system. If such a time
scale decomposition is not performed, one may (unnecessarily)
require a very large pool of dynamics, operating at the fastest

Fig. 10. Three robot navigation tasks on T-Maze: Task 5 (light at position
1), Task 6 (light at position 2), and Task 7 (light at position 3).

speed, in order to achieve good performance, whereas a set of
properly interconnected small cores operating at multiple time
scales could provide a very effective set of projections for the
task at hand.

Below, we present results for an experiment illustrating
the scalability enhancements one can achieve via this unique
type of decomposition. We consider the classical T-maze robot
navigation task – as shown in Fig. 10, the task is to have a
robot (Khepera [18]) navigate to end 1, if light is on, otherwise
go to end 2. The initial robot position (in the start region) is
randomly selected. The task inputs and outputs are the robot’s
16 sensor readings (8 light and 8 proximity sensors), and the
speeds of its two wheels, respectively. Three benchmark tasks
– 5, 6 and 7 – have been defined, each corresponding to a
different position of the light. Namely, as shown in Fig. 10,
for Tasks 7 and 6 the light is at the very beginning and at some
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intermediate point of the corridor, respectively, while for Task
5 the light is at the T-junction, i.e., right at the decision point.

Before presenting the results of this key decomposition
experiment, it is important to introduce an additional notion
critical to this work – yield – which is defined for a given
machine configuration, target task, and desired performance.
Recall that, in Fig. 5, for example, we considered eight
benchmark tasks, and presented the corresponding average
and standard deviation of their error rates, derived for a pool
of machines with randomly generated computational cores
of a given target size. As indicated, for that experiment the
target core sizes were chosen to be large enough so as to
saturate performance. That is, any core size increases beyond
their associated values would not enhance task performance
in any substantial way, thus ensuring low variability on task
performance across our randomly generated machine pools
(more details are given in the Appendix).

Yet, rather than design up front such a large/costly machine,
one may choose instead to use smaller computational cores and
accept a lower yield for the task of interest – that is, given the
target task and desired performance, one may be willing to dis-
card a certain percentage of machines (in the random pool) that
are unable to deliver the required performance. It should be
clear from our previous discussions that by limiting the size of
the computational core, certain machines within a random pool
may not be configurable to deliver the desired performance.
Still, the relevance/attractiveness of explicitly considering such
yield-related tradeoffs is the possibility of using smaller and
least costly machines to execute the tasks of interest, while
meeting the required performance. Thus, by incorporating this
additional design space exploration dimension – yield – we
can provide more insightful experimental results for this class
of machines.

Accordingly, given a machine configuration, target task, and
desired performance, in the sequel we refer to the percentage
of machines that can deliver the desired task performance
(when a large pool of such machines is randomly generated)
as yield. Let us now return to the T-maze experiment. We
present results considering two performance targets (less than
2% error rate (ER), and less than 10% ER), and two yield
points (75% and 50% of the machines in the random pool
generated for the selected configuration are able to deliver the
required performance or ER).

We first assessed the performance of monolithic core
perturbation-based machines, for the three T-maze tasks. For
Task 5, we found that machines with a relatively small
computational core (comprising 75 nodes) were able to deliver
the top performance target (‘less than 2% error rate’), with a
yield of 75% (the maximum yield point considered in this
experiment). Furthermore, we found that a smaller machine
configuration (comprising only a 50 node core), was still able
to deliver our top performance (‘less than 2% error rate’),
yet with a decreased yield of 50% (our second/lower yield
point). Thus, for this smaller configuration, only half of the
machines (rather than two thirds) would operate within the
desired target error rate of 2%. Our experiments also showed
that this same small configuration (with a single 50 node core),
was able to deliver our lower performance point (‘less than

10% error rate’), with an improved target yield of 75%. This
set of experimental results clearly illustrates the richness of
the yield-related tradeoffs introduced above.

We now present and discuss the results obtained for Task 6 –
with the light placed at some intermediate point of the corridor
(see Fig. 10). In contrast to Task 5, much larger core sizes were
consistently required to achieve similar performance and yield
targets. For example, to deliver our lower target performance
(‘less than 10% error rate’) with our max yield point of 75%,
a machine configuration comprising a single core with 300
nodes was required by Task 6 – this should be contrasted
with the 50 node core required by Task 5. In turn, to deliver
our top target performance (‘less than 2% error rate’) with the
low target yield of 50%, a machine configuration comprising
a single core with 600 nodes was required by Task 6 – in
contrast to the much smaller Task 5’s 50 node core. Note
further that we are unable to give concrete numbers for Task
6’s top performance and yield points (i.e., ‘less than 2% error
rate’ with a 75% yield), since we performed experiments only
with core sizes of up to 1000 nodes, and those targets were
not met even by machines with such large core sizes – while
Task 5 required cores with only 75 nodes.

Finally, for Task 7, with the light placed at the very
beginning of the corridor (see Fig. 10), we were not able to
achieve any of our selected performance vs. yield points, even
for a machine with 1000 nodes. The problem is that, as the
distance from the light to the T juncture increases, even a
large machine with a single 1000 node computational core is
not able to ‘remember’ the state of the light when the robot
reaches the decision point. As empirically demonstrated by the
experiments shown in the beginning of this section, a multi-
core machine with merely a combined core size identical to the
maximum monolithic one indicated above (i.e., 1000) would
deliver a similar performance, and thus not address the very
poor performance observed for Task 7.

To address this issue, for Tasks 6 and 7 we considered alter-
native machine configurations with two processing cores, each
with a different τ parameter. One of the cores is responsible for
the ‘larger scale’ context (or slower dynamics) associated with
the task, i.e., ‘remembering’ the light and what to do in both
cases, while the other core takes care of immediate (or fast
dynamics) navigation decisions, i.e., staying away from the
walls of the corridor while moving forward. The slow core is
excited by the robot’s light sensors only, whereas the fast core
is excited by the light and the proximity sensors as well as the
slow core. The task’s readout function, which is responsible
for generating the speed of the two independent robot wheels,
relies only on state from the fast core.

Fig. 11 summarizes the results delivered by such decompo-
sition for Task 7 (the ‘harder’ task). The top graph of Fig. 11
gives the combined core size of several machine configurations
capable of delivering our top performance point (error rate
under 2%) with a yield of 50% and 75%. Namely, for each
slowdown factor in a range from 30 to 100 (corresponding
to a different τ parameter), the graph gives the size of the
smallest machine configuration that can deliver an error rate
under 2% with the particular yield. In turn, the bottom graph
shows those same combined sizes, but now for our lower target
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Fig. 11. Size of double core machines for T-maze task T7, considering
different relative core speeds, and different target performances and yields. On
all experiments, the size of the fast core is 200 nodes. The top and bottom
figures show the combined core sizes required by machine configurations
exhibiting a target error rate (ER) of less than 2% and 10%, respectively, as
the slowdown factor of the slower core increases.

performance point (error rate under 10%). The enhancement
in efficiency and compute power achieved by such dual-core
dual-dynamics machines is remarkable – for example, as can
be seen in the top graph, a machine provided with a fast
and a 40 times slower cores with only 200 and 50 nodes,
respectively, can achieve the target 2% error rate for Task
7 (the ‘harder’ task) with a yield of 75%. Recall that, by
contrast, the error rates delivered by a 1000 node single core
machines for this task were extremely high. This represents a
dramatic improvement in task performance and reduction core
size empirically supporting the effectiveness of the proposed
decomposition.

The results in Fig. 11 give us other interesting insights.
Namely, as we can see in the top graph of the figure, as
we move below 40, towards ‘small’ slow down factors, the
required size for the slow computational core increases, as
one would actually expect – ultimately, as the slow down
factor reaches 1 (denoting both cores operating at the same
speed), we would need a combined size essentially identical to
that of the monolithic core configuration previously discussed.
In contrast, as one moves right, towards ‘large’ slow down
factors, the size of the core decreases, until it stabilizes into
one that is large/rich enough for the dynamics that need to
be captured. Beyond those basic trends, making more precise
assessments on what would be the best size vs. slowdown
factor (e.g., in terms of resulting core activity, cost, etc.)
would be more sensitive to the type of perturbation-based
machine being considered. Since our experiments rely on a
representative, yet very abstract, machine, it suffices for now
to show the basic trend inherent to the decomposition.

Finally, as one would expect, the dual-core dual-dynamics
machine delivers substantial scalability gains for the less
challenging Task 6. For example, we found that a dual-core
dual-dynamics machine with relative core speeds differing by

a factor of 20, requires a combined core size of only 150 nodes
to deliver our top performance target (2% error rate), with the
max yield point (75%). By contrast, as mentioned above, a
monolithic core machine requires 300 nodes to achieve the
low performance target of 10% error rate with the same yield
(75%).

These experiments empirically demonstrate the enhanced
flexibility/practicality as well as substantial scalability gains
possible with our proposed multi-core machine architecture,
which: (1) relies on a set of standard size cores, either only
locally coupled or fully decoupled; (2) allows for the joint
projection of select subgroups of inputs, rather than always
requiring the joint (brute-force) projection all inputs; (3) allows
the readout function to rely on the state of only a select
subset of cores; and, last but not least, (4) enables exploitation
of multiple speed dynamics during machine operation, by
allowing cores operating at different time scales τ . These
novel decomposition principles have empirically shown to
be strikingly effective in the context of perturbation-based
computing.

V. CONTRAST TO PREVIOUS WORK

Contrast to other computational models. As mentioned
above, perturbation-based computing relies on transient in-
ternal states, and is therefore not a Turing model. That is,
unlike Turing machines, or even less powerful standard finite
state machines, the only stable state of a perturbation-based
machine’s computational core is in general the ‘rest’ state, and
the machine has no ‘permanent’ memory. These characteristics
make this computational model unique. Furthermore, although
perturbation-based computational models are likely to use
recurrent networks to realize their computational core, they
are also fundamentally different from traditional recurrent
neural networks (RNNs). Indeed, after training, RNNs operate
essentially as deterministic FSMs. That is, they exhibit a finite
number of attractor states, which encode their possible outputs.
A key challenge for RNNs is designing system dynamics
so as to create suitable stable/attractor (or ‘low energy’)
states, so that a network subject to specific inputs eventually
converges to the correct stable states. Such convergence is
hard to achieve, since dynamic systems may easily become
unstable – thus, most research in the field deals with very
simple special cases or network topologies [15]. By contrast,
the operation of perturbation-based machines does not center
on designing/controlling dynamics, but rather draws on the
rich transient dynamics of complex (and possibly randomly
assembled) systems, operating under substantial structural
uncertainty.

Previous research on perturbation-based computing. As
mentioned earlier, perturbation-based computing was inde-
pendently proposed by two research groups [12], [13], both
of which have furthered this area, but have fundamentally
different objectives than ours. The main objective in [12]
was to model biological neural circuits and understand the
operating principles of such biological systems. Accordingly,
ensuring biological plausibility (e.g., for the network nodes),
and successfully mimicking the behavior of actual neocortex
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circuits (e.g., in terms of possible information encoding), were
key drivers for their research [12], [19], [16]. These issues are
not germane to our research, and in fact obscure our core
objectives. The work of [13] was driven by the desire to de-
velop practical engineering techniques for training (artificial)
recurrent neural networks, to be used in control applications.
Their main objective was to circumvent the need to control
(design) complex network dynamics – an exceedingly hard
problem [15]. Note, however, that this line of work assumes
that such networks/models are to be directly programmed,
using Turing complete languages, on conventional general
purpose computers. By contrast, our focus and contributions
are directed towards realizing machines that operate directly
under this computational model, rather than emulating or
simulating it using Turing complete machines/languages. In
particular, we are interested in assessing the suitability of
perturbation-based computational models for nanotechnologies
characterized by high defect density and high performance
variability – a major research challenge posed to the computer
science and computer engineering communities.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a hybrid eNano-CMOS platform for realizing
perturbation-based machines, relying on a new style of config-
uration that, we believe, can potentially leverage the strengths
of emerging nanoelectronic technologies. In particular, we
presented experimental evidence demonstrating that hard de-
fects and performance variability/uncertainty can be naturally
handled within this framework. To assess the scalability and
practicality of perturbation-based computational models, as
well as develop the foundation of tools for engineering effi-
cient systems relying on these, we then proposed a multicore
machine architecture and novel design and decomposition
principles, exploiting task specific contextual and temporal
scales. We experimentally demonstrated the effectiveness and
promise of these, for a set of benchmark tasks.

Given the promising results reported in this paper, a key ob-
jective for future work is to devise simple node nonlinearities –
ideally exhibiting a complexity of one or two gates equivalents
– such that a single computational core with 50, 100 or even
200 nodes would be still quite a small component for today’s
standards. Beyond simplicity, additional critical requirements
are that such nodes should be possible to successfully assem-
ble/fabricate under substantial structural uncertainty, i.e., be
robust to spatial variability during assembly/fabrication. These
implementation oriented, research topics make sense in the
context of a concrete architectural framework and correspond-
ing promising results, as presented in this paper. Last but not
least, it is paramount that, during assembly, core nodes form
recurrent networks exhibiting non-chaotic behavior (e.g., by
exhibiting appropriate dumping factors), either by construction
or through some simple post-fabrication process. In [20], some
promising adaptive directions are explored towards this end,
for a class of abstract perturbation-based machines which
we denote standard ECHO model [13]. Still, in our case
it will be paramount to incorporate challenges specific to
nanotechnologies into the process, as well as operate in the

context of a more concrete architectural framework, such as
the one presented in Fig. 4.

We conclude by observing that it will be also interesting to
consider heterogeneous systems combining perturbation-based
computing with more traditional computational models. Yet,
this direction makes sense only after the fundamentals and
strengths and limitations of perturbation-based computing are
better understood and analyzed.
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APPENDIX

Experimental methodology and benchmark tasks. The per-
formance numbers reported in this paper for each benchmark
task and machine configuration pair were derived by averaging
the actual results obtained for a pool of 10 machines, each with
randomly generated core(s) of the target size being considered,
and using randomly selected training sets. The core sizes
considered in the various experiments are explicitly indicated
in the paper, except for those associated to the experiments
reported in Figs. 3, 5, 6. In those, for each benchmark task
we used the smallest core size(s) leading to performance
saturation. For example, as can be seen in Fig. 8, for Task 1
the ‘saturation’ core size is 200 nodes, since increases beyond
that value lead to negligible performance improvements. Note
further that the cores used in the experiments reported on the
bottom of Fig. 6 have twice that of the baseline ‘saturation’
size. This is done to overcome the deleterious effects of struc-
tural noise on performance. Finally, all experiments (except,
again, those reported on the bottom of Fig. 6) use cores with
the same density of connectivity, namely, on average each core
node has 2.7 input connections and 2.7 output connections. In
turn, the experiments reported on the bottom of Fig. 6 use
three times that density – once again, aiming at reducing the
impact of structural noise on performance.

In what follows we provide a brief description of the
benchmark tasks used in our experiments.
Domain 1: Wireless Communications. We considered two
wireless channel models consisting of a sequence of linear fil-
ters of length 10, a time independent nonlinear transformation,
and low amplitude additive white noise [21]. The task input
is modeled as a sequence of equally likely random symbols
from a possible set of 4, corrupted by the channel. The task
attempts to recover the original sequence of symbols.

• Task 1: Channel equalization - using a basic channel
model taken from the literature [22].

• Task 2: Channel equalization - using a modified (highly
nonlinear) channel model. We substantially amplified the
nonlinear distortion of the original model in [22], in order
to increase the difficulty level of the task.

Domain 2: Voice. We selected three voice tasks, all of
which are based on the TI46 corpus of inputs, consisting of
26 utterances of the digits ‘zero’ to ‘nine’, by 16 different
speakers (8 men and 8 women), totaling more than 4000 inputs
[16]. The inputs to the perturbation-based machine are first
preprocessed using the Lyon Passive Ear model, which is a
realistic model of the human inner ear[23]. Depending on the
task, the output identifies the word or the gender of the speaker.
We consider two different versions of those tasks, trained to
recognize different sets of four words/digits, namely, 0-3 and
4-7, and the associated speaker’s gender.

• Task 3a: Isolated word recognition: 0-3
• Task 3b: Isolated word recognition: 4-7
• Task 4a: Gender identification: 0-3
• Task 4b: Gender identification: 4-7

Domain 3: Robot Navigation/Control. Three benchmark nav-
igation tasks were considered, all implemented on the Khepera
robot [24]. This robot has two wheels with independently
controlled speeds – each wheel’s speed can be set to a
discrete value between -10 to 10. When both wheels have
the same speed, the robot moves along a straight line, when
they have opposite speeds, the robot rotates in place, etc.
Control decisions are made based on the readings of 16 noisy
sensors placed on the periphery of the robot– 8 proximity
infrared sensors and 8 directed ambient light sensors. The
training set used for these experiments consists of a set of
robot trajectories generated using a simple algorithmic script
and a large number of random initial positions in the start
region. The high accuracy MATLAB Khepera simulator KiKS
v2.2.0 [18] was used to simulate the following three tasks:

• Task 5: Navigation on T-Maze - light at Position 1.The T
shaped maze is shown in Fig. 10. The task is to navigate
to end 1, if light is on, otherwise go to end 2. The task
inputs and outputs are the 16 sensor readings and the
speeds of the two wheels, respectively.

• Task 6: Navigation on T-Maze - light at Position 2. Same
as Task 5, except for the position of the light (further
away from the T junction)

• Task 7: Navigation on T-Maze - light at Position 3. Same
as Task 6, except for the position of the light (even further
from the T junction)

Domain 4: Vision/Motion Prediction. A single benchmark
task is considered in this domain [16]. A moving object crosses
an 8 × 8 field/array of sensors with at a random but constant
speed and direction – with equal probability, the object is a
ball or a bar [16].

• Task 8: Predict position of moving object. The task is to
predict the readings of the inner 6 × 6 array of sensors,
one step in advance. Task performance is measured using
2 metrics: errors associated with ’ON’ sensor predictions
and ‘OFF’ sensor predictions. The rationale for consid-
ering both types of predictions separately is that sensors
are OFF most of the time, and thus an average across
both errors would be too optimistic.

Domain 5: Parity Generation
• Task 9: Parity Generation 2W. The task is to generate

a parity bit for a 2 bit sliding window on some input
stream. The task input is the bit stream, and the output
is the corresponding stream of generated parity values.

• Task 10: Parity Generation 3W. Same as Task 9, but
considering now a 3 bit sliding window.


