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Abstract—FALCON (FAst fauLt COverage estimatioN) is a
scalable method for fault grading which uses local fault sim-
ulations to estimate the fault coverage of a large system. The
generality of this method makes it applicable for any modular
design. Our analysis shows that the run time of our algorithm
is related to the number of gates and the number of IOs in a
module, while fault simulation run time is related to the total
number of gates in the system. We have measured fault coverage
for OR1200 and IVM processors and compared the results with
fault simulation performed by a commercial tool. We have also
compared our results with fault sampling. Our results show that
for large designs FALCON works faster (one order of magnitude)
compared to fault simulation. It also has smaller error rate
compared to fault sampling when the size of design under test
grows.

I. INTRODUCTION

Fault grading has been studied for half a century [28].
The complexity of fault grading makes it time-consuming for
today’s large designs. Design-for-test techniques can reduce
the complexity of fault grading.

Although scan based methods, like full-scan, are widely
used in chip testing, they cannot eliminate the need for
functional testing. There are several papers which compare
structural and functional test methods [19][16][17][30]. These
papers address issues for structural testing like test quality, test
vector re-usability, and test application time.

However, due to growing design size and complexity and
decreasing feature lengths, other problems in structural testing
show up. Small delay defects, capacitive coupling between
circuit lines, and power droops are some design related issues
that might not be addressed effectively by structural testing.
Since functional tests are applied in the system with normal
mode operation, they are able to address the issues related
to process variation. For example, they are more efficient in
detecting small delay defects compared to scan-based designs.
In addition, since in functional testing the circuit is operating
at its normal mode, the frequency goals of the design is
completely satisfied and also there are no issues like potential
overkill issues which can be seen in scan tests.

Therefore, to be able to test the designs using functional
test vectors, there is still a need for measuring coverage for
application level tests after manufacturing. For example, in
microprocessors, these tests are instruction level tests which
are applied to the the whole processor chip while it is operating

in its normal mode inside the system. Industrial designs have
used such techniques as their test techniques [23] [7].

Proposed methods attacking the fault grading problem can
be categorized into three major groups: fault simulation,
fault emulation, and coverage estimation (statistical meth-
ods). Approaches to fault simulation include basic gate-level
algorithms [1] and several hybrid methods. These methods
either combine basic methods (like PROOFS [20]), or they
use different levels of abstraction to speed up the simulation
process [13][27][18]. Although these methods are faster than
the traditional gate-level methods, they are still not scalable.
To overcome this problem, high-level (example, RTL) fault
models [29] have been proposed. These methods scale well
with the size of the design, but they lack a precise correlation
with the fault models used to evaluate the coverage of manu-
facturing test sequences. In general, in a large design with a
large set of test vectors, system fault simulation seems to be
nearly impossible [9].

Fault emulation was proposed in the 90s [31]. The main
drawback of fault emulation is that the design under test should
be fully synthesizable, which makes emulation not applicable
in early design stages. Also, fitting large designs into the
emulation hardware might not be feasible.

Another solution for fault grading, proposed first in the 80s,
is to estimate the coverage using some data from good sim-
ulation and/or the circuit structure [4][8][14]. These methods
are based on fault sampling [2], test vector sampling [10],
and gate-level statistical analysis using data from design
simulation (called STAFAN) [12][15]. The initial work was
mainly on the Single Stuck-At (SSA) fault model. Later, fault
models were expanded to path delay faults and also sequential
circuits [11][24][6]. Some high-level testability measurements
were also introduced [25] and an extension of STAFAN
to RTL components was proposed [26]. Since most of the
statistical methods use good simulation data, their run-time is
comparable to the run-time of good simulation, which makes
them scalable. Apart from their scalability, these methods
(like STAFAN) introduce some parameters (for re-convergent
fanouts for example) which should be determined empirically.
The results have been shown only for small circuits. There is
also a commercial tool [5] based on statistical fault analysis
which uses testability measurements and sets the faults with 0
probability as undetectable. Then it fault simulates the design
with the rest of the faults. The error in this tool is claimed



to be not more than 10%, but it still depends on the fault
simulation on the whole system.

In this paper, we present FALCON, a coverage estimation
method for SSA faults in modular designs, which overcomes
some of the above problems. Our method is similar to [15] in
that both are based on functional block observability calcula-
tion. However our approach is different, since their approach
is an extension to STAFAN and has the same drawbacks
as the STAFAN method. Our method eliminates the need
for defining empirical parameters. However it needs more
simulations (local simulations) to determine a more realistic
measure for fault propagation. These local fault simulations
make our method applicable for industrial designs with an
acceptable error range.

FALCON uses data from stand-alone fault simulations to
estimate the detection probability of each fault in the whole
system. Therefore, it reduces the complexity of fault grading
from a function of G to a function of g, where g is the number
of gates inside a module and G is the number of gates in the
whole system. This method is applicable to both combinational
and sequential designs. As another feature, users are also able
to apply this method on early stage designs when all the
modules may not be at the gate level of abstraction.

This can help test engineers start the test process shortly af-
ter the design process starts and since it is based on functional
test vectors, it can re-use test vectors from the design verifica-
tion process. Since this methodology uses the manufacturing
fault models, the resulting coverage is completely correlated
with gate-level fault coverage.

We have applied FALCON on two processors, OR1200 [22]
and IVM [21]. OR1200 has around 40 thousand gates and 2
thousand sequential elements, while IVM has around 5 million
gates and more than 100 thousand sequential elements. We
have injected around 75 thousand faults in OR1200 and 320
thousand fault in IVM. Our experiments show that FALCON
works much faster than fault simulation and it estimates the
coverage more accurately than the fault sampling method [2]
with a confidence of 0.998 [3]. Our contributions to this work
include the following.
• To our knowledge, the idea of divide-and-conquer for

coverage estimation of modular designs has not been
proposed before. The existing methods (like STAFAN)
use gate granularity rather than module granularity.

• We have developed a fully automated environment for
our coverage estimation method using a commercial fault
simulator, a commercial logic simulator, and a few Perl
scripts to feed these tools the proper testbenches.

• We have measured the results on a small-size (around
40K gates) and a large-size testcase (around 5M gates).
Almost all of the previous methods have been shown for
relatively trivial designs (around a few thousand gates).

The structure for the rest of this paper is as follows.
In Section II, we discuss our approach. Section II-A and
Section II-B describe the methodology. The following sub-
sections (II-C, II-D, and II-E) describe the details for each
step of our estimation method. In Section III, we show our

experimental results. Finally, in Section IV, a brief run-time
analysis is discussed.

II. COVERAGE ESTIMATION METHODOLOGY

A. Overview

We have developed a coverage estimation method for large
modular designs, where a module can be combinational or
sequential. A module boundary can be the HDL (like Verilog)
modules in a hierarchical design. However, if the design is
flattened by the synthesis tool, the partitioning algorithm to
make partitions for the design is not difficult. Any boundary
which includes a reasonable number of gates can be used in
this method.

In this paper, the SSA fault model has been used. However,
this method can be applied to any desired fault model. The
main idea of our approach is to accurately estimate, from the
fault grading results on a standalone module, the coverage
when that module is embedded in a larger system. This is
accomplished by estimating how each module can propagate
an error from one of its inputs to one of its outputs. We
also calculate the probability of the presence of errors on the
outputs of each module-under-test (MUT). The latter factor
gives us an idea of how many errors will be activated on the
boundaries of a MUT, while the former factor helps us find
how many of these activated faults can be propagated through
other modules in the whole system. Combining these two, we
can estimate how many errors can reach the system’s primary
outputs.

The following are a few terms used frequently in this paper.
• MUT (module-under-test): A module in the system which

is the target for fault grading. We perform fault grading
module by module.

• Detection probability table: A table indicating the proba-
bility of each fault in a MUT to be present at one of the
outputs of that MUT. There is one detection probability
table per each MUT.

• Propagation table: A table indicating the possibility of
error propagation from one input of a module to one of its
outputs. There is one propagation table for each module
in the design.

• Local test vector set: The set of stimuli at the inputs of a
module, when applying the test vector set to the primary
inputs of the system.

• Stand-alone fault simulation: The process of fault sim-
ulating a module, separated from the system, with its
corresponding local test vector set.

• Local fault dictionary: The resulting fault dictionary when
performing stand-alone fault simulation on a module.

B. Algorithm Steps

This section describes our methodology step by step using
an example. The details of each step will be discussed in
the following sections. We start with a modular design and
an input test sequence whose fault coverage needs to be
determined.
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• Step 1: Given a test vector set, we simulate the whole
system to generate local test vectors for each module.
This step is done by a commercial logic simulator.

Fig. 1. System block-diagram

A system with 4 modules and a set of test vectors is
shown in Figure 1, while Figure 2 shows the system after
applying this step.

Fig. 2. Module with local test vectors

• Step 2: Now that we have local test vectors, we perform
stand-alone fault simulation for each MUT (M1 in our
example). Note that faults are not dropped during this
process, because we want to measure the probability
of each fault detection. Therefore, the more a fault is
detected on a MUT output, the more probable it can be
detected on a system primary output. In this step, the
results are stored in local fault dictionaries. This step is
done by a commercial fault simulator (shown in Figure 3).

• Step 3: Using the local fault dictionaries from step 2,
detection probability tables are generated for each MUT
and propagation tables are generated for all modules in
the system (Figure 4). Note that for modules which are
not in MUT set, we still need to generate propagation ta-
bles. We will discuss this in more details in Section II-D.
This step is done by a Perl script.

• Step 4: We generate a statistical model using module in-
terconnections in our design, propagation tables for each
module in the design, and detection probability tables for
each MUT (Figure 5). By simulating this statistical model
with a commercial simulator, we are able to estimate
the fault coverage of each MUT in the whole system.
We will describe the probability calculation formula in
Section II-E.

Fig. 3. Local fault dictionary

Fig. 4. Propagation and detection probability tables

Fig. 5. Statistical system block diagram

C. Detection Probability Tables

As discussed above, this table indicates the detection prob-
ability for each fault on each output of a MUT. It is imple-
mented as a 3-dimensional array; the first dimension represents
the fault number, the second dimension represents the MUT
output number, and the third dimension is either 0 or 1. Zero
represents a 0/1 value and one represents a 1/0 value (a line
with v/v̄ value shows that an error has reached that line and
inverted the value of that line from v to v̄).
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TABLE I
INTERPRETATION OF INDEX VALUES IN PROPAGATION TABLE

Index Value representation
0 0/1→ 0/1
1 0/1→ 1/0
2 1/0→ 0/1
3 1/0→ 1/0

The value of each element in this table, e.g.
det prob table[ f ][o][v], is calculated as below.

det prob table[ f ][o][v] =
# o f times f is detected on o with value v/v̄

# o f test vectors
(1)

As an example, fault #10 is detected on the 5th output of a
MUT in the stand-alone fault simulation process, 4 times with
value 0/1 and 11 times with value 1/0. Suppose our test vector
set contains 100 test vectors, then the detection probability
table includes

det prob table[10][5][0] = 0.04 and det prob table[10][5][1] = 0.11

D. Propagation Tables

This table calculates the ability of a module to propagate
an error from each of its inputs to each of its outputs. As
discussed in Section II-A, this table is generated using the
local fault dictionaries of each module. However, if we do
not have this module at the gate level, we can generate this
table by simulating this module stand-alone (with its local test
vectors) and inject the module’s input stuck-at-0 (stuck-at-1)
faults by putting a constant 0 (1) instead of the value of that
input. The number of simulations will be 2× i where i is the
number of module inputs. Since this is done on a high-level
module, the simulation cost is not that high. In another case,
if we have the gate-level of abstraction for a module but we
do not want to perform fault grading for this module, we can
inject only the faults for this module’s primary inputs and
perform stand-alone fault simulation.

Similar to detection probability tables, propagation tables
are also implemented as a 3-dimensional array. The first
dimension is the input number, the second dimension is the
output number, and the third one is between 0 and 3. Value 0
for this dimension shows the propagation probability of a 0/1
value from an input to a 0/1 value to an output. Table I shows
the interpretation of other values for this dimension.

The value of each element of this array is calculated to be
the propagation factor from an input to an output. If value v/v̄
can be propagated through output o, it means that fault i−sa−
v̄ is detected on output o. Therefore, we calculate propagation
factors from fault simulation as below:

prop table[i][o][k]= # o f times i−sa−v̄ detected on o with w/w̄ e f f ect
# o f times i−sa−v̄ activated

Note that we do not divide the numerator by the number of
test vectors. This is because whenever we use this factor in
our calculations, the error has been already propagated through
the input of this module. Therefore, we only need to use a

definition similar to conditional probability (i.e. the probability
of an error propagation given that error is activated).

Also, we do not call this factor as propagation probability.
This is because it can happen that the number of errors
detected is more than the number of error activations and this
factor becomes greater than 1. This can happen in modules
with sequential feedback paths.

E. Detection Probability Function

Suppose we have generated a propagation table for each
module in the system and we have generated detection prob-
ability table for our MUT. Now, using these tables, we want
to calculate the detection probability of each fault on system
primary outputs. For this purpose, we need to define a function
that accepts the detection probability values of module’s inputs
and calculates the detection probability values of that module’s
outputs using propagation factors of that module.

Fig. 6. A sample for detection probability function

Suppose an error is propagated through more than one input
of a module. This case happens usually since we always have
fanouts in our design. In our example in Figure 6, suppose an
error has reached input i1 and i2 with 0/1 probability values
equal to α1 and α2, and 1/0 probability values equal to β1
and β2, respectively. In this case, it is easier to calculate the
probability of absorption of an error from ALL inputs through
an output and then negate this absorption probability to reach
the propagation probability from either of inputs to that output.
This idea is a realization of the following probability formula
(suppose A and B are independent events),

P(A∪B) = 1− (1−P(A))× (1−P(B)) (2)

Note that we are adding some error by assuming that the
two events are independent. Because in reality, two inputs of a
module can affect each other in error propagation (i.e. the error
can be masked). Since we are only dealing with system re-
convergent fanouts and intra-module re-convergent fanouts are
taken care by stand-alone fault simulations, we expect only a
small amount of error due to this assumption in our estimation
method. This is validated by our experimental results discussed
in Section III.

Using Formula 2, the detection probability of the error
reached i1 and i2 on o1 with value 0/1 can be calculated as,
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det prob[o1][0] = α ′1

= 1 − [(1−α1×P0/1→0/1
i1 ,o1

)× (1−β1×P1/0→0/1
i1 ,o1

)

×(1−α2×P0/1→0/1
i2 ,o1

)× (1−β1×P1/0→0/1
i2 ,o1

)]

The other values for detection probability of the outputs can
be calculated in a similar way. A general formula for o1 with
value 0/1, when an error reaches N inputs is,

det prob[o1][0] = 1−
N

∏
n=1

(1−αn×P0/1→0/1
in ,o1

)× (1−βn×P1/0→0/1
in ,o1

)

F. Fault Detection Metric

Now that we can calculate the detection probabilities of a
fault on each line in the system, we need to know a way
to determine which value (or ranges of values) should be
determined as detected and which ones should be considered
as not detected. In other words, we need a metric for our fault
coverage.

Using our statistical system and statistical simulation envi-
ronment (Section II-G), we calculate the detection probability
for MUT faults from the outputs of each MUT through the
primary outputs of the system. Since detection probability is
defined as in Equation 1, and we define our detection threshold
as,

detection threshold = 1
# o f test vectors

This threshold means that the fault is detected one time
when applying our test vector set to our design. Therefore,
if a detection probability value at a system primary output is
greater than or equal to this value, it should be counted as a
detected fault.

Using our detection probability function and our defined
detection threshold, we can estimate the fault coverage of
the system for each MUT. Due to our detection probability
definition in Equation 1, the output of our statistical system
shows the detection of the faults in the system as if they are
not dropped.

G. Statistical System and Simulation

After we build propagation tables and detection probability
tables, it is time to calculate the detection probability for each
line in our design using the detection probability function
discussed in Section II-E. Note that if the top module of
the system (the module we are building our statistical system
from) has some glue logic, we wrap it inside a dummy module
and generate propagation tables for this dummy module as
well. We have done this in one of our testcases. We generate
our statistical system (in Verilog) following the steps below.
• Replace every module in the system with its propagation

table.
• Add a detection probability table to the MUT.

• Connect these high-level models as they were connected
in the original design.

• Change the signal type to a type which accepts the
detection probability for both 0/1 and 1/0 values (e.g.
a two element array of type real).

Given the above statistical system (along with a library
containing detection probability function), and our commercial
simulator, the detection probabilities of interconnections and
system primary outputs can be calculated. For coverage calcu-
lation, detection probabilities on primary outputs are compared
with our defined detection threshold.

III. EXPERIMENTAL RESULTS

We have developed scripts for generating local test vectors
and testbenches for stand-alone fault simulation to be able to
apply our method on designs. Figure 7 shows the flow of our
estimation methodology.

We have applied FALCON on two CPU designs, OR1200
which is a RISC processor and IVM which is an implementa-
tion of alpha processor. These CPUs are Verilog designs which
were synthesized with the TSMC 180nm technology library.
Table II shows some characteristics for each test case. We
ran our experiments on an Intel R© Xeon R© X5670, 2.93GHz
processor, with 72GB of memory, and 12 cores (with hyper
threading).

As discussed in previous sections, FALCON estimates the
presence of each fault on each output of a design. This
can be considered as a statistical fault dictionary. To show
the accuracy of our estimation method, we have performed
fault simulation on a sub-set of faults for OR1200 without
fault dropping and averaged the appearance of each fault on
each primary output. On the other hand, we have applied
our method on the same sub-set of faults and measured the
detection probability of each fault on each primary output. An
example is shown in Figure 8 (fault simulation) and Figure 9
(fault estimation) for the faults in ALU module in OR1200.
As it can be seen, these two measurements are very close
to each other, which means FALCON is able to prepare
statistical data about fault detection rather than outputing only
a coverage number. This data can be used for purposes like
fault diagnosis. Other estimation methods, like fault sampling,
do not output any other data but the fault coverage. However,
in this paper, we have compared our results with the results
of fault simulation with fault dropping, which is not a fair
comparison for FALCON. But we have done this comparison
to show its speed and accuracy.

We have performed traditional fault simulation and fault
sampling (using the same commercial fault simulator that we
use in our method for standalone fault simulations) on the
whole system, measured their run-time and coverage, and
we have compared the run-time and fault coverage of our
estimation method with these results. As discussed above, fault
simulation and fault sampling processes are done with fault
dropping.

In fault sampling method, a sample of faults from the fault
list is selected and fault simulated. Based on the fault coverage
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Fig. 7. Coverage estimation and fault simulation measurement flow

Fig. 8. Average detection in fault simulation

from these sampled faults, the fault coverage for the whole
system is calculated using a formula. This method gives the
user a range of fault coverage with a level of confidence. Based
on a few experiments on both designs, we have found the best
sample size as 10% of the whole faults and we have found that
the confidence of 0.998 (known as 3σ ) gives the best answer

Fig. 9. Detection probability in coverage estimation

for this method. For example, for OR1200 design, with 1024
test vectors and a sample of 7512 faults (10%), fault sampling
method gives us a range equal to [28.4, 30.9] with a confidence
of 0.998. This means that with a probability of 0.998, the real
fault coverage (for the whole system) is between 28.4% and
30.9%.
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TABLE II
TESTCASE CHARACTERISTICS

design approx. size MUT # of memory analyzed
name (gates) modules inputs elements faults

OR1200 40,000 13 387 2,000 75,129
IVM 5,000,000 18 836 100,000 320,912

Our experimental results show that fault sampling coverage
range does not match the real coverage in several cases.
In cases that the calculated coverage matches the real fault
coverage, we have put 0% error in our tables and diagrams.
For the cases that the real coverage is not in the calculated
range, we have calculated the error as the difference between
the real fault coverage and the coverage in the middle of the
range.

In the following sections, we will discuss our experiments
on two case studies using some tables and diagrams.

A. OR1200 Case Study

For OR1200 case study, we have applied different sizes
of test vectors to the CPU. These test vectors are random
vectors. Fault coverages are shown in Table III. The first
column shows the number of test vectors, while columns 2,
3, and 4 show the coverage results for fault simulation, fault
sampling, and our coverage estimation method, respectively.
As discussed above, in column 3, a range of fault coverage is
shown. Column 5 indicates the error between our estimation
method and fault simulation method. We have measured our
error as the number of mis-calculated faults over the total
number of faults. That is why the difference between fault
coverages shows a smaller number than the error shown in
the fifth row of Table III. The sixth row of this table shows
the error between fault sampling method and traditional fault
simulation method (columns 2 and 3). As discussed above, the
error is defined as 0% if the real coverage is in the range of the
calculated coverage. The next two columns in this table shows
the number of misdetected faults (rather than percentage) in
coverage estimation and fault sampling methods, respectively.
The last column shows the difference between the number
of misdetected faults between fault sampling method and our
estimation method. As it can be seen, this number is relatively
high in the first three cases.

Table IV shows the run-time results for fault simulation,
fault sampling, and our coverage estimation method for the
runs whose coverages shown in Table III. The first column
of this table shows the number of test vectors. The second,
third, and forth columns show the run-times of fault grading
for fault simulation, fault sampling, and our coverage estima-
tion method, respectively. In column 5, speed-up in run-time
between our coverage estimation and fault simulation has been
shown. This speed-up factor is calculated by dividing the time
spent in fault simulation method by the time spent in all the
steps of coverage estimation (i.e. column 2 divided by column
4). All run-times are shown in seconds. We have measured the
run-time speedup between FALCON and fault simulation. As
it can be seen in this table, fault sampling works faster than

Fig. 10. OR1200 run-time results and misdetected faults

our method, but the error of sampling method is more than
our estimation in most cases as shown in Table III. Also, when
the design size grows, fault sampling method calculates less
accurate results compared to our estimation method. However,
the sampling method run-time is still comparable with our
estimation method. This can be seen in the IVM test case in
the next section (Tables V and VI).

We have summarized our results in Figure 10. This figure
shows the run-time for fault simulation, fault sampling and
coverage estimation in logarithmic scale (shown with bars).
Also, sampling error and coverage estimation error are shown
in this figure with lines. These errors are shown by the number
of miscalculated faults. As it can be seen in this figure, fault
sampling method has the fastest run-time when the number of
test vectors are increased. It can be seen that our estimation
method also grows more slowly than the traditional fault
simulation. For IVM test case, FALCON works faster than
fault sampling method. This is while we only use a small
subset of faults to simulate. We believe that FALCON will
run even faster than fault sampling with smaller error rates if
we inject more faults in our design.

B. IVM Case Study

In IVM test case, we have applied random test vectors,
which are valid instructions. As you can see in Table V,
we have run fault simulation, fault sampling, and coverage
estimation methods on this test case for 50, 200, 500, 1000,
2000, and 5000 clock cycles.

Also in this case, we have chosen a subset of faults for
this processor and we have not simulated all the faults. This
is because the fault simulation process could not be finished
in a reasonable time even for a small number of cycles when
all the faults are injected in the circuit. Similar to OR1200
case (Section III-A), we have measured results for coverage
and run-time for fault simulation, fault sampling, and coverage
estimation. Fault coverage results are shown in Table V and
run-time results can be found in Table VI.

As it can be seen in Table VI, in this test case, fault sampling
takes longer times than our coverage estimation method and
as it shows in Table V, the error between fault sampling and
fault simulation is higher than the error between our coverage
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TABLE III
FAULT COVERAGE RESULTS FOR OR1200

# of Test Fault Sim. Fault Sampl. FALCON FALCON Sampl. FALCON Sampl. Error
Vectors Coverage(%) Coverage (%) Coverage (%) Error (%) Error (%) misdetected misdetected Difference
1,024 39.57 [28.4, 30.9] 38.99 0.96 9.92 722 7453 6731
2,048 42.99 [35.4, 38.1] 42.51 0.97 6.24 729 4689 3960
4,096 45.82 [38.1, 40.8] 46.65 1.46 6.37 1097 4786 3689
8,192 53.69 [52.4, 55.1] 54.39 2.34 0 1759 0 -1759
12,288 57.63 [59.0, 61.7] 58.42 2.24 2.72 1683 2044 361
16,384 60.1 [59.0, 61.7] 61.41 2.11 0 1586 0 -1586

TABLE IV
RUN-TIME RESULTS FOR OR1200

# of Test Fault Sim. Fault Sampl. FALCON Speedup
Vectors Run-time Run-time Run-time (Fault Sim. time/FALCON time)
1,024 846 100 386 2.19
2,048 1,608 130 679 2.37
4,096 4,341 387 1,488 2.92
8,192 3,788 751 1,470 2.58

12,288 15,608 1275 4,672 3.34
16,384 18,578 1792 6,125 3.03

TABLE V
FAULT COVERAGE RESULTS FOR IVM

# of Test Fault Sim. Fault Sampl. FALCON FALCON Sampl. FALCON Sampl. Error
Vectors Coverage(%) Coverage (%) Coverage (%) Error (%) Error (%) misdetected misdetected Difference

50 15.9 [19.6, 20.9] 15.3 0.82 4.35 2,632 13,960 11,328
200 21.8 [26.6, 29.1] 19.93 2.01 6.05 6,451 19,416 12,965
500 41.4 [47.4, 49.0] 39.46 2.1 6.8 6,740 21,823 15,083

1,000 45.0 [50.6, 52.2] 43.44 1.89 6.4 6,066 20,539 14,473
2,000 49.5 [55.51, 57.08] 48.4 1.21 6.8 3,884 21,823 17,939
5,000 53.4 [57.91, 59.48] 51.88 1.81 5.3 5,809 17,009 11,200

TABLE VI
RUN-TIME RESULTS FOR IVM

# of Test Fault Sim. Fault Sampl. FALCON Speedup
Vectors Run-time Run-time Run-time (Fault Sim. time/FALCON time)

50 13,841 3,273 610 22.6
200 30,057 6,370 1,232 24.3
500 77,833 11,665 4,762 16.34

1,000 111,984 13,762 8,910 12.5
2,000 243,780 52,851 18,795 12.97
5,000 477,859 61,188 40,090 11.91

estimation method and fault simulation (Table V).
Similar to OR1200 case, we have shown run-times, fault

coverages, and coverage errors for fault simulation, fault sam-
pling, and coverage estimation in IVM processor. Figure 11
shows the run-times for the three methods and errors in
coverage for fault sampling and coverage estimation. The run-
times are shown in logarithmic scale and the error is shown
by the number of faults.

As it can be seen in Figure 11 for both OR1200 and IVM
cases, the run-time in our method, due to its scalability, grows
in a slower rate than fault simulation. Also, it can be seen that
our method runs faster than fault sampling with the growth of
the design size with less error rate.

As it can be shown in Figure 11, fault coverages calculated
by fault sampling in IVM case study is always more than
the real fault coverage, while fault coverage estimated by
FALCON is always less than the real fault coverage. This can

be counted as an advantage for our method since it estimates
the coverage in a more conservative and pesimistic way.

As another advantage of FALCON, we can determine which
faults are detected on which outputs. This is useful when the
user needs more data than a simple coverage number (e.g.
fault diagnosis).

As we can see in the above two test cases, the run-time
of our estimation method grows faster than fault sampling,
however it is still comparable to fault sampling for large
designs. The main reason for this grow rate in coverage
estimation is that we do not drop the faults during our process,
which can have its own applications. In cases that we do not
need the results without fault dropping, we can divide our test
vector set into sub-sets of test vectors and apply our method
step-by-step for each sub-set of test vector. In each step, we
can drop the detected faults. This way, we reduce the time of
our stand-alone fault simulations.
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Fig. 11. IVM run-time results and misdetected faults

From our experimental results, we can say that fault sam-
pling is a great method for estimation fault coverage for small
to medium designs. It is still a good way to roughly estimate
fault coverage for larger designs. However, this method does
not provide data other than fault coverage. On the other hand,
FALCON works a lot faster than fault simulation. Although it
works slower than fault sampling for small to medium designs,
it becomes faster than fault sampling for larger deisgns. In
addition, FALCON provides more information about fault
detection which can be useful during the test process.

IV. RUN-TIME ANALYSIS

In this section, we discuss a trivial run-time complexity
analysis for our estimation method and compare it with run-
time analysis of fault simulation.

We can use the following symbols in our analysis:
• M: number of modules in the system
• T : number of test vectors
• fm: number of faults in an MUT m
• G: number of gates in the system
• gm: number of gates in MUT m
• imax×omax: maximum module input/output product
Using the above definitions, the complexity of each step of

our algorithm can be expressed as follows, supposing we are
estimating the fault coverage of module m in our system:
• Good simulation: O(G×T )
• Stand-alone fault simulation: O(gm× fm×T )
• Propagation table making: O(I × T ),where I is total

number of module inputs
• Detection probability table making: O( fm×T )
• Making testbenches: O(M) (this usually takes only a few

seconds)
• Statistical simulation: O( fm′ ×M × imax × omax), where

fm′ is the number of detected faults in stand-alone fault
simulation. In worst case fm = fm′

All of the above should be done for coverage estimation of
module m. Therefore, the runtime of coverage estimation can
be written as:

O(G×T +gm× fm×T + I×T + fm×T +M+ fm×M× (imax×omax)) (3)

If we want to inject all of the faults in our MUT, the number
of faults are linearly related to the number of gates. Therefore,
we can replace f by g in formula 3. We also can remove I×
T +M part since it is negligible compared to other parts. The
statistical simulation part (gm×M×(im×om)) is not negligible
if all faults propagate through all inputs of every module. Since
every fault usually affects a limited part of the design, it will
propagate through a few of the module paths. Therefore, using
imax×omax in our formula is unrealistic since this term can be
easily replaced by a small constant. On the other hand, M
is also a relatively small number and the whole product of
M× imax×omax can be replaced by a constant. As a result, the
estimation run-time can be written as:

Estimation run time = O(G×T +g2
m×T +gm) (4)

which can be written as:

Estimation run time = O(G×T +g2
m×T ) (5)

Equation 5 shows that the run-time of FALCON mostly
depends on the time of good simulation and the time of local
fault simulation for module m.

On the other hand, the complexity of fault simulation for a
module with gm gates can be written as:

FS run time = O( fm×G×T ) = O(gm×G×T ) (6)

If we compare each part of equation 5 with equation 6, we
can see that fault simulation run-time is proportional to gm×G,
while coverage estimation run-time is proportional to G or g2

m
and in each case coverage estimation is a smaller number.

An Example: Suppose we have a design with 5 million
gates (G) and 10,000 test vectors (T ). If we want to perform
coverage estimation on a module with 50,000 gates (gm),
then we have the following run-time estimations for coverage
estimation and fault simulation (based on equations 5). Since
in complexity analysis we deal with the biggest exponent, we
can write:

coverage estimation run time = SomeConstant × max{5 ×
1010,25×1012}

or:
coverage estimation run time = SomeConstant×25×1012

On the other hand, based on equation 6, we can write:
f ault simulation run time = SomeConstant×5×106×5×104×104

which can be written as:
f ault simulation run time = SomeConstant×25×1014

As we can see, our estimation method can work around 100
times faster than fault simulation. For example, if coverage
estimation takes a few minutes, we can expect hours for fault
simulation or if FALCON takes an hour, we can expect days
for fault simulation.

Due to the above analysis, if gm is close to G (which means
gm is a big module in the design), our estimation method will
be as time-consuming as fault simulation. If we have such
modules in the design, we need to break them down into
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smaller modules and apply the algorithm on these smaller
modules. Fortunately, with today’s hierarchical designs, every
module has its own sub-modules. Therefore, we can use the
sub-modules of large modules under test as our new modules
under test and apply our technique hierarchicaly to the design.

V. CONCLUSIONS

We have developed a scalable and modular technique for
estimating fault coverage (FALCON). Currently, this method
is evaluated for single-stuck-at faults, but the techniques can
be extended to any fault model. Our experimental results show
that for large designs, we can reach orders of magnitude
improvements in time with a very small amount of error. Our
estimation method works the best when each module in the
design is a few times smaller than the whole design. For large
modules, we can simply break them into smaller modules and
use these modules in our estimation system instead. FALCON
works on both combinational and sequential modules. This
method can be used even before completing the design, when
we do not have every module at the gate level of abstraction.
Future work will include analysis for error bounds.
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