

Technical Report

Design of Flexible Audio Processing
Platforms using the System-on-Chip

Environment

Wei-Cheng Su, Parisa Razaghi, Ashmita Sinha,
and Andreas Gerstlauer

UT-CERC-12-06

August 2, 2012

Computer Engineering Research Center
Department of Electrical & Computer Engineering

The University of Texas at Austin

201 E. 24th St., Stop C8800
Austin, Texas 78712-1234

Telephone: 512-471-8000
Fax: 512-471-8967
http://www.cerc.utexas.edu

Design of Flexible Audio Processing Platforms using
the System-on-Chip Environment

Wei-Cheng Su, Parisa Razaghi, Ashmita Sinha, Andreas Gerstlauer
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas, USA

{weicheng@, parisa.r@, gerstl@ece}.utexas.edu

Abstract—This report demonstrates application of the System-on-
Chip Environment (SCE) towards the design of
hardware/software platforms for real-time audio processing
following MP3, AAC, and AC3 decoding standards. Starting
from C reference implementations, well-defined specification
models are developed and fed into an SCE-based design space
exploration and synthesis flow. Models are synthesized down to
ARM-based HW/SW platforms, where in all cases, final software
and hardware implementations are generated within minutes.

Keywords-multi-processor system-on-chip (MPSoC); system
compiler, audio processing

I. INTRODUCTION

Embedded systems and general purpose computing systems
used to be at opposite ends of design spectrum, with little to no
overlap between each other. While general purpose computing
systems were powerful, flexible and programmable, embedded
systems tended to be application specific, highly optimized and
tightly constrained.

In the embedded world, we see today that more and more
complex functionalities, such as HD video, web browsing or
3D graphics, are packed into embedded systems like
smartphones. At the same time, increasing costs of chip
development and shrinking time to market make it infeasible to
design a new architecture for each new application instance.
This has led to the emergence of platform-based design
techniques, in which a more flexible, programmable or
reconfigurable platform is reused across a large set of designs
within a specific application domain. At the same time, while
increasing the processing capability of systems is desired, cost,
power consumption and heat are still the constraints that need
to be dealt with. Pure software solutions have the most
flexibility but consume too much power; while pure hardware
solutions are more energy conservative but very inflexible.
Hence, there is an inherent tradeoff between flexibility versus
specialization that needs to be navigated.

In the general purpose computing field, the scaling of
frequency has hit physical limits and power walls limit the
growth of computing power using traditional programmable
processors. Multi-core design has emerged as a solution to
increase performance while limiting core clock frequencies and
hence chip activity and power density. However, even when
replicating the same existing cores multiple times on a chip,
power concerns will limit achievable performance gains going
forward. Hence, other accelerating components such as GPUs

have become popular to offload the burden of CPUs towards
more specialized and more efficient processing engines.

Overall, the development of embedded systems and general
purpose systems both head toward solutions with multiple
heterogeneous cores. Heterogeneous system design, however,
is a complex task. Challenges include the high degree of
parallelism at various levels, heterogeneity of programming
models, architectures and tools, and ever-present real-time,
power, cost and reliability constraints. Also, different parts of
the system need to be specialized for different applications,
using different development tools, design flows and
incompatible interfaces. These challenges all together make it
complex to develop a system from system specification to
implementation.

In this project, we aim to research flexible yet low-power
embedded hardware/software platforms for real-time audio
processing. The objective is to explore and design suitable
architectures that can support multiple audio codecs, but can do
so in an optimal fashion as determined by performance, cost
and power consumption metrics. Our initial focus in is on
investigation of possible architectures for audio decoding
following MP3, AAC and AC3 standards. In doing so, we aim
to apply design methodologies, technologies and tool flows
developed in our group, e.g. as realized by the System-on-Chip
Environment (SCE) [1]. The long-term goal is to translate
insights gained from this study into novel design space
exploration algorithms that can automate the process of
determining an optimal architecture for a class of applications,
including the capability to design for flexibility in supporting
future applications within that class.

A. SCE

SCE is a comprehensive development environment that
takes a specification model, a set of element libraries and user
input on design decisions, such as platform allocation and
mapping to generate Transaction Level Models (TLMs) [2] at
different abstraction levels for rapid and early virtual
prototyping and design space exploration using simulation and
validation of these generated models [3]. Backend hardware
and software synthesis tools then take generated TLMs and
synthesize C and RTL code to further realize the final software
and hardware implementations using traditional low-level
design flows. Besides the application itself, SCE also
incorporates models of the underlying platform, such as
Operating Systems (OSs) and hardware into the generated
TLMs as well as final implementations so that the behavior of

Specification

System Compiler
(Specify-Explore-Refine)

SW
DB

Transaction-
level models

CPUn.bin

Implementation Model

PE/CE/Bus
Models

TLMnTLMnTLMi

Hardware
Synthesis

Software
Synthesis

RTL
DB

RTLnRTLnRTLn
ISSnISSnISSn CPUn.binCPUn.bin

HWn.vHWn.vHWn.v

Design
Decisions

Figure 1: SCE design flow.

Figure 2: MP3 encoder block diagram.

the whole system can be modeled, simulated and synthesized.

hen generating
a lo

e used in many applications, such as music
pla

other hand, try to retain
sig

P3
udio Layer III, known as MP3, is a high-quality

k diagram of a MP3 encoder.
Bas

dvanced Audio Coding) is an improvement over

has several different profiles. Three
AA

In SCE, all models are all described in the SpecC System Level
Design Language (SLDL) [4]. Final output is generated in C or
VHDL/Verilog for software and hardware parts of the system.
SCE has databases for processing elements (PEs),
communication elements (CEs), buses, and operating systems.
Figure 1 shows the design process using SCE.

SCE follows a specify-explore-refine flow w
wer level model. SCE takes the model generated from the

upper level to specify the input to the design process at the next
level. Designers enter different design decisions to SCE to
generate models with different resource allocation, mapping,
task partitioning, and scheduling. These models are then
profiled and simulated to produce performance metrics such as
power consumption and delay. The explore stage involves
finding optimal solutions based on the metrics obtained.
Finally, the optimal solutions are then refined into output
models that are passed into the next level.

B. Audio Codecs

Audio codecs ar
yers, video and movie systems, cell phones, video/voice

conferencing, to name a few. For different purposes, different
categories of audio codecs are developed by different groups or
standards. Audio codecs can be roughly divided into two
categories: lossless and lossy. Lossless audio codecs encode all
information, i.e. no information is lost after encoding and
subsequent decoding. Examples of lossless audio codecs
include the Free Lossless Audio Codec (FLAC), Adaptive
Transform Acoustic Coding (ATRAC), WMA Lossless, etc.
Generally speaking, these codecs provide the highest quality,
although the quality also depends on the sampling rate and
number of bits for quantization.

Lossy audio codecs, on the only

MP3. It is defined in both MPEG-2 and MPEG-4. It is also a
psychoacoustic based audio codec. Compared to MP3, AAC
supports more bit rates, sampling rates, multiple-channel
coding, and of course is more complex. shows the encoder
block diagram of AAC.

Unlike MP3, AAC
nificant information to reduce data rate while keeping a

certain level of subjective quality. There are two types of lossy
audio codecs. On the one hand, there are speech codecs, which
analyze human voice content to find features in the encoder and
synthesizes these features into equivalent speech in the decoder.
Speech codecs are designed for encoding human voices and do
not perform well with other type of sound like music. The most
common speech coding scheme is Code Excited Linear

Prediction (CELP). Examples of speech coding include
G.723.1, G.726, iLBC, AMR, GSM 06.10, etc. Speech coding
is mainly used for video/voice conferencing and cell phones.
The other class of lossy audio codecs are psychoacoustic based.
This type of codec removes the part of the audio that is
unperceivable to humans based on psychoacoustic models.
Compared to speech coding, psychoacoustic based audio
codecs require higher bit rates and provide higher sound quality.
They are widely used in many multimedia applications, such
as music players, digital cameras, movie archiving, etc. Among
the most popular and widely supported psychoacoustic audio
codecs are MP3, AAC, and AC-3, which are especially popular
in consumer electronics. Besides, these three codecs are open
standards and many implementations are available. Thus, we
choose these three codecs for design exploration within this
project.

1) M
MPEG A

low bit-rate psychoacoustic model based audio codec. It works
by removing the part of the audio that humans are not sensitive
to in order to compress the size while maintaining high quality.
It is defined in ISO/IEC 11172-3. MP3 is widely supported by
almost all digital music players and is the most prevalent
format used for music storage.

Figure 2 illustrates the bloc
ically, the PCM samples are divided into subbands and the

psychoacoustic model controls the configuration of MDCT
(Modified Discrete Cosine Transform), Scaler, and Quantizer
blocks to determine what information can be removed. On the
decoder side, the procedure is reversed, but in a simpler way
since a lot of psychoacoustic model computation is not
required.

2) AAC
AAC (A

C profiles are defined in MPEG-2. The LC (Low
Complexity) profile is the simplest and the most widely used.
The Main profile is like an LC profile with backward
prediction. Finally, the SSR (Scalable Sample Rate) profile is
designed to increase temporal resolution at high frequency and
spectral resolution at low frequency.

Figure 3: AAC encoder block diagram.

Figure 4: AC-3 block diagram [5].

In MPEG-4, several audio profiles are defined and each
profile includes several codecs. Two new AAC schemes are
added in MPEG-4, i.e. HE-AAC (High Efficiency AAC) and
LTP (Long Term Prediction). LTP is an improvement over the
Main profile using a forward predictor. HE-AAC is an
extension of LC-AAC optimized for low bit rate applications.
HE-AAC v1 uses SBR (Spectral Band Replication), which
takes advantage of harmonic frequency redundancy. HE-AAC
v2 couples SBR with PS (Parametric Stereo) to enhance
efficiency of stereo signals.

3) AC-3
AC-3 is also called Dolby Digital or ATSC A/52. It is

commonly used to encode 5.1 channel audio, but also supports
mono and stereo modes. Like MP3 and AAC, AC-3 is a
psychoacoustic based audio coding technique. Figure 4 shows
the block diagram of an AC-3 encoder and decoder. The
filtered coefficients are represented with mantissa and
exponents. Mantissa and exponent are transmitted separately.
AC-3 takes advantage of a high frequency coupling that
selectively couples channels at high frequencies

C. Audio Codec Implementations

To start the design process in SCE, a SpecC model is
required. Since SpecC is very similar to C, it is comparatively
easy to find an already available implementation in C or C++
and then convert it to SpecC. There are existing
implementations provided by open source communities. When
choosing the right open source implementation as a starting
point for this project, we evaluated the following criteria: the
coding language, fixed point versus floating point
implementation, and code complexity. The following sections
discuss the open source codecs we have surveyed and our final
selection.

1) MP3
MAD [6] is a MPEG audio decoder that supports MPEG1

and MPEG2 formats. It implements all three layers – Layer 1,
Layer 2, and Layer 3. MAD supports 24-bit PCM output and is
implemented in C. Operations are done in fixed point. MAD is
available under a GPL.

2) AAC
FAAD2 [10] is an open source MPEG-2 and MPEG-4

AAC decoder. It is licensed under GPL v2. It supports a variety
of different AAC profiles such as LC (Low Complexity), Main,
LTP (Long Term Prediction), and HE (High Efficiency). It is
implemented in pure C code. The output format can be

configured to 16-bit, 24-bit, 32-bit fixed point integer or single
or double precision floating point. However, the complexity of
the source code is not low. The total number of lines of code is
about 68,000.

The ISO AAC reference code [11] includes an encoder and
decoder for all MPEG-4 audio codecs. The AAC decoder part
has about 30,000 lines of code. However, the disadvantage of
the reference code is that it is not optimized compared to other
open source solutions.

Intel released an AAC code [12] that is especially
optimized for IPPs (Integrated Performance Primitives).
Though the code is well optimized with high performance to
be expected when running on supported Intel platforms, tight
coupling to a specific architecture may hinder our design space
exploration.

Opencore AAC [13] is developed by PacketVideo and
included as part of the Android multimedia framework. It
supports LC, LTP, and HE profiles. It is mainly written in C,
but is wrapped with C++ interfaces. The number of lines of
code is about 75,000. Opencore also includes other audio
codecs in the Android framework, such as MP3 and AMR.

Finally, the Helix AAC Decoder [9] is developed in open
source form by RealNetworks. It is a 32-bit fixed point decoder
and can be optionally optimized for ARM architectures. It
supports the LC profile as well as the HE profile with SBR
(Spectral Band Replication). Its code complexity is relatively
low compared to other open source AAC codecs. The total
number of lines of code is about 13,000. It is mainly written in
C, but also has some code written in assembly for optimization
on ARM.

Table 1 summarizes the features and capabilities of the
above described open source AAC decoders.

3) AC3
 [8]Liba52 is an open source implementation of AC-3

decoder under GPL. It is implemented in C and operations are
done in floating point. The total number of lines of code is
about 2791. Besides the decoding library, this package also
includes a test program.

rations are
done in floating point. The total number of lines of code is
about 2791. Besides the decoding library, this package also
includes a test program.

Figure 5: AAC decoder specification model.

TABLE 1: SUMMARY OF OPEN SOURCE AAC DECODERS.

 Profiles Lang. LoC Floating/Fixed
FAAD2 LC,

Main,
LTP, HE

C ~68k Configurable for
fixed point or
floating point

ISO LC,
Main,
SSR, LTP

C ~30k Floating point

IPP LC, LTP C ~7.7k Fixed point
Opencore LC, LTP,

HE
C, with

C++
interface

~75k Fixed point

Helix LC, HE C, ASM ~13k Fixed point

D. Audio Code Selection

MAD was chosen as the basis for the design of the MP3
decoder because it is C based and 100% implemented in fixed
point. Implementing such a design on a target processor avoids
the need for a floating point co-processor. For the MP3
implementation, we leverage an existing SpecC-based MP3
decoder design based on the fixed-point MAD library as
reported in [6].

For AAC, the Helix decoder was selected due to its
relatively low complexity, 100% fixed point implementation,
independence from other libraries, and being written in C.

For AC-3, Liba52 is the only codec surveyed and
considered for implementation. This is based on an already
partiallly converted SpecC model of Liba52 from a previous
project.

II. AAC DECODER DESIGN

For the AAC decoder design, we start with the relatively
simple fixed-point Helix reference implementation. The whole
Helix project contains an audio codec framework that includes
a couple of audio codecs. As a first step to prepare for
conversion, the AAC decoder part was separated out into a
standalone executable. This standalone AAC code was then
further converted into a proper SpecC specification model for
further design space exploration using SCE through a series of
conversion and exploration steps as described in the following.

A. Specification

At the beginning of the conversion process, the C reference
implementation was converted into an initial SpecC model. We
first convert the C function call hierarchy directly into an
equivalent hierarchy of SpecC behaviors, down to the level of
primitive operations defined in the AAC source code that are
kept as global or local C functions/operators. This initial SpecC
code is “unclean” in the sense that the C function call hierarchy
was converted directly into an equivalent hierarchy of SpecC
behaviors that mimics the original C code (mapping each C
function into one SpecC behavior) and mixes leaf statements
with invocation of child behaviors throughout the hierarchy.

Next is to convert the “unclean” SpecC code into a proper
SpecC behavioral and structural hierarchy that exposes
available parallelism, accurately represents inherent
dependencies, and cleanly separates computation and
communication in each level. For this process, we replace
pointers in communication interfaces with explicit arrays or
channels. Global variables should also be removed and
replaced by channels or local variables. Furthermore, we

reorganize the behavior hierarchy to cleanly separate C code in
leaf behaviors from hierarchical instantiations of parent
behaviors. For any non-leaf behaviors that mix regular C code
statements with instantiations of sub-behaviors, we merge top-
level statements into existing sub-behaviors or create new sub-
behaviors. In the process, top-level control flow, like if, while,
for statements are converted into an equivalent SpecC FSM
composition. Furthermore, the code is simplified into a proper
granularity for exploration by converting some smaller
behaviors back into local functions and methods included in
parent behaviors. This approach can lead to creating big leaf
behaviors that may include many local methods. In the process
of design space exploration, big behaviors can in turn be
decomposed into smaller ones to increase flexibility if needed.
Likewise, in future work, we may have to investigate further
parallelization of the code to refactor FSM compositions into
parallel or pipelined executions where possible.

Revisiting the hierarchical granularity was done to both
decompose large behaviors into smaller ones and increase
flexibility as well as to combine and merge several smaller
behaviors (in some cases consisting of single lines of code
only) across the hierarchy in order to reduce the structural
overhead. Overall, a key aspect in developing a good
specification model is the choice of the granularity of
behaviors. For the purpose of synthesis and exploration, SCE
considers behaviors as indivisible units of computation. As
such, their hierarchical composition can significantly influence
quality of results or complexity of the exploration process.

To validate the SpecC model, we implemented a proper test
bench that is decomposed into separate modules for stimulus,
monitor and the design under test (the actual AAC decoder). A
stimulus behavior reads an input file and passes the content to
the decoder via a queue. The design under test (decoder)
decodes the incoming bit stream and outputs wave file data via
a queue channel to the monitor when a frame is decoded.
Another channel connects the decoder to the monitor for error
reporting. A monitor behavior is added to receive decoded data
from the decoder and write the output to a file. Stimulus and
monitor modules terminate the simulation when either the end
of the input file has been reached and completely decoded, or
when a specified number of frames (as given on the command
line) is reached.

In the process of developing the testbench and the decoder
models, we added support to process AAC files in both ADIF
and ADTS format. The current testbench only exercises the
AAC decoder with an ATDS file, but the code is prepared to
handle ADIF files as well (yet untested). We use a 2-channel,
44.1 kHz AAC stream that contains 861 frames to test the code.
Throughout the successive conversion process we thereby
ensure that the model is functionally accurate as validated
against this fixed testbench, which is derived from test vectors
provided with the reference code.

The block diagram of the final, complete AAC SpecC
specification model is shown in Figure 5. The model contains
7227 lines of code, 22 behaviors, 16 leaf behaviors, and 3
channels. This SpecC model can be fed into SCE for design
space exploration.

At this point, the conversion is complete. The SpecC
specification model conforms both to the rules for use by the
SCE tool set as well as to the modeling guidelines for proper
granularity and encapsulation towards effective synthesis.
Throughout all stages of the conversion process, the code has
been functionally validated to produce output equivalent to the
original reference code. The converted AAC decoder
specification model can in turn be fed into the SCE tool flow
for exploration and synthesis down to a variety of hardware and
software implementations.

B. Design Space Exploration

We start design space exploration by feeding the SpecC
model into SCE. After compiling and simulating the input
model, we profile the model and examine the computational
requirements of each block. Profiling results are shown in
Figure 6. It can be easily observed that the IMDCT block
consumes the majority of the total computation. Thus, two
possible architectures were adopted for this model. One is
using a pure software solution, i.e. mapping all blocks onto a
processor. The other is to add a custom piece of hardware that
accelerates the most computationally intensive block, which is
the IMDCT in this case.

1) Pure Software Implementation
This implementation maps all blocks in this design to a

single processor as illustrated in Figure 7(a). We select
ARM_7TDMI among the processors provided by the SCE
library as the only processing element and map all blocks under
AACDecode to this processor. Two instantiations of virtual
hardware blocks are allocated for stimulus and monitor I/O
peripherals. For communication between modules, an AMBA
AHB bus is allocated and the channels between stimulus and
decoder and between decoder and monitor are mapped to the
bus. The ARM processor is set as the master of the AMBA
AHB and the two ports connecting stimulus and monitor are set
as slaves. Each channel is given a different link layer address
and interrupt.

2) Hardware/Software Implementation
To offload the most computationally intensive block from

the processor, we allocate a custom hardware module in this
design variant to accelerate this block. Figure 7(b) illustrates
this implementation.

An ARM_7TDMI and a standard hardware PE are allocated
for this design. The IMDCT block is mapped to the custom
hardware accelerator and all other blocks under AACDecode
are mapped to the processor. Similar to the pure software
implementation, two pieces of virtual hardware are allocated
for stimulus and monitor peripherals. Likewise, an AMBA
AHB bus is instantiated for communication between processing
elements. The processor is the bus master and the other three
elements are bus slaves. Each processing element is assigned a
range of addresses and an interrupts.

(a) Pure software implementation

Figure 6: Computation profile of AAC decoder.

(b) Hardware/software implementation

Figure 7: AAC design space explorations.

C. Results

Both design variants are synthesized down to the point of
automatically generating the final target binaries for the ARM
processors, whereas hardware models of IMDCT blocks
remain at a behavioral level, i.e. are not yet converted down to
RTL models following a high-level (C-to-RTL) synthesis
process. The final synthesized implementations are validated
by co-simulating binary code running on a functional, binary-
translating (i.e. timing-accurate with CPI=1) instruction-set
model of the ARM processor (using OVP [15] ISS models),
which are embedded in an overall SpecC transaction-level and
pin-accurate system simulation [16].

Table 2 shows the final decoding and simulation results of
the two implementations as measured on the OVP-based TLM
simulation. For each model, the average decoding delay per

TABLE 2: AAC DESIGN RESULTS ON OVP PLATFORM.

AAC Decoder SW-Only HW/SW
Avg. Decoding Delay 74.08 ms 88.74 ms
Simulated Instructions 3,346,299,772 3,853,005,626
Simulated Time 63.79 s 76.41 s
Refinement Run Time 88.191 s 88.079 s

Figure 9: AC3 decoder specification model.

(a) Simulation times

(b) Code complexity

(c) Simulated decoding delays

Figure 8: AAC decoder results.

frame and the total number of simulated instructions is
provided. The simulation time is the time spent on the host
machine to run the simulation for the input test file. Simulated
time is the time needed by the design to decode the 861 frames
of the testbench. The refinement run time is the time spent to
generate the final implementation from the specification model.

Figure 8 shows normalized simulation time, lines of code,
and simulated frame decode delay of both implementations at
different levels of abstraction generated during the refinement
process. As can be expected, with increasing detail included in
the simulation at successively lower levels, simulation times
and overall code complexities rise exponentially while
simulation accuracy gradually improves towards the final ISS
result. Note that simulated delays in models above ISS are
based on back-annotated execution timings obtained from
source-level profiling tools built into SCE [17], which are not
well calibrated to the given target architecture. Accuracy of
high-level models can be significantly improved by employing
a fine-grain back-annotation of target-specific execution
metrics [18]. Also note that due to the simple timing model in
OVP, ISS results are not fully cycle-accurate either. This can
lead to a misrepresentation of relative performance of different
designs. Instead, as AC3 decoder results will show, high-level
models are able to predict relative trends with better fidelity.

III. AC3 DECODER DESIGN

For the AC3 decoder, we began with an existing, partial
conversion of a floating-point C reference model into SpecC
format that was performed in an earlier project. There were
several issues with this initial model that needed to be resolved:
(a) timing issues due to improper parallelization leading to
deadlock situations, (b) unclean structural hierarchy with
communication through global data structures instead of local
variables and channels, and (c) use of floating-point instead of
fixed-point arithmetic as a basis for an efficient embedded
implementation. For the floating-point to fixed-point
conversion, the goal is to perform conversion that can produce
the same level of sound quality of the decoded outputs as
compared to the floating-point reference implementation.

A. Specification

Following the same principles for converting the AAC
model, the AC3 floating-point model was first converted into
an unclean hierarchy and then further cleaned up, debugged
and validated. The overall structure of the AC3 decoder SpecC
specification model is shown in Figure 9. We have added a
testbench into the model with capabilities for reading encoded
AC3 files and writing the decoded output stream into a wav file
(using the original reference code for downmixing of 5.1 audio
streams into a stereo wav file representation). The model has
been validated on several AC3 sample files with varying
characteristics, e.g. in terms of sample rates, as obtained from
the internet. In all cases, it produces bit-exact output when
compared to the original reference code.

A fixed-point version of the AC3 decoder was also
developed for this project. The original model contains four
behaviors that include floating-point operations: Uncouple,
Rematrix, Imdct, and OutputWrite (downmixing). These four
behaviors are converted into equivalent fixed-point variants.
The resulting fixed-point AC3 decoder specification model
does not generate a bit-exact binary file. However, by listening
to the generated wav files we could validate that floating-point
and fixed-point versions produce output that is almost
indistinguishable to the human ear. As such, we decide to not
invest more time into increasing the precision of the fixed-point
version. Rather, we concentrate on feeding both the floating-
point and the fixed-point SpecC models into the SCE
exploration and synthesis flow.

B. Design Space Exploration

To evaluate the performance of the AC3 decoder on various
target architectures and to explore different configurations, we
use the SCE framework to automatically generate target
implementations from the SpecC specification models. We first
performed profiling on the fixed-point and floating-point
implementations. Figure 10 shows the profiling results for

floating-point and fixed-point implementations. As was the
case in the AAC decoder, in both implementations, the IMDCT
is the most computation consuming block in the system.

Thus, similar to the case in the AAC design, both fixed-
point and floating-point models of the AC3 decoder were
synthesized down to two different architectures: In a software-
only architecture, as shown in Figure 11(a), all computation is
performed on an ARM7TDMI processor running at 100MHz.
In a hardware/software architecture, shown in Figure 11(b), the
IMDCT component is mapped to a custom hardware block that
sits on a common AMBA AHB system bus (running at
50MHz). In both cases, input and output blocks are realized by
virtual hardware I/O peripherals sitting on the system bus.

C. Results

As before, all variants were synthesized down to the point
of automatically generating the final target binaries for the
ARM processors, whereas hardware models of IMDCT blocks
remain at a behavioral/C level. In the AC3 case, the final
synthesized implementations were validated by co-simulating
binary code both on the timing-accurate-only OVP models as
well as on a cycle-accurate instruction-set model of the ARM
processor (using the SWARM simulator [14] embedded into a
transaction-level or pin-accurate SpecC platform model).

Table 3, Table 4 and Figure 12 summarize performance and
complexity for different architectures of the AC3 decoder when

exercised with a testbench of 290 AC3 frames. The results
show that better decoding performance is achieved in the fixed-
point model, since the ARM processor does not contain a
dedicated floating-point unit.

(a) Floating-point

(b) Fixed-point

Figure 10: AC3 decoder profiling results

(a) Pure software realization

(b) Hardware/software design

Figure 11: AC3 decoder implementations.

Furthermore, a large portion of floating-point operations is
located in the IMDCT component, which leads to a
significantly better performance in the HW/SW architecture of
the floating-point model. By mapping the IMDCT and all of its
floating-point operations to dedicated hardware, a better
performance as for a fixed-point software implementation can
be achieved. Nevertheless, hardware acceleration can even
further improve fixed-point performance.

TABLE 4: AC3 FIXED-POINT RESULTS.

Fixed-Point Model AC3Decoder
SW-Only HW/SW

Avg. Decoding Delay 225.65 ms 80.92 ms
Simulated Instructions 1,479,629,294 1,264,151,548
Simulated Cycles 5,127,160,539 1,394,077,785
Simulated Time 64.44 s 23.47 s
Refinement Run Time 78 s 92 s

TABLE 4: AC3 FLOATING-POINT RESULTS.

Floating-Point Model AC3Decoder
SW-Only HW/SW

Avg. Decoding Delay 1,401 ms 176.89 ms
Simulated Instructions 4,976,708,589 1,589,962,826
Simulated Cycles 32,340,289,561 3,528,134,535
Simulated Time 406.45 s 51.30 s
Refinement Run Time 77 s 91 s

Note that high-level models accurately predict the
advantages of hardware acceleration in both floating- and
fixed-point designs. However, the profiling tools used to
annotate execution time estimates [17] do not yet reflect the
lack of floating-point support in the chosen ARM processor. As
such, simulated delays of floating- and fixed-point variants of
each design are almost the same (small differences stem from
variations in the size of floating and fixed-point data
transferred between the ARM and other components).

IV. CONCLUSIONS

In this project, we have developed SpecC specification
models for three audio decoding standards, namely MP3, AC3
and AAC decoders. All models follow a well-defined structure
and model of computation (MoC) as a basis for further
synthesis with the System-on-Chip Environment (SCE). With
the given AC3, AAC and MP3 setup on top of the SCE tool set,
we are able to quickly generate new implementation variants.
For all decoder variants, we have explored several architectures
and synthesized them down to final implementations on an
ARM-based HW/SW platform. In all cases, final
implementations of software and hardware running on the

ARM-based target platforms could be synthesized within
minutes. This can provide the basis for further projects to
investigate and developing actual, novel multi-workload
exploration methods that can synthesize target architectures
optimized across a set of applications.

As a first step, this may involve using existing SpecC-based
source-level profiling tools to capture code characteristics of
various computational blocks in the three algorithms. Using
this information, we can envision concepts and techniques to
extract microarchitectural similarities needed to optimal
support computations in all three applications on a common
platform of heterogeneous processing elements. Likewise, we
can explore commonalities in the hierarchical graph structures
that represent the data and control flow across behavioral
blocks in each application. This can lead to a notion of
architectural flexibility that captures the types of application
graphs (and operation characteristics in each node) that
naturally map onto a given platform. The long-term goal is to
develop such concepts into a theory and algorithms that will
enable automated design space exploration and design for
flexibility across a class of current and future applications.

1

10

100

1000

10000

100000

1000000

Spec Arch Sched Net Tlm Comm ISS/OVP ISS/SWARM

N
or
m
al
iz
ed

 S
im

ul
at
io
n
Ti
m
e

FXP(SW)

FLP(SW)

FXP(HWSW)

FLP(HWSW)

(a) Simulation times

(b) Code complexity ACKNOWLEDGMENTS

This project was partially supported by Intel.

REFERENCES
[1] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, D.

Gajski, “System-on-Chip Environment: A SpecC-Based Framework for
Heterogeneous MPSoC Design,” EURASIP Journal on Embedded
Systems (JES), vol. 2008, Article ID 647953, 2008.

[2] L. Cai, D. Gajski, “Transaction Level Modeling: An Overview,” In
Proceedings of the Int. Conference on HW/SW Codesign and System
Synthesis (CODES-ISSS), Oct. 2003.

[3] A. Gerstlauer, S. Chakravarty, M. Kathuria, P. Razaghi, “Abstract
System-Level Models for Early Performance and Power Exploration,” In
Proceedings of the Asia and South Pacific Design Automation
Conference (ASPDAC), Jan. 2012. (c) Simulated delays

[4] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao. SpecC:
Specification Language and Design Methodology. Kluwer Academic
Publishers, 2000.

Figure 12: AC3 decoder results.

[5] W. Lee, Digital Perceptual Audio Compression Standards Slides.
[6] A. Gerstlauer, D. Shin, S. Abdi, P. Chandraiah, D. Gajski, “Design of a

MP3 Decoder using the System-On-Chip Environment (SCE),” UC
Irvine, Technical Report CECS-TR-07-05, Nov. 2007.

[7] Underbit Technologies Inc. MAD: MPEG audio decoder.
http://www.underbit.com/products/mad.

[8] Liba52, http://liba52.sourceforge.net/
[9] Helix AAC Decoder

https://datatype.helixcommunity.org/2005/aacfixptdec
[10] FAAD2: http://www.audiocoding.com/faad2.html
[11] ISO AAC Reference Software:

http://wiki.multimedia.cx/index.php?title=AAC_Reference_Software
[12] Intel IPP Based AAC: http://www.intel.com/cd/software/products/asmo-

na/eng/perflib/ipp/219967.htm
[13] Opencore AAC: http://source.android.com/source/download.html
[14] SWARM Software ARM Simulator:

http://www.cl.cam.ac.uk/~mwd24/phd/swarm.html
[15] Open Virtual Platforms (OVP): http://www.ovpworld.org
[16] P. S. Bomfim, A. Gerstlauer, “Integration of Virtual Platform Models

into a System-Level Design Framework,” CERC, UT Austin, Technical
Report UT-CERC-10-02, August 2010.

[17] L. Cai, A. Gerstlauer, D. Gajski, "Retargetable Profiling for Rapid, Early
System-Level Design Space Exploration," In Proceedings of the Design
Automation Conference (DAC), San Diego, CA, Jun. 2004.

[18] A. Gerstlauer, S. Chakravarty, M. Kathuria, P. Razaghi, "Abstract
System-Level Models for Early Performance and Power Exploration" In
Proceedings of the Asia and South Pacific Design Automation
Conference (ASPDAC), Sydney, Australia, Jan. 2012.

http://www.underbit.com/products/mad
http://liba52.sourceforge.net/
https://datatype.helixcommunity.org/2005/aacfixptdec
http://www.audiocoding.com/faad2.html
http://wiki.multimedia.cx/index.php?title=AAC_Reference_Software
http://www.intel.com/cd/software/products/asmo-na/eng/perflib/ipp/219967.htm
http://www.intel.com/cd/software/products/asmo-na/eng/perflib/ipp/219967.htm
http://source.android.com/source/download.html
http://www.cl.cam.ac.uk/%7Emwd24/phd/swarm.html
http://www.ovpworld.org/

	CERC Tech Report Cover 12-06.pdf
	TR Audio Decoder v6.pdf
	I. Introduction
	A. SCE
	B. Audio Codecs
	1) MP3
	2) AAC
	AC-3

	C. Audio Codec Implementations
	1) MP3
	2) AAC
	3) AC3

	D. Audio Code Selection

	II. AAC Decoder Design
	A. Specification
	B. Design Space Exploration
	1) Pure Software Implementation
	2) Hardware/Software Implementation

	C. Results

	III. AC3 Decoder Design
	A. Specification
	B. Design Space Exploration
	Results

	IV. Conclusions
	Acknowledgments
	References

