
BoxRouter: A New Global Router Based on
Box Expansion and Progressive ILP

Minsik Cho
ECE Dept. Univ. of Texas at Austin

Austin, TX 78712

thyeros@cerc.utexas.edu

David Z. Pan
ECE Dept. Univ. of Texas at Austin

Austin, TX 78712

dpan@ece.utexas.edu

ABSTRACT
In this paper, we propose a new global router, BoxRouter,
powered by the concept of box expansion and progressive in-
teger linear programming (ILP). BoxRouter first uses a sim-
ple PreRouting strategy which can predict and capture the
most congested regions with high fidelity compared to the
final routing. Based on progressive box expansion initiated
from the most congested region, BoxRouting is performed
with progressive ILP and adaptive maze routing. It is fol-
lowed by an effective PostRouting step which reroutes with-
out rip-up to obtain smooth tradeoff between wirelength and
routability. Our experimental results show that BoxRouter
significantly outperforms the state-of-the-art published global
routers, e.g., 79% better routability than [1] (with similar
wirelength and 2x speedup), 4.2% less wirelength and 16x
speedup than [2] (with similar routability). Given the funda-
mental importance of routing, such dramatic improvement
shall sparkle renewed interests in routing which plays a key
role in nanometer design and manufacturing closure.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuit]: Design Aids

General Terms
Algorithms, Design, Performance

Keywords
VLSI, Global Routing, Congestion

1. INTRODUCTION
Routing is a key stage for VLSI physical design. Aggres-

sive technology scaling has led to much smaller/faster de-
vices, but more resistive interconnects and larger coupling
capacitance. Since routing directly determines the intercon-
nects (wirelength, routability/congestion, and so on), thus
the overall VLSI system performance [5, 15, 25], it plays
a critical role in the deep-submicron design closure. For

This work is supported in part by SRC, IBM Faculty
Award, Fujitsu, Sun and equipment donations from Intel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

nanometer interconnects, the manufacturability and vari-
ability issues such as antenna effect, copper chemical me-
chanical polishing (CMP) and subwavelength printability
have also emerged [6,13,18,20,25,26]. Again, routing plays
a major role in terms of the manufacturing closure.

The global routing, as its name implies, is the routing
stage that plans the approximate routing path of each net
to reduce the complexity of routing task and guide the de-
tailed router [12]. Thus, it has significant impact on wire-
length, routability and timing [12] [11]. Optimizing the wire
density distribution during the global routing can also help
to improve the overall manufacturability (e.g., less post-
CMP topography variation, less copper erosion/dishing, and
less optical interference for better printability [6,13,18,20]).
Furthermore, fast global routing can feed more accurate in-
terconnect information (such as wirelength and congestion)
back to placement or other early physical synthesis engines
for better design convergence [24].

The importance of global routing in VLSI design flow
has led to many works in predicting and estimating rout-
ing congestion, and designing global routers. Probability
based congestion prediction for global routing is studied
in [14,17,19,22], and global router based congestion estima-
tion is researched in [21] [23] for early wirelength estimation.
Within the scope of over-the-cell global routing model [1],
Burstein et al. [3] proposed a hierarchical approach to speed
up integer programming formulation for global routing, and
Kastner [16] proposed a pattern-based global routing. Raja
et al. [1] presented the Chi dispersion router based on linear
cost function, and showed better results than [16]. The mul-
ticommodity flow-based global router by Albrecht [2] showed
good results and was used in industry, but at the expense of
computational effort. No comparison, however, is available
between [1] and [2], which are two state-of-the-art published
global routers.

In this paper, we propose BoxRouter, a new global router
based on the idea of box expansion and progressive ILP. Es-
sentially, BoxRouter progressively expands the routing box
and performs routing within each expanded box (BoxRout-
ing), until the expanded box covers the whole circuit (all
the wires are routed). Efficient ILP is formulated to per-
form BoxRouting, with the aid of effective PreRouting and
PostRouting. The major contributions of this paper include
the following.

• We observe that a simple PreRouting step can capture
the most congested regions with reasonable accuracy,
and improve runtime by reducing the number of wires
to be routed later.

• We propose the key BoxRouting idea which efficiently
utilizes limited routing resources based on progressive
box expansion initiated from the most congested re-
gion estimated by PreRouting. Using different routing
strategies inside and outside the box, routability can
be maximized with minimum wirelength increase.

• We propose an efficient progressive integer linear pro-
gramming (ILP) for BoxRouting. In our ILP, only
wires between two successive boxes are considered with
L-shape patterns. Thus even with ILP, our runtime is
still much faster than existing global routers [1] [2] [16].

• We propose an effective PostRouting step which reroutes
wires from the most congested region without rip-up.
It is more efficient than the conventional rip-up &
route. It also provides smooth trade-off between wire-
length and routability with only a simple parameter.

BoxRouter achieves impressively better results on the stan-
dard ISPD98 IBM benchmarks than [1] and [2], thus pushes
the state-of-the-art considerably. Due to the fundamental
importance of global routing, we believe it shall have many
applications/implications for nanometer designs.

The rest of the paper is organized as follows. In Sec-
tion 2, preliminaries are described. In Section 3, BoxRouter
is proposed. Experimental results are discussed in Section 4,
followed by the conclusion in Section 5.

2. PRELIMINARIES

2.1 Notations
Table 1 lists the notations used throughout this paper.

Table 1: The notations in this paper.
vi vertex / global routing cell i
eij edge between vi and vj

mij maximum routing resource of eij

cij available routing resource of eij

2.2 Global Routing Model
The global routing problem can be modelled as a grid

graph G(V, E), where each vertex vi represents a rectangular
region of the chip, so called a global routing cell (G-cell), and
an edge eij represents the boundary between vi and vj with
a given maximum routing resource mij . Fig. 1 shows how
the chip can be abstracted into a grid graph where mAB = 3.
A global routing is to find paths that connect the pins inside
the G-cells through G(V, E) for every net.

2.3 Global Routing Metrics
The key task of global router is to maximize the routabil-

ity for successful detailed routing [24]. In addition, wire-
length and runtime are other important metrics of global
router.

A B

G-cell

(a) real circuit with G-cells

A B
3

(b) grid graph for routing

Figure 1: Grid graph model for global routing

• Routability can be estimated by the number of over-
flows which indicates that routing demand locally ex-
ceeds the available routing capacity [24] [16]. In Fig. 1,
the number of overflow between vA and vB is one, as
there are four routed nets, but mAB = 3. Formal def-
inition of overflow is in [16].

• Wirelength is an important metric for placement as
well as routing. But, it is less concern for global rout-
ing, as routing all wires with shortest path algorithms
will result in minimum or near-minimum wirelength [24].
However, there can be huge difference between solu-
tions of the same wirelength in terms of routability.

• Runtime is fairly significant, as global routing links
placement and detailed routing, and needs to feed par-
asitic information to higher level of design flow for de-
sign convergence.

d

d

c

c

a

a

b

b

(a) motivation for BoxRouting

Keep dense with
greedy strategy

Keep uniform with
conservative strategy

Box

(b) strategies of BoxRouting

Figure 2: The basic concept of BoxRouter

3. BOXROUTER
In this section, we present a new global router, BoxRouter,

which is based on congestion-initiated box expansion. Our
BoxRouter progressively expands a box which initially cov-
ers the most congested region only, but finally covers the
whole circuit. After every expansion, a circuit is divided into
two sections, inside the box and outside the box. BoxRouter
uses different routing strategies for each section to maximize
routability and minimize wirelength. Consider Fig. 2 (a),
where two wires (a and b) are inside the box, but the other
wires (c and d) are not inside the box. The routing resource
inside the box is more precious to a and b than c and d for
two reasons:

• If a or b are not routed within the box, wirelength will
be increased due to detour.

• c and d may have another viable routing path outside
box which does not waste the routing resource inside
the box.

Therefore, BoxRouter first routes as many wires inside the
box as possible with progressive integer linear programming
(ILP) routing, by maximally utilizing the routing resource
inside the box. Then, for the wires which cannot be routed
by progressive ILP within the box (due to insufficient rout-
ing resources), BoxRouter detours them by adaptive maze
routing with the following two strategies:

• Inside the box, use the routing resources as much
as possible (greedily), as the wires inside the box have
priority over those outside the box.

• Outside the box, use the routing resources conser-
vatively, as the wires outside the box may need them
later for their routing paths.

Those two strategies make the wire density of the circuit
as in Fig. 2 (b), and help the wires detour the more congested
region to maximize the routability with minimum detour.

The overall flow of BoxRouter is in Fig. 3, which will be
explained in detail in the rest of this section. Section 3.1
describes the preprocessing for BoxRouter. Section 3.2 il-
lustrates PreRouting for congestion estimation and routing
speedup. Section 3.3 explains BoxRouting, the main idea
of BoxRouter. Finally, Section 3.4 shows how to control the
trade-off between wirelength and routability in PostRouting.

PreRouting & Initial Box

PostRouting

Minimum Steiner Tree

Net Decomposition

Progressive ILP

Adaptive Maze Routing

Box Expansion

all wires routed?

B
oxR

outing

Y

N

Figure 3: BoxRouter overall flow

3.1 Steiner Tree and Net Decomposition
A net can be decomposed into two pin wires with Rec-

tilinear Minimum Seiner Tree as shown in Fig. 4. A fast
and accurate steiner tree algorithm, Flute [4] is adopted in
BoxRouter. But, any other steiner tree algorithm can be
used for BoxRouter without significantly impacting the re-
sult . A special wire which does not need a bend is called
a flat wire [17]. For example, wire a-e, e-d, e-f and b-f in
Fig. 4 (b) are flat wires.

net a-b-c-d

a

d

b
c

(a) hypergraph for a net

d

wire a-e wire e-d

wire b-f wire f-c

wire e-f

f

e

a

c

b

(b) wires after decomposition

Figure 4: Net decomposition into two pin wires

3.2 PreRouting and Initial Box
PreRouting simply routes as many flat wires as possible

via the shortest path without creating any overflow. As

(a) congestion after PreRouting (b) congestion after BoxRouting

Figure 5: Congestion estimation from PreRouting

(a) initial box on the hotspot

a

a
c

c

d

d

i i

k

k
f f

b

b

h

h

Box i

(b) before BoxRouting with Box i

f f
b

b

h

h

vA vB

vDvC

xb1

xb2

xf1

xh2
xh1

Box i

(c) wires and G-cells within Box i

a

a
c

c

d

d

i i

k

k
f f

b

b

h

h

Box i

(d) adaptive maze routing for b

a

a
b

b

f f

h

h

i i

d

d

k

k

c

c

Box i
Box i+1

(e) box expansion to Box i+1

a

a
b

b

f f

h

h

i i

d

d

k

k

c

c

Box i
Box i+1

(f) BoxRouting with Box i+1

Figure 6: BoxRouting example

bulk of nets can be routed in simple patterns (L-shape or
Z-shape) [22] [23] [16], PreRouting can improve the runtime
without degrading the final solution. More importantly, if
enough number of wires can be routed by PreRouting, the
global congestion view can be obtained. According to our
experiments, about 60% of the final wirelength on average
can be routed with tiny computational overhead by Pre-
Routing. Fig. 5 shows an example of congestion maps after
PreRouting and BoxRouting. The most congested regions
(hotspots) can be predicted very well by PreRouting. A box
which encompasses the four G-cells in the most congested
area will be created as shown in Fig. 6 (a) as a starting point
of BoxRouting.

3.3 BoxRouting
In this subsection, BoxRouting will be explained with

Fig. 6. BoxRouting consists of three steps, progressive inte-
ger linear programming (ILP) routing, adaptive maze rout-
ing and box expansion as in Fig. 3. Those three steps are
repeated until the expanded box covers the whole circuit.

Assuming a box is expanded from the most congested re-
gion as in Fig. 6 (a), consider Fig. 6 (b), where wires within
the box after i-th expansion (Box i) are shown with squares
(b, f and h), and the other wires are shown with circles.
The already routed wires by either PreRouting or previous
BoxRouting are simply shown as solid lines. Note that some
flat wires like f, i and k remain unrouted until BoxRouting,
if PreRouting gives up routing a wire due to any overflow
or new steiner points introduced by adaptive maze routing

max : xb1 + xb2 + xf1 + xf2 + xh1 + xh2

s.t : xb1, xb2, xf1, xf2, xh1, xh2 ∈ {0, 1}
xb1 + xb2 ≤ 1

xf1 ≤ 1, xf2 = 0

xh1 + xh2 ≤ 1

xb1 + xf1 + xh1 ≤ cAB

xb1 + xh1 ≤ cBD

xb2 + xh2 ≤ cAC

xb2 + xh2 ≤ cCD

Figure 7: Progressive ILP formulation of Fig. 6 (c)

max :
∑{xi1 + xi2} ∀i ∈ Wbox

s.t : xi1, xi2 ∈ {0, 1} ∀i ∈ Wbox

xi1 + xi2 ≤ 1 ∀i ∈ Wbox

xi2 = 0 ∀i ∈ Wbox ∩ Wflat
∑

e∈xi,j
xij ≤ ce ∀e ∈ Wbox

Figure 8: General progressive ILP formulation

(explained later in this section) convert a non-flat wire into
a flat wire. For efficient routing as mentioned in the begin-
ning of this section, only wires within the box will be routed
by progressive ILP and adaptive maze routing.

In Fig. 6 (c), the wires within the box are shown with G-
cells (vA, vB , vC and vD), and the corresponding progressive
ILP formulation for maximum routability is shown in Fig. 7.
To minimize the number of vias, two L-shape routings (xb1,
xb2 and xh1, xh2) are considered for each wire in our ILP
formulation, but only one routing (xf1 and xf2=0) is con-
sidered for flat wires. General progressive ILP formulation
is shown in Fig. 8, where Wbox is a set of unrouted wires
within the current box and Wflat is a set of flat wires.

Differently from the hierarchical ILP [3], our ILP approach
progressively routes a part of the circuit, which is covered
by each expanding box. Also, as the solution from Box i is
reflected in the next routing problem of Box i+1 (Box i+1
always encompasses Box i), our progressive ILP approach
provides a seamless and incremental routing. Even though,
the last box can cover the whole circuit, the ILP size remains
tractable, as ILP is performed on the wires between two
boxes like between Box i and Box i+1 in Fig. 6 (e).

However, due to the limited routing resource of each edge,
some wires may not be routed with ILP. For example, as-
suming mCD=2, the wire b cannot be routed with the ILP
(xb1=xb2=0), as two prerouted wires on eCD consume all
the routing resources. For this case, b is routed by adaptive
maze routing as in Fig. 6 (d) with the cost from Alg. 1.

Alg. 1 returns a unit cost as long as eXY is inside box and
still has available routing resource (line 2, 3). Otherwise, it

Algorithm 1 Adaptive Maze Routing Cost for BoxRouting

Input: G-Cell X, Y , Box B
1: Cost C = mXY − cXY

2: if eXY is inside B and cXY > 0 then
3: C = 1
4: end if

Output: C

returns a cost inversely proportional to the available routing
resources (line 1). This cost function makes adaptive maze
routing find the shortest path inside the box for wirelength
minimization, but the most idle path outside the box for
routability maximization. Note that the resource outside
the box should be used conservatively, as the wires outside
the current box may need them later. If too big detour
is required to avoid small overflows, adaptive maze routing
which looks for the minimum cost path may return a routing
path with overflows.

After all the wires inside the box are routed either by
progressive ILP or adaptive maze routing, the Box i will be
expanded to Box i+1, and new wires (c, d and k) are encom-
passed by Box i+1 as shown in Fig. 6 (e). The result after
applying BoxRouting (progressive ILP and adaptive maze
routing) again is shown in Fig. 6 (f). The amount of incre-
ment during box expansion significantly affects the routing
solution. As the box grows larger for every expansion with
bigger increment, the runtime increases exponentially due to
larger ILP problem size (more wires are added into the for-
mulation due to larger expansion). But, the smaller overflow
can be obtained, as the routing is performed more globally.
More discussion is presented in Section 4. After all wires
are routed (the box becomes big enough to cover the whole
circuit), PostRouting of Section 3.4 will follow BoxRouting.

The intuition of BoxRouting is that it mimics the diffu-
sion effect. By each BoxRouting, all the wires in the more
congested region (within the box) are routed first by pro-
gressive ILP, then by adaptive maze routing. This makes
the wires outside the box detour the box, as there is low
chance of being routed through the box. Such detouring
wires works like diffusing wires to the low congested area,
improving routability at a cost of wirelength.

3.4 PostRouting (Reroute without Rip-up)
As the adaptive maze routing of BoxRouting uses con-

servative strategy outside the box in Alg. 1 (finding the
most idle routing path outside the box), it may create un-
necessary detour and overflow. Thus, PostRouting simply
reroutes wires to remove unnecessary overhead with box ex-
pansion initiated from the most congested region, as done
in BoxRouting. In detail, a wire in the more congested re-
gion will be rerouted first, and such rerouted wire can re-
lease the routing resource, as it may find the better routing
path. Then, the surrounding wires can be rerouted with the
released routing resource, potentially reducing detour and
overflow again. This chain reaction propagates from the
most congested region to less congested regions along the
box expansion.

Maze routing is used for PostRouting, but with a different
routing cost function as in Alg. 2, where parameter K is
introduced. The parameter K controls the trade-off between
wirelength and routability (overflow), by setting the cost of
each overflow as K. Thus, higher K will discourage overflow

Algorithm 2 Maze Routing Cost for PostRouting

Input: G-Cell X, Y , Param K
1: Cost C = K
2: if cXY > 0 then
3: C = 1
4: end if

Output: C

0 5 10 15 20 25 30 35 40 45
200

250

300

350

400

O
ve

rf
lo

w

Box Increment
0 5 10 15 20 25 30 35 40 45

0

250

500

750

1000

1200

R
un

ti
m

e
(s

ec
)

Overflow
Runtime

Figure 9: Overflow and runtime change by box in-
crement for ibm04

at a cost of wirelength increase (more detours), but lower K
will suppress detour at a cost of overflows. The effectiveness
of parameter K is discussed in Section 4.

Our PostRouting is more efficient than the widely used
Rip-up&Reroute (R&R), as PostRouting makes a wire vol-
untarily release a routing resource (this happens, only when
the solution improves) during its rerouting, while R&R de-
prives it from a wire in the congested region without guar-
anteeing any improvement.

4. EXPERIMENTAL RESULTS
We implement BoxRouter in C++, and the ISPD98 IBM

benchmarks are taken from [9]. All the experiments are per-
formed on a 2.8 GHz Pentinum-4 Linux machine. Flute [4]
is used for steiner tree construction, and GNU Linear Pro-
gramming Kit (GLPK) 4.8 [10] is used as ILP solver.

Fig. 9 shows the overflow and runtime by the amount
of box increment (See Section 3.3) for one benchmark. It
clearly shows that with larger box increment, the overflow
decreases, but the runtime increases exponentially. While
the wirelength varies only by 0.11%, the overflow decreases
by 30%, but the runtime increases by 500%. It indicates that
with larger box increment during box expansion of BoxRout-
ing, the solution quality can be improved at a cost of runtime
(Note that ILP takes the majority of the runtime). However,
the amount of box increment is kept sufficiently small for all
the experiments in this section, as GLPK 4.8 is unstable for
large ILP problems.

The effectiveness of parameter K (See Section 3.4) is shown
in Fig. 10. It shows that with larger K, overflow decreases
exponentially, but wirelength increases. We constantly find
that overflow saturates faster than wirelength, and the best
trade-off occurs around K=15 for all the tested benchmarks.

Table 2 shows the detail about benchmarks and the rout-
ing result by BoxRouter with K=15. The lower bound wire-

0 5 10 15 20 25 30
0

200

400

600

O
ve

rf
lo

w

K
0 5 10 15 20 25 30

1.75

1.8

x 10
5

W
ir

e
le

ng
th

Overflow
Wire length

(a) ibm02

0 5 10 15 20 25 30
0

200

400

600

O
ve

rf
lo

w

K
0 5 10 15 20 25 30

5.85

5.9

x 10
5

W
ir

e
le

ng
th

Overflow
Wire length

(b) ibm10

Figure 10: Routability and wirelength trade-off by
Parameter K

Table 2: Routing Results from BoxRouter for
ISPD98 IBM benchmarks.

circuit BoxRouter (K=15)
name nets wires grids lb.wlena wlenb ovflc w.o(%)d

ibm01 11507 28232 64x64 60142 65193 126 8.4
ibm02 18429 55649 80x64 165863 179086 33 8.0
ibm03 21621 45727 80x64 145678 149879 9 2.9
ibm04 26163 53487 96x64 162734 171756 342 5.5
ibm05 27777 94304 128x64 409709 409747 0 0
ibm06 33354 82541 128x64 275868 282002 5 2.2
ibm07 44394 109365 192x64 363537 376247 81 3.5
ibm08 47944 133353 192x64 402412 409584 31 1.8
ibm09 50393 128708 256x64 411260 418023 4 1.6
ibm10 64227 182010 256x64 574407 591820 10 3.0
a asymptotic lower bound of wirelength by GeoSteiner 3.1
b wirelength hereafter in this section.
c overflow hereafter in this section.
d wirelength overhead.

length of each circuit is computed by the most accurate
GeoSteiner 3.1 [4] [8]. It shows that BoxRouter has 3.7%
wirelength overhead on average, and provides high quality
solution for larger circuits with small overflows. Also, we
observe that BoxRouter has linear memory complexity for
all the tested benchmarks.

For thorough comparison, we download two available global
routers, Labyrinth 1.1 [16] [9] and Fengshui 5.1 (which has
the newest implementation of the Chi dispersion router) [1]
[7], and implement multicommodity flow-based global router
in C++ (the binary is not available from the author) [2]. Al-
though the results of Labyrinth and Fengshui are reported
in [1], we reproduce the results due to the recent update in
the benchmarks [9].

Table 3 shows the experimental results and comparison for
Labyrinth, Fengshui, and Table 4 shows for multicommodity
flow-based router. As there is a trade-off between wirelength
and routability, we choose the parameter K of BoxRouter of
Table 3 with wirelength constraint such that wirelength from
BoxRouter is as small or smaller than those from Labyrinth
and Fengshui for fair comparison. Regarding Table 4, we
carefully choose the parameters of multicommodity router
for each benchmark such the best results are yielded within
25 phases (the maximum phase in [2]), and simulate ibm01,
ibm02, ibm04 and ibm07 (circuits with non-zero overflow in
Table 3) again for BoxRouter without any constraint.

As in Table 3, BoxRouter outperforms Labyrinth and
Fengshui by wide margin. In terms of wirelength and over-
flow, BoxRouter can reduce the wirelength by 14.3%, the
overflow by 91.7% compared with Labyrinth, and improve
the overflow by 79% with similar wirelength (actually 0.8%
better) compared with Fengshui. Also, BoxRouter is 3.3x
and 2.0x faster than Labyrinth and Fengshui respectively.
Mutlicommodity flow-based router and BoxRouter show very
comparable overflow as shown in Table 4. However, BoxRouter
is 15.7x faster, and produces 4.2% shorter wirelength on av-
erage than multicommodity flow-based router. It shows that
BoxRouter can provide high quality global routing solution
with significantly less design turn around time.

5. CONCLUSION
In order to cope with the increasing impact of interconnect

on system performance, we present an efficient global router,
BoxRouter to maximize the routability with minimum wire-
length. Experimental results show that BoxRouter outper-

Table 3: Comparison with Labyrinth 1.1 and Fengshui 5.1 (Chi dispersion) for ISPD98 IBM benchmarks.
circuit Labyrinth 1.1 Fengshui 5.1 BoxRouter Imprv. on Labyrinth Imprv. on Fengshui
name wlen ovfl cpu(s) wlen ovfl cpu(s) wlen ovfl cpu(s) wlen(%) ovfl(%) spd(x)a wlen(%) ovfl(%) spd(x)a

ibm01 76517 398 21.2 66006 189 15.1 65588 102 8.3 14.3 74.4 2.5 0.6 46.0 1.8
ibm02 204734 492 34.5 178892 64 47.9 178759 33 34.1 12.7 93.3 1.0 0.1 48.4 1.4
ibm03 185116 209 36.3 152392 10 35.2 151299 0 16.9 18.3 100 2.1 0.7 100 2.1
ibm04 196920 882 83.5 173241 465 54.1 173289 309 23.9 12.0 65.0 3.5 0.0 33.5 2.3
ibm05b 420583 0 59.2 412197 0 104.8 409747 0 49.5 - - - - - -
ibm06 346137 834 104.3 289276 35 80.1 282325 0 33.0 18.4 100 3.2 2.4 100 2.4
ibm07 449213 697 228.1 378994 309 122.2 378876 53 50.9 15.7 92.4 4.5 0.0 82.8 2.4
ibm08 469666 665 238.7 415285 74 113.8 415025 0 93.2 11.6 100 2.6 0.1 100 1.2
ibm09 481176 505 359.3 427556 52 125.1 418615 0 63.9 13.0 100 5.6 2.1 100 2.0
ibm10 679606 588 435.7 599937 51 212.9 593186 0 95.1 12.7 100 4.6 1.1 100 2.2

average 14.3 91.7 3.3 0.8 79.0 2.0
a speedup hereafter in this section.
b ibm05 is dropped from comparison hereafter in this section, as it is a trivial case.

Table 4: Comparison with multicommodity flow-
based router for ISPD98 IBM benchmarks.
circuit Multicommodity BoxRouter Imprv.a

name wlen ovfl cpu(s) wlen ovfl cpu(s) wlen(%) spd(x)
ibm01 68981 43 151.2 67674 41 11.8 1.9 12.8
ibm02 190418 3 494.5 182268 2 35.7 4.3 13.9
ibm03 160755 0 329.8 151299 0 16.9 5.9 19.5
ibm04 176610 225 326.6 173778 249 31.4 1.6 10.4
ibm05 410954 0 28.2b 409747 0 49.5 - -
ibm06 296981 0 951.8 282325 0 33.0 4.9 28.9
ibm07 408510 0 1229.0 394170 0 50.8 3.5 24.2
ibm08 429913 0 865.7 415025 0 93.2 3.5 9.3
ibm09 442514 0 726.7 418615 0 63.9 5.4 11.4
ibm10 634247 0 1068.4 593186 0 95.1 6.5 11.2

average 4.2 15.7
a overflow is not shown, as both are highly comparable.
b only one phase is required for ibm05, a trivial case.

forms the state-of-the-art publicly available global routers
in terms of wirelength, routability and runtime. As the
BoxRouter is still in beta version, we believe that further
improvement can be achieved with multiple box-expansions,
faster ILP solver, and so on. We plan to make BoxRouter
code with OpenAccess interface [27] available [28] to sparkle
more research on this fundamental topic for nanometer de-
sign and manufacturing closure.

6. ACKNOWLEDGMENT
The authors would like to thank Prof. Patrick Madden

from SUNY Binghamton and Dr. Christoph Albrecht from
Cadence Berkeley Lab for helpful discussions.

7. REFERENCES
[1] R. T. Hadsell and P. H. Madden. Improved Global Routing

through Congestion Estimation. In Proc. Design Automation
Conf., June 2003.

[2] C. Albrecht. Global Routing by New Approximation
Algorithms for Multicommodity Flow. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
20, May 2001.

[3] M. Burstein and R. Pelavin. Hierarchial Global Wiring for
Custom Chip Design. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 2(4), Oct 1983.

[4] C. C. N. Chu. FLUTE: Fast Lookup Table Based Wirelength
Estimation Technique. In Proc. Int. Conf. on Computer
Aided Design, 2004.

[5] J. Cong. Challenges and opportunities for design innovations
in nanometer technologies. In SRC Design Science Concept
Papers, 1997.

[6] T. E. Gbondo-Tugbawa. Chip-Scale Modeling of Pattern
Dependencies in Copper Chemical Mechanical Polishing

Process. In Ph.D. Thesis, Massachusetts Institute of
Technology, 2002.

[7] http://vlsicad.cs.binghamton.edu/.

[8] http://www.diku.dk/geosteiner/.

[9] http://www.ece.ucsb.edu/∼kastner/labyrinth/.

[10] http://www.gnu.org/software/glpk/glpk.html/.

[11] J. Hu and S. Sapatnekar. A Timing-Constrained Algorithm for
Simultaneous Global Routing of Multimple Nets. In Proc. Int.
Conf. on Computer Aided Design, 2000.

[12] J. Hu and S. Sapatnekar. A Survey On Multi-net Global
Routing for Integrated Circuits. Integration, the VLSI
Journal, 31, 2002.

[13] L. Huang and D. F. Wong. Optical Proximity Correction
(OPC)-Friendly Maze Routing. In Proc. Design Automation
Conf., June 2004.

[14] A. B. Kahng and X.Xu. Accurate Pseudo-Constructive
Wirelength and Congestion Estimation. In Proc. System-Level
Interconnect Prediction, April 2003.

[15] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh. An Exact
Algorithm for Coupling-Free Routing. In Proc. Int. Symp. on
Physical Design, April 2001.

[16] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh. Pattern
Routing: Use and Theory for Increasing Predictability and
Avoiding Coupling. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 21, July 2002.

[17] J. Lou, S. Krishnamoorthy, and H. S. Sheng. Estimating
Routing Congestion using Probabilistic Analysis. In Proc. Int.
Symp. on Physical Design, 2001.

[18] J. Mitra, P. Yu, and D. Z. Pan. RADAR: RET-Aware Detailed
Routing Using Fast Lithography Simulations. In Proc. Design
Automation Conf., June 2005.

[19] C. Sham and E. F. Y. Young. Congestion Prediction in Early
Stages. In Proc. System-Level Interconnect Prediction, April
2005.

[20] R. Tian, D. F. Wong, and R. Boone. Model-Based Dummy
Feature Placement for Oxide Chemical-Mechanical Polishing
Manufacturability. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 20, 2001.

[21] M. Wang, , and M. Sarrafzadeh. Modeling and Minimization of
Routing Congestion. In Proc. Design Automation Conf., 2000.

[22] J. Westra, C. Bartels, and P. Groeneveld. Probabilistic
Congestion Prediction. In Proc. Int. Symp. on Physical
Design, April 2004.

[23] J. Westra, C. Bartels, and P. Groeneveld. Is Probabilistic
Congestion Estimation Worthwhile? In Proc. System-Level
Interconnect Prediction, April 2005.

[24] J. Westra, P. Groeneveld, T. Yan, and P. H. Madden. Global
Routing: Metrics, Benchmarks, and Tools. In IEEE DATC
Electronic Design Process, April 2005.

[25] D. Wu, J. Hu, and R. Mahapatra. Coupling Aware Timing
Optimization and Antenna Avoidance in Layer Assignment. In
Proc. Int. Symp. on Physical Design, April 2005.

[26] G. Xu, L. Huang, D. Z. Pan, and D. F. Wong. Redundant-Via
Enhanced Maze Routing for Yield Improvement. In Proc. Asia
and South Pacific Design Automation Conf., Jan 2005.

[27] http://openeda.si2.org.

[28] http://www.cerc.utexas.edu/utda.

