
Quantifying Academic Placer Performance on
Custom Designs

ABSTRACT
There have been significant prior efforts to quantify
performance of academic placement algorithms, primarily by
creating artificial test cases that attempt to mimic real
designs, such as the PEKO benchmark containing known
optimas [5]. The idea was to create benchmarks with a known
optimal solution and then measure how far existing placers
were from the known optimal. Since the benchmarks do not
necessarily correspond to properties of real VLSI netlists, the
conclusions were met with some skepticism. This work
presents two custom constructed datapath designs that
perform common logic functions with hand-designed layouts
for each. The new generation of academic placers is then
compared against them to see how the placers performed for
these design styles. Experiments show that all academic
placers have wirelengths significantly greater then the manual
solution. These testcases will be released publically to
stimulate research into automatically solving structured
datapath placement problems.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – Placement and
Routing

General Terms
Algorithms, Design, Experimentation

Keywords
Standard Cell Placement, Datapath Placement, Placement
Benchmarks

1 INTRODUCTION
Automatic VLSI placement algorithms have improved
significantly since the ISPD placement contests in 2005 and
2006 [14] [15]. These contests released 16 new placement
benchmarks derived from industrial designs.

The benchmarks contained a number of important features
that were not present in the previous set of benchmarks: (i)

they ranged in size from 211k cells to 2.18M cells, much
larger than previous benchmarks (ii) they contained large
fixed obstacles not seen in previous benchmarks (iii) they
contained large movable objects which cover more than a
single circuit row in height, a feature that was added to
existing benchmarks [1].

In addition, the structure of the contest forced placement
algorithms to optimize half-perimeter wirelength (HPWL),
runtime and a target density, which is used in practice to
improve both timing and routability of circuits in physical
synthesis. Prior to the contests, few academic placers could
solve these realistic problem instances, though that is
certainly not true today [3] [4] [10] [16]. It is easy to observe
that benchmarks are important to guide the development of
practical placement algorithms.

Prior to these contests, there were attempts to quantify the
suboptimality of placement heuristics. Hagen, et al. [7] had
the idea of taking copies of small circuits and replicating
them, then loosely connecting their ports together, in order to
create a much larger benchmark. For example, by connecting
four copies of a well-placed circuit together in 2 x 2 grid,
they obtained a placement wirelength that was no more than
four times that of the original circuit. While interesting, this
experiment is arguably unrealistic since these defined
connections between the copies do not correspond to real
logic functions. Furthermore, no pin locations are defined for
the circuit (nor were there any for the original). This work
overcomes both prior objections.

More recently, Chang, et al. [5] created the placement
examples with known optima (PEKO) and placement
examples with known upperbounds (PEKU) algorithms and
released two sets of benchmarks with solutions that are
known to be optimal or close to optimal. Optimality was
achieved by adding nets to cells in configurations that cannot
be shortened. In other words, they created a design where
every net was a super-short net, though the pin distributions
of cells matched that of a typical VLSI circuit. Reported
results show wirelengths in the range of 1.43 to 2.40 times
the optimal value. Again while interesting, these netlists did
not correspond to any logic function at all. It could be argued

Samuel Ward
IBM STG

11400 Burnet RD
Austin TX 78758

siward {@us.ibm.com}

David A. Papa
IBM Austin Research

11501 Burnet Rd.
Austin, TX 78758

iamyou {@eecs.umich.edu}

Zhuo Li
IBM Austin Research

11501 Burnet RD
Austin TX 78758

lizhuo{@us.ibm.com}

Cliff Sze
IBM Austin Research

11501 Burnet RD
Austin TX 78758

csze {@us.ibm.com}

Charles Alpert
IBM Austin Research
11501 BURNET RD
AUSTIN TX 78758

alpert {@us.ibm.com}

Earl Swartzlander
The University of Texas at Austin

Electrical and Computer Engineering
Austin, TX 78712 USA
eswartzla {@aol.com}

that the PEKO and PEKU testcases are artificially hard and
that no placer would ever need to solve them.

Given the renaissance in automated placement technology
that has occurred, it seems like a good time to revisit this
issue of quantifying placement algorithms. Perhaps this new
generation is close to optimal, especially given that placer
improvements are worthy of publication when they manage
to obtain a 1-2% improvement in wirelength. However,
unlike previous efforts, this work quantifies placement
algorithms on useful logic function. It is accepted folklore
that current placement tools do not perform particularly well
on custom or structured designs. Due to their regular
structure, datapath designs enable a designer to construct
highly compact custom layouts. To shed light on this issue,
the solutions of academic placement tools are compared on
two manual designs created for this purpose.

The initial design for each circuit was developed using
standard, custom design practices. Logic gates from
automated design standard cell libraries were hierarchically
built within a custom schematic design framework. Each
design used a reduced library of basic 2-, 3-, and 4-input
NAND, NOR, INVERT, MUX and XOR gates and latches..
The combinational logic gates for both benchmarks were
allowed to move during the course of automatic placement by
several academic tools [19].

 Many have speculated that poor performance of placers on
datapath designs is due to very tight density constraints.
Perhaps placers could find the right structures but simply had
trouble with the legalization. Consequently, eight variants of
each design were created where additional whitespace was
inserted to provide more opportunity for the placers. While
wirelength was improved, all placers still generated solutions
with wirelengths at least 1.12 times that of the custom
solution. The empirical results confirm there remains
significant room for improvement in modern academic
placement algorithms.

The paper is organized as follows. Section 2 presents a rotate
circuit, and shows a common manual layout solution. Section
3 does the same for a compare logic circuit. Experiments
results comparing six placers are presented in Section 4.
Conclusions are presented in Section 5.

2 DESIGN 1: ROTATE LOGIC
Rotate circuits, also known as cyclic shifters [8] [11] [12], are
a simple and common bit operation generally found
throughout microprocessors, cryptography, imaging, and
biometrics [2] [13]. Traditionally, rotators are custom
designed because of their highly regular structure and
significant routing complexity [6] [18] though some work on
automated placement has been explored [9].

2.1 Overview
A standard rotate function consists of cascaded 2-input
MUXes, as shown in Figure 1. A rotator circuit receives a set
of inputs d[0:n-1] and r[0:m-1] and produces an output s[0:n-
1], where d[0:n-1] has been rotated by some amount encoded
by r[0:m-1]. In the following notation, & indicates a logical

AND, + indicates a logical OR, and ! indicates a logical
NOT. To mathematically define the rotate functions, let k[i,j]
denote the internal point at ith row and jth column in Figure
1, where i = (0:m-1) for r[0] to r[m-1] and j = (0:n-1) for d[0]
to d[n-1]. Then, k[0,j] = ! (r[0]) & d[i] + r[0] & d[i + 1],
where j = 0, …, n-1 and note that n = 2m. Thus the general
equations are:

k[i,j] = ! (r[i]) & k[i-1 , j] + r[i] & k[i-1 , j + 2i]
where i = 0, ..., m-1 , j = 1, ..., n-1

k[i, j] = k[i, j + z * n], where z is 0, 1, 2, ...,

Figure 2 shows an example of an eight-way rotate function.
The initial input vector d[0:7] = { 01110101 } and r[0:2] = {
101 }, indicating a rotation of five. In the first stage, r[0]
rotates the input vector one bit position, r[1] in stage two
does not rotate the vector, and in the third stage, r[2] rotates
the vector four more bit positions for a result of s[0:7] = {
10101110 }.

Rotator designs present automated design tools with the
challenge of producing a densely-packed placement solution
while minimizing routing congestion. There are two parts to
the routing challenge, local routing and global routing. Local
routes between each MUX must be lined up very carefully to
leave space for the global select lines r[0:m-1]. At each stage,
the route from the previous stage shifts one more column

r[0]

d[0]

s[0] s[1]

d[1]

d[2]

s[n-1]

d[n-1] d[0]

k [m-2, n-1 + 2(m-1)]

k [0, n-1 + 2]
r[1]

r[m-1]

Figure 1. Rotate Block Diagram

1 1 1 0 1 0 1 0

1 1 1 0 1 0 1 0

0 1 1 0 1 1 1 0

1

0

1

msb

0

0

1

1

1

2

1

3

0

4

1

5

0

6

1

7

lsb

Figure 2. Rotate Example

eh[2]
r[2]

eh[1]
r[1]

eh[0]
r[0]

s[0] s[1] s[2] s[3] s[4] s[5] s[6] s[7]

and

mux

and

mux

and

mux

and

mux

and

mux

and

mux

8-bit Rotate
Bit Stack

Complex Subcell

d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

lat lat

Figure 4. 8-Bit Rotate Physical Layout with 3-bit Encoding

ε

Bit Stack

α
β

α

 0 1 2 … … n-2 n-1

r[i]

eh[i]

Horizontal Buffer
Placement Channel

Figure 5. Rotate Row

over, creating a congested routing network. Design placement
that minimizes jogging global routes is critical to achieve a
routable design that meets area and timing constraints. In
addition, careful attention to the design of global routes is
necessary for optimal delay.

2.2 Benchmark Details

The first benchmark in this paper, Design 1, derives from the
manual placement of an actual high-speed microprocessor
rotate function. The logic implementation also includes two
enable signals at each rotate circuit. Certain portions of the
design are modified, such as the intermediate output pins and
the latch points, without modifying overall functionality.
Figure 3 displays the basic MUX and the enable building
block for the design, which is referred to as a complex
subcell. Each complex subcell is comprised of a two-to-one
MUX with a corresponding select signal r[i] and enable
signals eh[i] and ev[j]. Enable signal eh[i] runs horizontally to
each bit stack in the ith row, and ev[j] runs vertically to each
complex subcell within a bit stack at jth column. Exact circuit
implementation can vary, depending on the specific
technology; however, in this design, a single two-to-one
MUX and a three-input NAND gate are used for the
implementation. Each following stage is inverted to maintain
polarity without impacting TWL calculations.

Using the notation from Figure 1, Design 1 contains n=511
and m=63, which means it is a 512 bit rotate circuit with 9
encoding bits. Each d[0:n-1] is stored in a latch with a fixed
location and drives the stacked MUX structure, which is nine
complex subcells high. Primary input (PIs) and output pins
(POs) were placed directly on top of their respective
connections minimizing PI/PO routing distance.

2.3 Placement Details
Figure 4 shows a representative layout for an 8-bit rotator as
in Figure 2. The data bus d[0:7] initially resides in the latches
denoted lat with each complex subcell stacked directly on
top. The mux is the 2:1 MUX in the complex subcell and and
is the AND-3 gate in the complex subcell. The rotate result,

s[0:7] leaves the top of each bit stack driven from the last
complex subcell.

Figure 5 displays the next level of hierarchy in which bit
slices are placed next to each other to form a rotate row, n-

bits wide. Let α denote the total latch height, β denote the
total logic height of the stacked complex subcells (nine in this

example, corresponding to r[0:8]), and ε denote the any
added whitespace in the bit slice. Each bit stack is ordered, as
in Figure 3, to line up the MUX rotate signals r[i] and enable
signals eh[i] and ev[j] with their corresponding complex
subcell. This is critical for both routability and minimizing
TWL, since the fanout on r[i], eh[i] and ev[j] is very large.
Between bit stacks (n/2 – 1) and (n/2), space for buffer
placement is added where the rotate line bus r[0:m-1] and

enable signal bus eh[0:m-1] are lined up to drive horizontally
to each bit slice.

The top level of hierarchy is shown in Figure 6 where each
row from 0 to p-1 is an independent copy of the rotate row
shown in Figure 5. In the middle of the block, space for
buffer placement is added where the enable signal bus ev[j] is
lined up to drive vertically to each row.

Complex

Subcell

d[j] d[j+1] r[i]

eh[i] ev[j]

s[j]

 d[j+1]

r[i]
eh[i]

ev[j]

Launch Latch

Bit Stack

Figure 3. Rotate Sub-block

 Design 2 Bit Stack

eh[i]
r[i]

lat

and
and

and
and

and
and

or

or

mux

or
and
and

lat

and
and

and
and

and
and

or

or

mux

or
and
and

Figure 8. Design 2 Eight Bit Stack Physical Layout

Signals ev[0] to ev[n-1]

Vertical
Buffer

Placement

Channel

Rotate
Row

…
p-3
p-2
p-1

0
1
2
…

Figure 6. Fully Placed Rotate Block

sd[j]

dk[i]

dw[i,j]
sw[i]

a

dj[j]

b

8

8

ei

a_o

b_i

Figure 7. Design 2 Bit Stack Structure

3 DESIGN 2: AND/OR LOGIC
Design 2 is a standard AND/OR logic tree [8] [11] common
throughout datapath design1 with the bit stack logic structure
shown in Figure 7. This structure is used in many
applications, such as translation buffers and structured
content addressable-memory circuits. Two signals, a_o and
sd[j], are driven into an AND gate with the data inputs and
then into an OR tree. The output of the OR tree is then ORed
with a set signal ei, and the result is latched.

3.1 Benchmark Details
Design 2 is a simplified version of a custom placed industrial
design. Careful packing of the repeated logic enables
optimization of both timing and area while reducing
congestion. The bit stack in Figure 7 is repeated n=257 times
in one row and there are m=32 rows placed within Design 2.
Signal dw[i,j], dj[i], and dk[i], where i = 0, 1, …, n-1 columns
and j = 0, 1, …, m rows, are primary data input signals; ei and
sd[i] are high fanout select lines running through the ith row
where i = 0, 1, ..., n-1, and j = 0, 1, ..., m-1 for the bit stack
with m rows and n columns. Select line sw[i] runs within row
i and is a write enable select signal to latch new data into
latch a. If sw[i] is not enabled, the prior value in a is selected
and stored. Enable signal ei is an override signal that will set
latch b.

3.2 Placement Details

1 Standard cell design practice allows for the interchange
between logic gates of the same size. Thus, this
implementation can be modified to many representative
circuits, such as magnitude comparators, standard equality
circuits or parity circuits.

Custom placement of Design 2 leads to regularly placed rows
with tightly packed cells, shown in Figure 8, where eight total
bit stack cells have been placed. Figure 8 represents a partial
8 bit stack lay out for illustrative purposes of the manual
layout solution. In the full implementation, each bit stack
consists of 16 AND gates driving a 16 way OR gate
configuration. The logic gates from Figure 7 are interleaved
into a single circuit row, and pins between rows for each
select line are lined up evenly to reduce branch routing. Latch
a and the MUX that drives it are placed at the bottom of the
stack, the data flows through the AND/OR reduce logic.

Figure 9 shows the overall layout of the entire design with
one bit stack shaded. Each bit stack is placed side-by-side
n=257 times in one row, where there are 12 rows in total and
placement space is added in the middle, both vertically and
horizontally for the global wire drivers.

4 EXPERIMENTAL RESULTS
Table 1 outlines the design details for each circuit that was
constructed. Design 1 contains 140,800 movable cells, and
Design 2 contains 130,944 movable cells. These are both
reasonably small, custom-placement designs built using
common structured placement tools, including schematic
capture and layout. Once built, the netlist was exported to
Bookshelf [14][15] format and the wirelength measured. The

e[i]

sw[i]

sw[j]

sd[j]

Bit Stack

[0:n-1] bit stack instances

[0:m-1]
rows

Figure 9. Placement for Design 2

Total Cell Height: η = α + β + nε

ε+δ ε+2δ
β
ε

α

η
ε+nδ

Figure 10. Structured Placement Experiments

Table 1. Design Characteristics

 Num Num Num # Movable

Designs Nets Pins Terminals Cells

DESIGN 1 157849 637984 19488 140800

DESIGN 2 148682 661340 21724 130944

Table 2. TWL Results

 Design 1 Design 2

Run Run

Placer TWL
TWL
Ratio Time (s) TWL

TWL
Ratio

Time
(s)

Custom 11000365 1.00 n/a 8642097 1.00 n/a

Capo 15945589* 1.45 1453.9 14381067* 1.66 1430.6

mPL6 18290965* 1.66 n/a n/a n/a n/a

ntuPlace3 n/a n/a n/a 10765222 1.25 533.0

APlace n/a n/a n/a n/a n/a n/a

Dragon 52926316* 4.81 2350.18 34711167 4.02 2692.0

FastPlace 16336840* 1.49 194.9 n/a n/a n/a

*Completed with Overlaps
n/a entries did not complete for the base case

custom layout solution is compared against the following
placers for these two designs:

• mPL6 v6 [3]

• CAPO v10.2 [16]

• FastPlace v3.0 [20]

• NTUPlace3 v7.10.19 [4]

• APlace v1.0 [10]

• Dragon v3.01 [21]

The authors of Timberwolf [19] were contacted, but they
were unable to provide a version compatible with the
Bookshelf [14][15] format at this time. This simulated
annealing approach may perform well on these moderately
sized test cases. For all placers, a target density constraint2
was not imposed to give maximum freedom to pack cells.

4.1 Initial Placement Results
Table 2 displays the results of the custom placement versus
the academic placer. Column one shows all different
placement algorithms, where "custom" corresponds to the
manual-placed designs. Column two displays the measured
TWL compared to the custom solution for each placement
method on Design 1, and column five displays the TWL for
Design 2. For both designs, APlace failed to find a legal
placement solution. Columns three and six correspond to the
percentage increases in TWL compared to the custom-placed
solution. Columns four and seven display the placement

2 This was achieved by supplying each placer with a target
density requirement of 100% density as defined as in ISPD
placement contests [14] [15]

runtime in seconds for each design.

The custom-placement method resulted in a TWL of
11,000,365 for Design 1 and of 8,642,097 for Design 2. For
Design 1, all placers completed with overlaps. Of the placers
that completed, CAPO produced the best automated
placement result with 15945589, a 45% increase in TWL.
The run time for all placers is less than fourty minutes
because of the small design size. For Design 2, the ntuPlace3
algorithm resulted in the best automated placement result
with 10,765,222, a 1.25 TWL ratio. The run time for all other
placers is less than forty five minutes for Design 2.

4.2 Adding Additional Whitespace
As mentioned earlier, it is important to understand whether
placers could not find the right structure, or could not
legalize. Seven additional variations of each benchmark were
generated by increasing white space using the following

scheme. As shown in Figure 10, let η denote the total height

of default bit slack, α denote the height of latch logic, β

denote the height of placeable logic, and ε denote the white
space added to the bit stack.

The original testcase experiment for both designs was set up
with no extra white space between each row. Then the white
space was increased using the scheme in Figure 10 and
manually replaced the custom solution so that we could
compare to the automated placement algorithms.

4.2.1 Whitespace Placement Results
Eight experiments were run on both designs, incrementally
increasing the available whitespace to allow more room for
automated placement tools while not applying any
constraints.

Tables 3 and 4 display the TWL placement results for each
experiment compared to the custom design solution at the
same whitespace percentage. ntuPlace3 did not complete for
Design 1 and APlace failed to legalize for both designs.

All placers except Dragon show wirelength improvement as
more whitespace is added with a slight increase with the most
whitespace. When more than 15% of whitespace is added
however, the improvement of TWL and its ratio starts to

Table 4. TWL Results for Design 2

Placer 96.1 93.6 89.5 85.3 81.5 78.1 75.2 72.2

CAPO 1.66* 1.24* 1.17* 1.18* 1.18* 1.20* 1.20* 1.21*

mPL6 - 1.19* 1.15* 1.72* 1.15* 1.16* 1.17* 1.18*

ntuPlace3 1.29 1.12 1.14 1.13 1.20 1.15 1.16 1.24

APlace* - - - - - - - -

Dragon 4.02 4.24 4.49 4.81 5.09 5.33 5.60 5.93

FastPlace - 1.26 1.15 1.15 1.17 1.19 1.20 1.21

Table 3. TWL Results of Design 1

Placer 92.5 89.0 85.8 82.8 80.1 77.4 74.0 71.9

CAPO 1.45* 1.49* 1.24* 1.28* 1.14* 1.18* 1.12* 1.11*

mPL6 1.66* 1.65* 1.64* 1.66* 1.64* 1.66* 1.76* 1.73*

ntuPlace3 - - - - - - - -

APlace* - - - - - - - -

Dragon 4.81 5.00 5.39 5.88 5.83 5.91 6.56 7.37

FastPlace 1.47* 1.33* 1.31* 1.31* 1.28* 1.26* 1.28* 1.31*

*Completed with Overlaps

saturate. After that point, adding additional white space did
not significantly improve the overall TWL ratio compared to
the custom placed design. Results for APlace are not shown
because it failed to find a legal placement solution. One

interesting result is the significant TWL increase in Dragon
placer as available whitespace is added. In general, the
overall TWL ratios are improving as whitespace increases
however; this is primarily due to the TWL increase of the
custom solution.

For Design 2, TWL at only 4% whitespace is significantly
higher for all placers but quickly drops. The custom TWL for
Design 2 increases significantly as whitespace increases for
the design helping the overall TWL ratios for the placers.
This again does not point to an improved placement solution
with increased whitespace, but is instead a result of the logic
spreading from the manual solution. Dragon placement
results also exhibit the significant TWL increase trend seen in
Design 1 as whitespace increases. Minimum overall TWL for
the placers occurs within the range for 7% to 20% whitespace
after which TWL begins to increase at a similar slope to the
custom solution.

The following observations were made:

• Generally, placers did not improve much with additional
white space, with the exception of CAPO, which improved
from 1.66 to 1.17 on Design 2. Part of the improvement
comes from the TWL increase from the manual solution.

• For Design 1, the best overall result for each experiment
came from CAPO with a 14% increase in TWL at 80.1%
utilization. The TWL increase of the manual solution is not
obvious, but it also increases with added area.

• There was a gradual improvement in the TWL ratio for
Design 2 as area increased for the design, with ntuPlace3
decreasing from 1.29 to 1.12.

• By industry standards, both designs are small relative to
state-of-the-art work yet all placers presented significantly
suboptimal TWL results.

• All placers failed to place Design 1 without overlaps.
Though some of the placers completed Design 2 without
overlaps, a 15% degradation in TWL translates to
significant power and delay increases compared to a
custom solution.

5 ANALYSIS
Obviously, it is disappointing that academic placers perform
poorly on these real designs, so further examination is
necessary. Figure 11 displays a zoomed in snapshot of three
rows of the custom placed layout for Design 1 with the
placeable logic between the latches from one row highlighted
in light blue. The design was placed again using one of the
better performing placement algorithms to see what happens
to the blue cells that are densely packed in the custom layout.
This is shown in Figure 12.

Observe the irregularity present in the blue highlighted logic.
Most of the blue logic is placed within the bounds of the
correct rows of latches, but a significant portion is left
outside, despite adequate whitespace. This may occur
because:

• Multilevel placement algorithms employ clustering to
abstract a netlist into larger components that will be placed
together. This manifests itself in loosely connected
"blobs" of logic rather than densely packed structures.

• Analytical placement algorithms commonly employ net
models such as cliques or stars of two-pin edges to
represent hyperedges. Such models derate the weights of
edges representing high-fanout nets to compensate for the
increased number of edges needed to represent them. As a
result, the impact of a 512-bit select line is very low, yet
these nets could provide clues to the structure within the
design.

• Clustering algorithms do not typically account for logic
functions, and make decisions purely on local connectivity.
This often leads to merging of gates across bit slices rather
than merging the slice into a large cluster.

Figure 11. Custom Design 1 Placement Solution

Figure 12. Automatic Design 1 Placement Solution

6 CONCLUSIONS
Recent years have seen truly significant improvements in
runtimes, quality, and scalability in standard-cell placement
algorithms. This work measures their performance on real
datapath placement examples and compares them to hand-
designed layouts. Academic placers still have a long way to
go in order to match the quality of custom design solutions.
An important contribution of this work is to release these
benchmarks publically.

In order to keep pace with technology innovation, design
automation must strive to improve productivity. This work
highlights poor performance of modern placement tools on a
key design style that is lacking in automation --- structured
datapaths. One of the challenges posed by this problem is
identifying regular datapaths within a larger design. Hence,
new layouts will be constructed that combine both datapath
and control logic in the same benchmark, providing even
more challenging placement testcases. Future work will seek
ways to improve automatic placement algorithms in terms of
wirelength, routability, and timing closure of datapath
placement problems.

7 REFERENCES

[1] S. N. Adya and I. L. Markov, “Consistent Placement of

Macro-blocks Using Floorplanning and Standard-Cell

Placement'” ISPD 2002, pp. 12-17.
[2] P.W. Bosshart and Q.D. An. Shifter circuit for an

arithmetic logic unit in a microprocessor. US. patent
5896305, 1999.

[3] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie.
mPL6: Enhanced multilevel mixed-size placement. In
Proc. ISPD, pp 212–214, 2006.

[4] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-
W. Chang. A high-quality mixed-size analytical placer

considering preplaced blocks and density constraints, In
Proc. ICCAD, 2006.

[5] Chin-Chih Chang, Jason Cong, Michail Romesis, and
Min Xie; Optimality and Scalability Study of Existing

Placement Algorithms; IEEE Transactions on
Computer-aided Design Vol..23, pp. 537-549 2004

[6] R.L. Davis. Uniform shift networks. Computer, 7:327-
334, September 1974.

[7] Lars W. Hagen, Dennis J.-H. Huang, Andrew B. Kahng;
Quantified Suboptimality of VLSI Layout Heuristics

Design Automation, DAC pp 216-221, 1995.
[8] J.L. Hennessy and D.A. Patterson. Computer

Architecture: A Quantitative Approach. San Mateo, CA:
Morgan Kaufmann Publishers, Inc., 2nd edition, 1996.

[9] Hillebrand, M.A.; Schurger, T.; Seidel, P.-M.; How to

half wire lengths in the layout of cyclic shifters,
Fourteenth International Conference on VLSI Design,
2001, pp. 339 – 344.

[10] A. B. Kahng, S. Reda, and Q. Wang. Architecture and

details of a high quality, large-scale analytical placer.
In Proc. ICCAD, pp 890–897, 2005.

[11] Koren. Computer Arithmetic Algorithms. Englewood
Cliffs, NJ: Prentice-Hall Inc., 1993.

[12] T. Machida. Bidirectional barrel shift circuit. US. Patent
4665538, 1987.

[13] S.M. Mueller and W.J. Paul. Computer Architecture:

Complexity and Correctness. Springer Verlat, 2000.
[14] G.-J. Nam, “ISPD 2006 Placement Contest: Benchmark

Suite and Results,” ISPD 2006, p. 167.
[15] G.-J. Nam, C. J. Alpert, P. G. Villarrubia, B. B. Winter,

M. C. Yildiz “The ISPD2005 Placement Contest and

Benchmark Suite,” ISPD 2005, pp. 216-220.
[16] J. A. Roy, S. N. Adya, D. A. Papa, and I. L. Markov.

Min-cut floorplacement. IEEE Transactions on
Computer-Aided Design, Vol. 25, pp. 1313–1326, July
2006.

[17] P.-M. Seidel. On the Design of IEEIT Compliant

Floating-point Units and Their Quantitative Analysis.
PhD thesis, University of Saarland, December 1999.

[18] L. Sigal et al. Circuit design techniques for the high-

performance CMOS IBM S/390 Parallel Enterprise

Server G4 microprocessor. IBM Journal of Research
and Development, Vol. 41, pp. 489-503, 1997.

[19] Wern-Jieh Sun and Carl Sechen, Efficient and Effective

Placement for Very Large Circuits, IEEE Transactions
on Computer-Aided Design, Vol 14, pp. 349-359, 1995

[20] Natarajan Viswanathan and Chris Chong-Nuen Chu,
FastPlace: Efficient Analytical Placement Using Cell

Shifting, Iterative Local Refinement, and a Hybrid Net

Model IEEE Transactions on Computer-Aided Design,
VOL. 24, pp. 722-733 2005

[21] M. Wang, X. Yang, and M. Sarrafzadeh, Dragon2000:

Standard-cell placement tool for large industry circuits,
in Proc. IEEE/ACM Int. Conf. Computer-Aided Design,
2000, pp. 260–263.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.
ISPD'11, March 27-30, 2011, Santa Barbara, California, USA.
Copyright 2011 ACM 978-1-4503-0550-1/11/03...$10.00.

