
Quantifying Academic Placer Performance on 
Custom Designs 

 

ABSTRACT  
There have been significant prior efforts to quantify 
performance of academic placement algorithms, primarily by 
creating artificial test cases that attempt to mimic real 
designs, such as the PEKO benchmark containing known 
optimas [5]. The idea was to create benchmarks with a known 
optimal solution and then measure how far existing placers 
were from the known optimal. Since the benchmarks do not 
necessarily correspond to properties of real VLSI netlists, the 
conclusions were met with some skepticism. This work 
presents two custom constructed datapath designs that 
perform common logic functions with hand-designed layouts 
for each. The new generation of academic placers is then 
compared against them to see how the placers performed for 
these design styles. Experiments show that all academic 
placers have wirelengths significantly greater then the manual 
solution. These testcases will be released publically to 
stimulate research into automatically solving structured 
datapath placement problems. 
  

Categories and Subject Descriptors 
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1 INTRODUCTION  
Automatic VLSI placement algorithms have improved 
significantly since the ISPD placement contests in 2005 and 
2006 [14] [15].  These contests released 16 new placement 
benchmarks derived from industrial designs.   
 
 
 
The benchmarks contained a number of important features 
that were not present in the previous set of benchmarks: (i) 

they ranged in size from 211k cells to 2.18M cells, much 
larger than previous benchmarks (ii) they contained large 
fixed obstacles not seen in previous benchmarks (iii) they 
contained large movable objects which cover more than a 
single circuit row in height, a feature that was added to 
existing benchmarks [1].   
 
In addition, the structure of the contest forced placement 
algorithms to optimize half-perimeter wirelength (HPWL), 
runtime and a target density, which is used in practice to 
improve both timing and routability of circuits in physical 
synthesis.  Prior to the contests, few academic placers could 
solve these realistic problem instances, though that is 
certainly not true today [3] [4] [10] [16]. It is easy to observe 
that benchmarks are important to guide the development of 
practical placement algorithms. 
 
Prior to these contests, there were attempts to quantify the 
suboptimality of placement heuristics.  Hagen, et al. [7] had 
the idea of taking copies of small circuits and replicating 
them, then loosely connecting their ports together, in order to 
create a much larger benchmark. For example, by connecting 
four copies of a well-placed circuit together in 2 x 2 grid, 
they obtained a placement wirelength that was no more than 
four times that of the original circuit. While interesting, this 
experiment is arguably unrealistic since these defined 
connections between the copies do not correspond to real 
logic functions. Furthermore, no pin locations are defined for 
the circuit (nor were there any for the original). This work 
overcomes both prior objections. 
 
More recently, Chang, et al. [5] created the placement 
examples with known optima (PEKO) and placement 
examples with known upperbounds (PEKU) algorithms and 
released two sets of benchmarks with solutions that are 
known to be optimal or close to optimal.  Optimality was 
achieved by adding nets to cells in configurations that cannot 
be shortened.  In other words, they created a design where 
every net was a super-short net, though the pin distributions 
of cells matched that of a typical VLSI circuit. Reported 
results show wirelengths in the range of 1.43 to 2.40 times 
the optimal value. Again while interesting, these netlists did 
not correspond to any logic function at all. It could be argued 
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that the PEKO and PEKU testcases are artificially hard and 
that no placer would ever need to solve them. 
 
Given the renaissance in automated placement technology 
that has occurred, it seems like a good time to revisit this 
issue of quantifying placement algorithms. Perhaps this new 
generation is close to optimal, especially given that placer 
improvements are worthy of publication when they manage 
to obtain a 1-2% improvement in wirelength. However, 
unlike previous efforts, this work quantifies placement 
algorithms on useful logic function. It is accepted folklore 
that current placement tools do not perform particularly well 
on custom or structured designs. Due to their regular 
structure, datapath designs enable a designer to construct 
highly compact custom layouts. To shed light on this issue, 
the solutions of academic placement tools are compared on 
two manual designs created for this purpose. 
 
The initial design for each circuit was developed using 
standard, custom design practices. Logic gates from 
automated design standard cell libraries were hierarchically 
built within a custom schematic design framework. Each 
design used a reduced library of basic 2-, 3-, and 4-input 
NAND, NOR, INVERT, MUX and XOR gates and latches.. 
The combinational logic gates for both benchmarks were 
allowed to move during the course of automatic placement by 
several academic tools [19].  
 
 Many have speculated that poor performance of placers on 
datapath designs is due to very tight density constraints.  
Perhaps placers could find the right structures but simply had 
trouble with the legalization. Consequently, eight variants of 
each design were created where additional whitespace was 
inserted to provide more opportunity for the placers. While 
wirelength was improved, all placers still generated solutions 
with wirelengths at least 1.12 times that of the custom 
solution. The empirical results confirm there remains 
significant room for improvement in modern academic 
placement algorithms. 

 
The paper is organized as follows. Section 2 presents a rotate 
circuit, and shows a common manual layout solution. Section 
3 does the same for a compare logic circuit. Experiments 
results comparing six placers are presented in Section 4. 
Conclusions are presented in Section 5. 

 

2 DESIGN 1: ROTATE LOGIC 
Rotate circuits, also known as cyclic shifters [8] [11] [12], are 
a simple and common bit operation generally found 
throughout microprocessors, cryptography, imaging, and 
biometrics [2] [13]. Traditionally, rotators are custom 
designed because of their highly regular structure and 
significant routing complexity [6] [18] though some work on 
automated placement has been explored [9]. 
 

2.1 Overview 
A standard rotate function consists of cascaded 2-input 
MUXes, as shown in Figure 1. A rotator circuit receives a set 
of inputs d[0:n-1] and r[0:m-1] and produces an output s[0:n-
1], where d[0:n-1] has been rotated by some amount encoded 
by r[0:m-1]. In the following notation, & indicates a logical 

AND, + indicates a logical OR, and ! indicates a logical 
NOT. To mathematically define the rotate functions, let k[i,j] 
denote the internal point at ith row and jth column in Figure 
1, where i = (0:m-1) for r[0] to r[m-1] and j = (0:n-1) for d[0] 
to d[n-1].  Then, k[0,j] = ! ( r[0] ) & d[i] + r[0] & d[i + 1], 
where j = 0, …, n-1 and note that n = 2m. Thus the general 
equations are:  
 

k[i,j] = ! ( r[i] ) & k[i-1 , j] + r[i] & k[ i-1 , j + 2i]     
where  i =  0, ..., m-1 , j =  1, ..., n-1   

 
k[i, j] = k[i, j + z * n],   where z is 0, 1, 2, ...,    

 
Figure 2 shows an example of an eight-way rotate function. 
The initial input vector d[0:7] = { 01110101 } and r[0:2] = { 
101 }, indicating a rotation of five. In the first stage, r[0] 
rotates the input vector one bit position, r[1] in stage two 
does not rotate the vector, and in the third stage, r[2] rotates 
the vector four more bit positions for a result of s[0:7] = { 
10101110 }. 
 

Rotator designs present automated design tools with the 
challenge of producing a densely-packed placement solution 
while minimizing routing congestion. There are two parts to 
the routing challenge, local routing and global routing. Local 
routes between each MUX must be lined up very carefully to 
leave space for the global select lines r[0:m-1]. At each stage, 
the route from the previous stage shifts one more column 
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Figure 1. Rotate Block Diagram  
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Figure 2. Rotate Example 
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Figure 4. 8-Bit Rotate Physical Layout with 3-bit Encoding 
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Figure 5. Rotate Row 

over, creating a congested routing network. Design placement 
that minimizes jogging global routes is critical to achieve a 
routable design that meets area and timing constraints. In 
addition, careful attention to the design of global routes is 
necessary for optimal delay. 
 

2.2 Benchmark Details 

The first benchmark in this paper, Design 1, derives from the 
manual placement of an actual high-speed microprocessor 
rotate function. The logic implementation also includes two 
enable signals at each rotate circuit. Certain portions of the 
design are modified, such as the intermediate output pins and 
the latch points, without modifying overall functionality.  
Figure 3 displays the basic MUX and the enable building 
block for the design, which is referred to as a complex 
subcell. Each complex subcell is comprised of a two-to-one 
MUX with a corresponding select signal r[i] and enable 
signals eh[i] and ev[j]. Enable signal eh[i] runs horizontally to 
each bit stack in the ith row, and ev[j] runs vertically to each 
complex subcell within a bit stack at jth column. Exact circuit 
implementation can vary, depending on the specific 
technology; however, in this design, a single two-to-one 
MUX and a three-input NAND gate are used for the 
implementation. Each following stage is inverted to maintain 
polarity without impacting TWL calculations. 

 
Using the notation from Figure 1, Design 1 contains n=511 
and m=63, which means it is a 512 bit rotate circuit with 9 
encoding bits. Each d[0:n-1] is stored in a latch with a fixed 
location and drives the stacked MUX structure, which is nine 
complex subcells high. Primary input (PIs) and output pins 
(POs) were placed directly on top of their respective 
connections minimizing PI/PO routing distance. 
 

2.3 Placement Details 
Figure 4 shows a representative layout for an 8-bit rotator as 
in Figure 2. The data bus d[0:7] initially resides in the latches 
denoted lat with each complex subcell stacked directly on 
top. The mux is the 2:1 MUX in the complex subcell and and 
is the AND-3 gate in the complex subcell. The rotate result, 

s[0:7] leaves the top of each bit stack driven from the last 
complex subcell. 

 
Figure 5 displays the next level of hierarchy in which bit 
slices are placed next to each other to form a rotate row, n-

bits wide.  Let α denote the total latch height, β denote the 
total logic height of the stacked complex subcells (nine in this 

example, corresponding to r[0:8]), and ε denote the any 
added whitespace in the bit slice. Each bit stack is ordered, as 
in Figure 3, to line up the MUX rotate signals r[i] and enable 
signals eh[i] and ev[j] with their corresponding complex 
subcell. This is critical for both routability and minimizing 
TWL, since the fanout on r[i], eh[i] and ev[j] is very large. 
Between bit stacks (n/2 – 1) and (n/2), space for buffer 
placement is added where the rotate line bus r[0:m-1] and 

enable signal bus eh[0:m-1] are lined up to drive horizontally 
to each bit slice.  
 
The top level of hierarchy is shown in Figure 6 where each 
row from 0 to p-1 is an independent copy of the rotate row 
shown in Figure 5. In the middle of the block, space for 
buffer placement is added where the enable signal bus ev[j] is 
lined up to drive vertically to each row. 
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Figure 3. Rotate Sub-block 



 Design 2 Bit Stack 

eh[i] 
r[i] 

 
lat 

and 
and 

and 
and 

and 
and 

or 

or 

mux 

 

or 
and 
and 

 

lat 

and 
and 

and 
and 

and 
and 

or 

or 

mux 

 

or 
and 
and 

 

 

 
 

 
 

 
 

 

 

 

 
 
 

 

 

 
 

 
 

 
 

 

 

 

 
 
 

 
 

Figure 8. Design 2 Eight Bit Stack Physical Layout 
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Figure 6. Fully Placed Rotate Block 
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Figure 7. Design 2 Bit Stack Structure 

 

3  DESIGN 2: AND/OR LOGIC 
Design 2 is a standard AND/OR logic tree [8] [11] common 
throughout datapath design1 with the bit stack logic structure 
shown in Figure 7. This structure is used in many 
applications, such as translation buffers and structured 
content addressable-memory circuits.  Two signals,  a_o and 
sd[j], are driven into an AND gate with the data inputs and 
then into an OR tree. The output of the OR tree is then ORed 
with a set signal ei, and the result is latched.  

3.1 Benchmark Details 
Design 2 is a simplified version of a custom placed industrial 
design. Careful packing of the repeated logic enables 
optimization of both timing and area while reducing 
congestion. The bit stack in Figure 7 is repeated n=257 times 
in one row and there are m=32 rows placed within Design 2. 
Signal dw[i,j], dj[i], and dk[i], where i = 0, 1, …, n-1 columns 
and j = 0, 1, …, m rows, are primary data input signals; ei and 
sd[i] are high fanout select lines running through the ith row 
where i = 0, 1, ..., n-1, and j = 0, 1, ..., m-1 for the bit stack 
with m rows and n columns. Select line sw[i] runs within row 
i and is a write enable select signal to latch new data into 
latch a. If sw[i] is not enabled, the prior value in a is selected 
and stored. Enable signal ei is an override signal that will set 
latch b. 

 

3.2 Placement Details 

                                                
1 Standard cell design practice allows for the interchange 
between logic gates of the same size. Thus, this 
implementation can be modified to many representative 
circuits, such as magnitude comparators, standard equality 
circuits or parity circuits. 

Custom placement of Design 2 leads to regularly placed rows 
with tightly packed cells, shown in Figure 8, where eight total 
bit stack cells have been placed. Figure 8 represents a partial 
8 bit stack lay out for illustrative purposes of the manual 
layout solution. In the full implementation, each bit stack 
consists of 16 AND gates driving a 16 way OR gate 
configuration. The logic gates from Figure 7 are interleaved 
into a single circuit row, and pins between rows for each 
select line are lined up evenly to reduce branch routing. Latch 
a and the MUX that drives it are placed at the bottom of the 
stack, the data flows through the AND/OR reduce logic.  

 
Figure 9 shows the overall layout of the entire design with 
one bit stack shaded. Each bit stack is placed side-by-side 
n=257 times in one row, where there are 12 rows in total and 
placement space is added in the middle, both vertically and 
horizontally for the global wire drivers. 

 

4 EXPERIMENTAL RESULTS 
Table 1 outlines the design details for each circuit that was 
constructed. Design 1 contains 140,800 movable cells, and 
Design 2 contains 130,944 movable cells. These are both 
reasonably small, custom-placement designs built using 
common structured placement tools, including schematic 
capture and layout. Once built, the netlist was exported to 
Bookshelf [14][15] format and the wirelength measured.  The 
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Figure 9. Placement for Design 2 
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Figure 10. Structured Placement Experiments 

Table 1. Design Characteristics 
 

 Num Num Num # Movable 

Designs Nets Pins Terminals Cells 

DESIGN 1 157849 637984 19488 140800 

DESIGN 2 148682 661340 21724 130944 

 

Table 2. TWL Results 
 

 
 

  Design 1 Design 2 

Run Run  

Placer TWL 
TWL 
Ratio Time (s) TWL 

TWL 
Ratio 

Time 
(s) 

Custom 11000365 1.00 n/a 8642097 1.00 n/a 

Capo 15945589* 1.45 1453.9 14381067* 1.66 1430.6 

mPL6 18290965* 1.66 n/a n/a n/a n/a 

ntuPlace3 n/a n/a n/a 10765222 1.25 533.0 

APlace n/a n/a n/a n/a n/a n/a 

Dragon 52926316* 4.81 2350.18  34711167 4.02 2692.0 

FastPlace 16336840* 1.49 194.9 n/a n/a n/a 
 

*Completed with Overlaps 
n/a entries did not complete for the base case 

 

 

custom layout solution is compared against the following 
placers for these two designs: 

• mPL6 v6 [3] 

• CAPO v10.2 [16] 

• FastPlace v3.0 [20] 

• NTUPlace3 v7.10.19 [4] 

• APlace v1.0 [10] 

• Dragon v3.01 [21] 
 

The authors of Timberwolf [19] were contacted, but they 
were unable to provide a version compatible with the 
Bookshelf [14][15] format at this time. This simulated 
annealing approach may perform well on these moderately 
sized test cases. For all placers, a target density constraint2 
was not imposed to give maximum freedom to pack cells. 
 

4.1 Initial Placement Results 
Table 2 displays the results of the custom placement versus 
the academic placer. Column one shows all different 
placement algorithms, where "custom" corresponds to the 
manual-placed designs. Column two displays the measured 
TWL compared to the custom solution for each placement 
method on Design 1, and column five displays the TWL for 
Design 2. For both designs, APlace failed to find a legal 
placement solution. Columns three and six correspond to the 
percentage increases in TWL compared to the custom-placed 
solution. Columns four and seven display the placement 

                                                
2 This was achieved by supplying each placer with a target 
density requirement of 100% density as defined as in ISPD 
placement contests [14] [15] 

runtime in seconds for each design.  
 

The custom-placement method resulted in a TWL of 
11,000,365 for Design 1 and of 8,642,097 for Design 2. For 
Design 1, all placers completed with overlaps. Of the placers 
that completed, CAPO produced the best automated 
placement result with 15945589, a 45% increase in TWL. 
The run time for all placers is less than fourty minutes 
because of the small design size. For Design 2, the ntuPlace3 
algorithm resulted in the best automated placement result 
with 10,765,222, a 1.25 TWL ratio. The run time for all other 
placers is less than forty five minutes for Design 2.  
 

4.2 Adding Additional Whitespace 
As mentioned earlier, it is important to understand whether 
placers could not find the right structure, or could not 
legalize. Seven additional variations of each benchmark were 
generated by increasing white space using the following 

scheme. As shown in Figure 10, let η denote the total height 

of default bit slack, α denote the height of latch logic, β 

denote the height of placeable logic, and ε denote the white 
space added to the bit stack.  
 
The original testcase experiment for both designs was set up 
with no extra white space between each row. Then the white 
space was increased using the scheme in Figure 10 and 
manually replaced the custom solution so that we could 
compare to the automated placement algorithms.   
 

4.2.1 Whitespace Placement Results 
Eight experiments were run on both designs, incrementally 
increasing the available whitespace to allow more room for 
automated placement tools while not applying any 
constraints.  
 
Tables 3 and 4 display the TWL placement results for each 
experiment compared to the custom design solution at the 
same whitespace percentage. ntuPlace3 did not complete for 
Design 1 and APlace failed to legalize for both designs. 
 
All placers except Dragon show wirelength improvement as 
more whitespace is added with a slight increase with the most 
whitespace. When more than 15% of whitespace is added 
however, the improvement of TWL and its ratio starts to 



 

Table 4. TWL Results for Design 2  
 

Placer 96.1 93.6 89.5 85.3 81.5 78.1 75.2 72.2 

CAPO 1.66* 1.24* 1.17* 1.18* 1.18* 1.20* 1.20* 1.21* 

mPL6 - 1.19* 1.15* 1.72* 1.15* 1.16* 1.17* 1.18* 

ntuPlace3 1.29 1.12 1.14 1.13 1.20 1.15 1.16 1.24 

APlace* - - - - - - - - 

Dragon 4.02 4.24 4.49 4.81 5.09 5.33 5.60 5.93 

FastPlace - 1.26 1.15 1.15 1.17 1.19 1.20 1.21 

 

 

Table 3. TWL Results of Design 1 
 

Placer 92.5 89.0 85.8 82.8 80.1 77.4 74.0 71.9 

CAPO 1.45* 1.49* 1.24* 1.28* 1.14* 1.18* 1.12* 1.11* 

mPL6 1.66* 1.65* 1.64* 1.66* 1.64* 1.66* 1.76* 1.73* 

ntuPlace3 - - - - - - - - 

APlace* - - - - - - - - 

Dragon 4.81 5.00 5.39 5.88 5.83 5.91 6.56 7.37 

FastPlace 1.47* 1.33* 1.31* 1.31* 1.28* 1.26* 1.28* 1.31* 

*Completed with Overlaps 

saturate. After that point, adding additional white space did 
not significantly improve the overall TWL ratio compared to 
the custom placed design. Results for APlace are not shown 
because it failed to find a legal placement solution. One 

interesting result is the significant TWL increase in Dragon 
placer as available whitespace is added. In general, the 
overall TWL ratios are improving as whitespace increases 
however; this is primarily due to the TWL increase of the 
custom solution. 
 
For Design 2, TWL at only 4% whitespace is significantly 
higher for all placers but quickly drops. The custom TWL for 
Design 2 increases significantly as whitespace increases for 
the design helping the overall TWL ratios for the placers. 
This again does not point to an improved placement solution 
with increased whitespace, but is instead a result of the logic 
spreading from the manual solution. Dragon placement 
results also exhibit the significant TWL increase trend seen in 
Design 1 as whitespace increases. Minimum overall TWL for 
the placers occurs within the range for 7% to 20% whitespace 
after which TWL begins to increase at a similar slope to the 
custom solution. 
 
The following observations were made: 

• Generally, placers did not improve much with additional 
white space, with the exception of CAPO, which improved 
from 1.66 to 1.17 on Design 2. Part of the improvement 
comes from the TWL increase from the manual solution. 

• For Design 1, the best overall result for each experiment 
came from CAPO with a 14% increase in TWL at 80.1% 
utilization. The TWL increase of the manual solution is not 
obvious, but it also increases with added area. 

• There was a gradual improvement in the TWL ratio for 
Design 2 as area increased for the design, with ntuPlace3 
decreasing from 1.29 to 1.12. 

• By industry standards, both designs are small relative to 
state-of-the-art work yet all placers presented significantly 
suboptimal TWL results. 

• All placers failed to place Design 1 without overlaps. 
Though some of the placers completed Design 2 without 
overlaps, a 15% degradation in TWL translates to 
significant power and delay increases compared to a 
custom solution. 

 

5 ANALYSIS 
Obviously, it is disappointing that academic placers perform 
poorly on these real designs, so further examination is 
necessary. Figure 11 displays a zoomed in snapshot of three 
rows of the custom placed layout for Design 1 with the 
placeable logic between the latches from one row highlighted 
in light blue. The design was placed again using one of the 
better performing placement algorithms to see what happens 
to the blue cells that are densely packed in the custom layout.   
This is shown in Figure 12. 
 
Observe the irregularity present in the blue highlighted logic.  
Most of the blue logic is placed within the bounds of the 
correct rows of latches, but a significant portion is left 
outside, despite adequate whitespace. This may occur 
because: 

• Multilevel placement algorithms employ clustering to 
abstract a netlist into larger components that will be placed 
together.  This manifests itself in loosely connected 
"blobs" of logic rather than densely packed structures.  

• Analytical placement algorithms commonly employ net 
models such as cliques or stars of two-pin edges to 
represent hyperedges. Such models derate the weights of 
edges representing high-fanout nets to compensate for the 
increased number of edges needed to represent them.  As a 
result, the impact of a 512-bit select line is very low, yet 
these nets could provide clues to the structure within the 
design.  

• Clustering algorithms do not typically account for logic 
functions, and make decisions purely on local connectivity.  
This often leads to merging of gates across bit slices rather 
than merging the slice into a large cluster.  

 

 
 

Figure 11. Custom Design 1 Placement Solution 

 



 
 

Figure 12. Automatic Design 1 Placement Solution 

 

6 CONCLUSIONS 
Recent years have seen truly significant improvements in 
runtimes, quality, and scalability in standard-cell placement 
algorithms. This work measures their performance on real 
datapath placement examples and compares them to hand-
designed layouts. Academic placers still have a long way to 
go in order to match the quality of custom design solutions. 
An important contribution of this work is to release these 
benchmarks publically.  
 
In order to keep pace with technology innovation, design 
automation must strive to improve productivity.  This work 
highlights poor performance of modern placement tools on a 
key design style that is lacking in automation --- structured 
datapaths.  One of the challenges posed by this problem is 
identifying regular datapaths within a larger design. Hence, 
new layouts will be constructed that combine both datapath 
and control logic in the same benchmark, providing even 
more challenging placement testcases. Future work will seek 
ways to improve automatic placement algorithms in terms of 
wirelength, routability, and timing closure of datapath 
placement problems. 
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