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ABSTRACT
Under real and continuously improving manufacturing con-
ditions, lithography hotspot detection faces several key chal-
lenges. First, real hotspots become less but harder to fix at
post-layout stages; second, false alarm rate must be kept low
to avoid excessive and expensive post-processing hotspot re-
moval; third, full chip physical verification and optimization
require fast turn-around time. To address these issues, we
propose a high performance lithographic hotspot detection
flow with ultra-fast speed and high fidelity. It consists of
a novel set of hotspot signature definitions and a hierarchi-
cally refined detection flow with powerful machine learning
kernels, ANN (artificial neural network) and SVM (support
vector machine). We have implemented our algorithm with
industry-strength engine under real manufacturing condi-
tions in 45nm process, and showed that it significantly out-
performs previous state-of-the-art algorithms in hotspot de-
tection false alarm rate (2.4X to 2300X reduction) and sim-
ulation run-time (5X to 237X reduction), meanwhile archiv-
ing similar or slightly better hotspot detection accuracies.
Such high performance lithographic hotspot detection un-
der real manufacturing conditions is especially suitable for
guiding lithography friendly physical design.

1. INTRODUCTION
With continuous shrinking of semiconductor process tech-

nology nodes, the minimum feature size of modern IC is
much smaller than the lithographic wavelength [1]. In or-
der to bridge the wide gap between design demands and
manufacturing limitations of the current mainstream 193nm
lithography, various DFM techniques [2–5] have been pro-
posed to improve product yield and avoid potentially prob-
lematic patterns (i.e., process hotspots). However, for 45nm
node and below, hotspot patterns still exist even after de-
sign rule checking (DRC) and various resolution enhance-
ment techniques (RET) such as optical proximity correc-
tion (OPC), sub-resolution assist feature insertions/layout
re-targeting, etc.

Therefore, fast and high fidelity hotspot detection en-
gines can play an essential role to enhance physical veri-
fication/DRC (Design Rule Checking), and to develop pro-
cess aware physical design tools. Conventional approaches
that employ lithographic simulations [6, 7] are accurate but
very costly to run; on the other hand, approaches that uti-
lize pattern/graph matching techniques [8–10] are fast but
they rely on a set of pre-defined hotspot patterns. How-
ever, general hotspot patterns are hard to define/model in a
deterministic manner - too many patterns lead to high over-
estimate rate and too few patterns result in low hotspot cov-
erage; pattern enumeration becomes even more problematic
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as technology processes become more mature and resolu-
tion enhancement techniques improve, thus the definition of
hotspots are highly dependent on the continuously improv-
ing manufacturing conditions.

In recent years, there are emerging works that start in-
corporating modern data mining methods for fast and accu-
rate hotspot detection. A neural network judgment based
detection flow was proposed in [11], where 2D hotspot im-
age patterns were directly used to train an artificial neu-
ral network (ANN) kernel. In [12], data mining algorithms
are developed for hotspot pattern (2D images) clustering.
While these early attempts have shown promising potential
for data mining based hotspot detection, there are still limi-
tations yet to overcome, such as high training noise and low
hotspot detection fidelity.

Later in [13], a support vector machine (SVM) based
hotspot detection method is utilized through performing
2D distance transform and histogram extraction on pixel
based layout images. Similarly in [14], SVM is employed for
hotspot detection through extraction and classification of
certain special layout density related metrics. As an im-
provement over [11, 12], [13, 14] demonstrate higher de-
tection accuracy and lower classification noise, due to the
high fidelity metrics introduced. However, potential issues
with such approaches lie in run time and detection cover-
age, since 2D transforms and density extractions can be ex-
pensive to perform, meanwhile detection windows for the
layout images are hard to anchor for full chip level detec-
tions. In practice, these windows are slid or scanned across
the entire layout with certain amount of overlap between
each other. As an inevitable result, detection performance
becomes a trade-off between run-time and sliding window
coverage. In [15], critical hotspot signature is proposed
and extracted through certain special edge-based metrics.
Although such edge-based extractions operate much faster
compared with [13, 14], its chip level application still faces
similar issues such as scanning window coverage, etc.

Moreover, very few studies exist that deal with the de-
tection challenges under the real manufacturing conditions
which put stricter requirements to the detection engine to
detect a small number of real hotspots with low false alarm
rate. In order to be practically employed in modern IC
physical design, a successful hotspot detection engine must
demonstrate superior speed compared to full lithography
simulation (> 100 CPUs running in the order of days) and
DRC (tens of CPUs running for a few hours), as well as com-
parable performance to meet the real design and manufac-
turing requirements. Unfortunately under such situations,
the hotspot evaluation models in [11–15] suffer from severe
performance degradation, since real hotspot detection under
real manufacturing conditions requires more than a straight-
forward model, but rather, multi-level detection models with
hierarchies of performance refinement.

To better address the issues and challenges above, we pro-
pose for the first time a hierarchically refined machine learn-
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ing framework for high performance hotspot detection flow,
providing full layout, feature-centric analysis without being
penalized in run-time or coverage by sliding window or raster
scanning related techniques. Under such a hierarchically re-
fined data mining framework, we define novel classification
feature metrics in a fragment-based manner and implement
the framework in a leading industrial geometry processing
engine via a shared object library [16]. The proposed flow
is implemented with enhanced ANN and SVM kernels on
large industry layouts under real manufacturing conditions,
demonstrating very promising performance in detection ac-
curacy enhancement, false-alarm suppression and CPU time
reduction.

2. OUR CONTRIBUTIONS
In face of the aforementioned challenges, this paper pro-

poses a novel flow for high performance hotspot detection
under real manufacturing conditions. Our main contribu-
tions are summarized as follows:

• We define novel hotspot feature-centric characterization
and powerful machine learning kernels for high fidelity de-
tection under real manufacturing conditions.

• We introduce a hierarchically refined machine learning
based flow for ultra-low false-alarm hotspot detection.

• We propose special hotspot signature measurements for
ultra-fast, full layout detection without sliding window or
raster scanning techniques.

• We perform thorough qualification using real industry
examples for a 45nm metal1 process under real manufactur-
ing conditions.
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Figure 1: A top level overview of the proposed flow

Before going to further details, we illustrate a simplified
top level overview of the proposed flow in Fig. 1, where cal-
ibration stage involves training and validations of multiple
kernel models, which are then employed in the prediction
stage for fast searching of potential defective pattern loca-
tions in new design layouts. In the calibration stage, input
layouts first go through a novel hotspot geometry charac-
terization/extraction step such that the sample locations
are converted to compact 1D vectors; with these data vec-
tors, special machine learning kernel models are trained and
validated under the supervision of the production simula-
tor [16]. In the prediction stage, new layouts are charac-
terized/extracted as 1D vectors then applied to the estab-
lished kernel models for high performance hotspot detec-
tion under a special integrative flow. The resulted models
from calibration stage preserve the information of both the
hotspot/nonhotspot features and the manufacturing condi-
tions, therefore the prediction stage can be carried out onto
large quantity of layouts with high efficiency once the cali-
bration stage has been carried out a priori.

The rest of the paper is organized as follows, in Section 3,
we introduce our proposed hotspot signature characteriza-
tion for high detection coverage and speed, followed by de-
scriptions of our special machine learning kernels for en-
hanced accuracy in Section 4. In Section 5 we describe

an integrative flow with hierarchically refined classification
techniques for ultra-low false-alarm hotspot detection under
current real manufacturing conditions. Simulation results
on various placed and routed industry layouts are assessed
and analyzed in Section 6. Section 7 concludes the paper.

3. FEATURE-CENTRIC LAYOUT CHARAC-
TERIZATION

Hotspot feature metrics (or hotspot signatures/models)
refer to a set of special measurements which contribute strongly
to successful decision making processes for hotspot detec-
tions. The procedure to extract feature metrics from a de-
sign layout is referred to as layout context characterization.
Unlike special restricted design rules, layout measurements
and characterizations do not decide whether a certain pat-
tern is defective or not, but leave the decision making process
to recursively trained and validated kernels (engines) using
machine learning techniques. In face of the aforementioned
challenges under real manufacturing conditions, a properly
defined set of feature metrics plays the key role for a suc-
cessful classification flow. Unlike previous studies utilizing
2D transforms or density based calculations or sliding win-
dow based techniques, we propose novel metrics and special
data structures for layout characterization with significant
run-time reduction and satisfactory accuracy.
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Figure 2: 3 major types of hotspot feature measurements

3.1 Hotspot Signature Measurement
Before introducing our special hotspot signature metrics,

we first define several types of fast layout measurement data
structures and several fundamental operators, which scale to
cover the entire layout without applying sliding window or
density based techniques. Different types of feature mea-
surements are illustrated in Fig. 2, namely (a) corner infor-
mation (convex or concave), (b) distance to an externally
facing polygon edge and (c) distance to an internally facing
polygon edge. In a fragmented design layout where the frag-
ments (polygon edges) are indexed numerically, these feature
measurements are optimized to be processed and stored with
high efficiency in [16] throughout the entire layout. With
a proper combination of these proposed measurements, we
can accurately characterize the entire layout at a one-time
cost, therefore the context representation of any fragment
in the layout becomes an indexing problem that can be pro-
cessed with very high speed. Also due to such data struc-
tures employed, hotspot detection related geometries (such
as jog shapes, corners, intra-distances and inter-distances,
etc.) are generated for every fragment in the layout with full
processing coverage without penalties introduced by tradi-
tional sliding window related methods.

To carry out the proposed feature measurements, we intro-
duce 4 types of feature-centric operators constructed under

Table 1: Hotspot signature measurement operators

operators operation description (features to measure)
fcorn(·) corner information: CV(convex) / CC(concave)
fext(·) external inter fragment distances
fint(·) internal inter fragment distances

fmisc(·) miscellaneous information
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Figure 3: Fragmentation based hotspot signature extraction

the shared object environment of [16], as shown in Table 1.
In particular,Operator fmisc(·) requests extra information
regarding Frag, such as fragment orientation (X or Y axis)
and the length of Frag, etc. Consequently, hotspot related
geometries of a design layout are represented and indexed in
high resolution (per-fragment based) with a combination of
the defined operators, leading to a high fidelity quantization
process, as we will describe in detail as follows.

3.2 Fragmentation based Context Character-
ization

To provide full characterization coverage over the entire
layout, our hotspot feature definition and extraction are car-
ried out on a per fragment basis. Given a properly frag-
mented layout and any fragment of interest F , we illustrate
the concept of an effective radius r in our proposed context
characterization procedure. As shown in Fig. 3(a)(b), r cen-
ters at (each) fragment F . By definition, effective radius r
covers the neighboring fragments which need to be consid-
ered in the context characterization of F . In its empirical
nature, r heavily depends on the lithography processes, and
it is generally easy to pick in the training and validation
procedure given the manufacturing conditions.

In Fig. 3(b), we illustrate our proposed context character-
ization process: suppose the current fragment of interest is
F (colored red in the center of the effective circle), first we
define several short-hand notations whose indices are used
for indexing throughout the fragments lying within the effec-
tive region of F . Details please refer to Table 2. Note F can
also be denoted as F0. Then we present the characterized
feature vector of fragment F in the following formulation as
in Eqn.(1)-(2):

VF =

F̃i∈δF
r∑

i

{fcorn(F̃i) ⊕ fext(F̃i) ⊕ fint(F̃i) ⊕ fmisc(F̃i)} (1)

F̃ = [F, F Ex, F In, F InEx, F ExIn...] (2)

where F is an integer ID number representing certain frag-
ment in the layout, δF

r is the effective region of F . Operators⊕
and

∑
are matrix operations for the generation of a vec-

tor VF . The length of vector VF is the total number of
features M .

In this paper, the parameter vector VF formed by the
context characterization is defined as the hotspot signa-

Table 2: short-hand fragment notations

notation descriptions of the short-hand notation
F current fragment of interest (detection anchor point)

F In the fragment(s) facing F internally
F Ex the fragment(s) facing F externally

F In Ex the fragment(s) facing F In externally
F+i the ith neighbor traced from F counter-clockwise
F−i the ith neighbor traced from F clockwise

ture metric, and the context characterization for each F
is also referred as feature extraction process. Such a process
filters out detection noise and provides a compact vector
based data set for MLK (machine learning kernels) to be
properly established. Meanwhile, inside [16] environment,
Eqn.(1) can be bulk processed with a one-time calculation
for all fragments throughout the entire layout by directly
invoking the afore-constructed operators, resulting in upto
hundreds of times of run-time reduction compared with pre-
vious studies. Simulation results and further discussions will
be presented in Section 6.

4. ROBUST LEARNING KERNELS
For our proposed hotspot detection methodology, MLKs

(machine learning kernels) play an essential role unlike previ-
ous works. In particular, we employ special MLKs and inte-
grate them in a special manner for detection accuracy/robustness
enhancement and false-alarm suppression. In this paper, we
modify and enhance 2 most common types of machine learn-
ing techniques: ANN (artificial neural network) and SVM
(support vector machine) in mainly 2 aspects: first, robust-
ness and accuracy in the weight update process; second, de-
tection threshold �(·) optimizations for simultaneous Hhit
improvement and Hextra suppression.

Generally speaking, typical ANN and SVM perform sim-
ilarly for binary classifications. Although SVM guarantees
global optimum in its formulation if the kernel satisfies Mer-
cer’s condition, it is usually prone to data noise and may also
result in longer run-time for high dimensional data sets when
the number of support vectors becomes large; ANN on the
other hand, provides more noise robustness, compact kernel
models (neuron weight) and flexible network structures.

With these considerations, we incorporate both classes of
kernels into our detection engine with special modifications.
For ANN kernels, we modify the resilient backpropagation
update method [17] with enhanced robustness and a better
parameter trade-off between convergence speed and detec-
tion accuracy; we also investigate and propose strategies
for detection threshold optimizations. For SVM kernels, we
combine a C-type SVM formulation with higher accuracy
working set selection based on [18], together with hotspot
detection threshold optimizations. We describe our special
kernel formulations and implementations briefly as follows,
with related symbols and variables summarized in Table 3.

4.1 ANN: Artificial Neural Network Kernel
A typical ANN classifies data by predicting a value for

each Vp based on an established set of weights and biases
assigned to certain neural network structure. Our ANN ker-
nels are customized with single hidden layer of neurons, with
transfer functions denoted as fhid. Inputs Vp to the ANN

Table 3: ANN/SVM kernel related variables

Variables descriptions

N total number of input sample vectors
M feature number per sample vector
Vp input sample vectors, p=1 to N

V i
p the ith element(feature) of Vp, i=1 to M

yp hotspot label for Vp in calibration, p=1 to N
fin input transfer function for ANN kernel
fhid hidden layer transfer functions for ANN kernel
fout output layer transfer function for ANN kernel
outp ANN output prediction value from Vp input

outj
hid ANN hidden layer jth neuron prediction output−→ω ANN kernel matrix of neuron connection weight

K(Vi, Vj) SVM kernel function between Vi and Vj

α SVM weight vector for input Vp’s
�(·) threshold function for hotspot decision making
Estp̃ MLK estimation result for a new sample Vp̃
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kernels are the extracted feature vector samples labeled with
values (yp) indicating hotspot or nonhotspot patterns (these
values can be continuous for variability prediction). We use
p to represent feature vector index with p = 1 to N , V i

p de-
notes the ith element of vector Vp, i = 1 to M , where M
is the total number of features for each sample vector. We
use fin and fout to represent input and output layer transfer
functions, and index i, j, k to indicate neuron indices in the
input, hidden and output layer respectively. In particular,
we choose a linear output function, sigmoid hidden layer
functions and formulate our ANN kernel calibration process
in Eqn.(3) to Eqn.(10) as follows:

objective : minimize{
N∑

p=1

E
p} w.r.t ωij , ωjk (3)

E
p

=
1

2
[outp − yp]

2
(4)

outp = fout{
∑

j

ωjk · fhid(
∑

i

V
i

p · ωij)} (5)

∂Ep

∂ωjk

= (outp − yp) · fhid{
∑

i

V
i

p · ωij} (6)

∂Ep

∂ωij

= (outp − yp) · ωjk · V
i

p · (1 + out
j
hid)(1 − out

j
hid) (7)

fhid =
2

(1 + e−2x)
− 1, fin = fout = x (8)

sign func(x) =

⎧⎨
⎩

−1 x < 0
0 x = 0

+1 x > 0
(9)

Estp̃ = �{fout[
∑

j

ωjk · fhid(
∑

i

V
i

p̃ · ωij)]} (10)

4.2 SVM: Support Vector Machine Kernel
SVM classifies sample vectors by calculating a (hyper-

plane) boundary with maximum separation margin in-between
of different classes. With such an optimized margin, only
the sample vectors forming the boundaries are considered
as contributing factors for new sample classifications. These
vectors are called support vectors, they are assigned differ-
ent weights and they perform classification tasks through
certain kernel function K(Vi, Vj). For this paper’s high fi-
delity detection flow, we combine a typical 2-class soft-error
tolerant SVM kernel, a special working set selection tech-
nique using second order information [18] and a detection
threshold � optimization procedure in the SVM kernel cali-
bration process towards simultaneous accuracy enhancement
and false-alarm suppression.

The dual problem of our quadratic formulation of C-type
SVM is given as follows in Eqn.(11) to Eqn.(16):

objective : minimize{f(α) =
1

2
α

T
Qα − e

T
α} w.r.t α (11)

subject to : 0 ≤ αi ≤ C, i = 1, ..., N, (12)

y
T · α = 0 (13)

K(Vi, Vj) = exp{γ · ‖Vi − Vj‖2} (14)

slope func(x) =

⎧⎨
⎩

0 x ≤ 0
x 0 < x < C
C x ≥ C

(15)

Estp̃ = �{
∑

i

αiyiK(Vp̃, Vi) + bias} (16)

5. HIERARCHICAL MACHINE LEARNING
FOR LOW FALSE-ALARM

5.1 Overview
Due to the small number of real hotspots and the highly

noisy detection environment under real manufacturing con-
ditions, we hereby propose a hierarchically refined machine
learning method to integrate our proposed feature extrac-
tion processes and multi-level machine learning kernels. In
its nature, such an approach hybrids the strength of ANN
(or SVM) kernels and hierarchical classification methods
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Figure 4: Hierarchically refined training/validation with

multiple hotspot metric models and thresholds

thus contributes to significant detection performance en-
hancement in terms of run-time, detection accuracy and
false alarms, when compared with previous approaches using
straight-forward machine learning techniques.

As shown in Fig. 4, our proposed training and validation
processes take place in a multi-level manner with each level
contributing an unique classification model. Different lev-
els of models established in the calibration stage are then
employed in the prediction stage in a similar hierarchically
refined manner to help reduce the false alarm rate Hextra
without penalizing the hotspot detection rate Hhit. Fig. 5
illustrates the hierarchical hotspot predication flow for the
testing design layouts. In the following subsections, we de-
scribe our proposed hierarchical machine learning in detail.

5.2 Global Training and Detection
Here we refer to the first level training in Fig. 4 as the

global training stage, since Model 1 is trained with the whole
training dataset (on the global scale); similarly in Fig. 5,
prediction with only Model 1 is defined as global detection,
since the whole testing data go through this model. As
we will show later in Section 6, under our proposed feature
metrics and machine learning kernel implementations, global
detection stage alone achieves very satisfactory hotspot de-
tection accuracy, whereas the non-hotspot detection accu-
racy is not high enough. As we discussed, hotspot and non-
hotspot patterns are highly unbalanced under current real
manufacturing conditions, resulting in such a huge pool of
non-hotspots that even a small fraction of false-alarms leads
to excessive post-processing workload. Consequently, much
stricter requirements are imposed on the non-hotspot detec-
tion accuracy than the hotspot detection accuracy. This is
another motivation for our proposed hierarchical refinement.

5.3 Hierarchical Local Refinement
To further suppress false-alarms meanwhile maintaining

satisfactory hotspot detection rate, we extend the global
stage with extra sub-levels, which we refer as the local hi-
erarchical refinement. As illustrated in Fig. 4 and Fig. 5,
we employ hierarchical refinements in both calibration and
prediction stages. In calibration stage, the refinement flow
consists of several key steps: (1) training and validating mul-
tiple hotspot metric models using the entire training data set
and the false-alarm data sets from a part of the validation
data. (2) stopping criteria to decide when to stop adding
more hierarchical models. (3) optimizations of the multiple
thresholds � associated with the machine learning models.
In the prediction stage, all the models and thresholds are
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Figure 5: Hierarchically refined prediction with multiple

hotspot metric models and thresholds

employed, and hotspots are detected as those patterns that
are identified as ‘positive’ in all hierarchies of models. We
describe related key steps in more detail as follows:

Training and validating multiple models: Using the
Model 1 from the global stage, the predict procedure is car-
ried out over the combination set of the training data and a
subset of the validation data. A variable threshold1 is prop-
erly chosen such that a proper set of false-alarm patterns
are derived. Note that the patterns within such a set are
non-hotspots which are classified as hotspots by Model 1,
and that under real manufacturing conditions the set is usu-
ally large. Subsequently, an extra model Model 2 is derived
by invoking ANN (or SVM) training process over the false-
alarm set. Similarly, such a routine continues by generating
another false-alarm set with Model 1/2 under threshold1/2,
leading to a third level model Model 3, so on and so forth.

Stopping criteria: To quantify the stopping criteria for
the multi-level calibration process, we introduce a user de-
fined performance metric Ψperf in Eqn.(17):

Ψperf = α · Hhit + β · Nhit (17)

where α and β are user defined weights, Hhit is the hotspot
detection accuracy and Nhit is the non-hotspot detection
accuracy. Therefore, Ψperf represents the weighed summa-
tion of hotspot and non-hotspot detection accuracies. At
every level, Ψperf is evaluated over subset2 of the validation
data and the multi-level routine stops when Ψperf saturates
or starts getting worse.

Thresholds optimization : In this paper, we employ
a heuristic approach for the threshold optimizations, that
is to exhaust the solution space with grid based simulations
and select the threshold combinations giving the best Ψperf .
The main reason is two fold: first, calibration process is
performed only once in an a priori manner therefore does
not lead to run-time overhead for predictions over testing
layouts; second, based on our experimentations in Section 6,
Ψperf saturates or starts to deteriorate after level 3, thus the
total solution space is fairly limited. More details of this step
can be found in Section 6.

Prediction and testing : testing is carried out at speed
with the calibrated models over a new set of layouts using
the flow in Fig. 5, consisting of feature extraction and hierar-
chical machine learning classifications. Our proposed refine-
ment detection flow differentiates the pattern streams and

Table 4: Tested layouts details.
dimension hotspot count non-hotspot count

C1 30 X 30 um2 4 4.955k

C2 50 X 50 um2 0 17.37k

C3 200 X 200 um2 6 293.5k

C4 500 X 500 um2 38 1779k

C5 1000 X 1000 um2 137 7175k

Table 5: Simulation results of our proposed method on in-

dustry layouts under real manufacturing conditions.
MLK - ANN MLK - SVM

GD GD+LR GD GD+LR
Hhita Nmis Hhit Nmis Hhit Nmis Hhit Nmis

C1 4 315 3 18 4 251 4 5
C2 - 109 - 11 - 81 - 3
C3 6 493 5 31 6 355 5 7
C4 32 3020 30 195 34 1983 31 38
C5 121 10960 111 485 122 7535 114 135
a Hhit is the number of correctly classified hotspots; Nmis is the

number of incorrectly classified non-hotspots (false-alarm counts)

guides them through multiple levels of classification models,
resulting in satisfactory detection accuracy and ultra-low
false-alarms. For more details, please refer to Fig.4, Fig.5.

6. SIMULATIONS AND EXPERIMENTS
The simulation process involves 3 major steps: first, un-

der real manufacturing conditions, ANN and SVM based
classification models are trained on a 500 um2 layout with
fully placed and routed metal tracks in 45nm technology
(in the global stage). Second, the validation (multi-level
refinement) process (including the brute force threshold op-
timizations) is then carried out on metal1 layer of a medium
area whole chip layout. Last, our proposed flow is tested
and evaluated on 45nm industry layouts under a real set of
45nm process manufacturing conditions, in terms of Hhit,
Nhit and prediction stage run-time.

With the data in Table 4, we carry out the first two steps
according to Section 5 and derive a three-level detection hi-
erarchy: one global model and two local refinement models.
With the models ready, we perform the prediction procedure
as in Fig. 5 onto 5 industry layouts under real manufactur-
ing conditions. Details of layouts C1 to C5 are listed in the
following Table 4, from which we can further appreciate the
challenges that we motivated in Section 2.

In Table 5 we list the simulation results of our proposed
detection flow over C1-C5 layouts, where GD represents
global detection alone and GD+LR represents the multi-
level machine learning flow with both global detection and
local refinement. We observe that although GD demon-
strates satisfactory hotspot accuracy, it is LR that plays a
vital role in bringing down the false-alarms. Also in these
results, we see that under real manufacturing conditions,
hotspots and nonhotspots are highly unbalanced and the de-
tection accuracies for both classes should be kept maximum.
Fig. 6 also provides a visualization of whole chip hotspot
detection false-alarm counts on benchmark C5 by some cur-
rently existing works. From the figure we can see that our
proposed method achieves the least amount of false-alarms
without hurting the hotspot hit rate, therefore the work-
loads of the post-detection stages hotspot correction can be
kept minimum. In view of the huge total pattern number of
C5 from Table 4, we can understand that although a 95%
of non-hotspot detection accuracy rate seems good, it has
to be pushed to above 99.85% to tackle the real manufac-
turing conditions for the industry layouts to avoid excessive
post-layout corrections.

(a) (b)

1mm

(c)

Figure 6: Visualizations of false alarm locations when sim-

ulating (a) [15] on C5, (b) [19] on C5, and (c) our method on

C5 (barely visible:∼100 false alarm spots on 1mm2 layout)
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Table 6: Result comparison between previous hotspot detection methods and our method

DAC09 SPIE09 ICICDT09 MLK - ANN MLK - SVM
[13] [19] [15] GD GD+LR GD GD+LR

Avg hotspot detection accuracy Hhit 88%a 80%b 87% 88% 82% 89% 83%

Avg Nonhotspot detection accuracy 94.523%a 99.985%b 99.809% 99.847% 99.994% 99.895% 99.998%

Avg false alarm count per mm2 300Ka 1.1Kb 13.5K 10K 0.45K 7.5K 0.13K

Avg CPU run-timecper mm2 356a 30b 10 1.5 1.5 2.0 2.0

Avg real-time run-timedper mm2 100a 8.50b 2.80 0.40 0.40 0.52 0.52
a Implemented within the same geometry engine framework [16] with slight modifications for compatibility reasons. Calibrated on

a 100X100 um2 region from layout C5 due to run-time constraint.
b Implemented based on [19] and tested on the same layouts.
c Run-time calibrated in the unit of CPU hour/mm2 on Linux station with 2.8GHz quad-core processors.
d Run-time calibrated in the unit of real time hour/mm2 on Linux station with 2.8GHz quad-core processors.

In Table 6, we list comparisons of accuracies and run-time
between our approach and some existing studies. In the
far right-hand columns of Table 6, our proposed methods
demonstrate better performance with superior run-time un-
der real manufacturing conditions. With similar or slightly
better hotspot detection rate Hhit of 82%-89%, we show
hotspot false-alarm reductions ranging from 2.4X (between
[19] and MLK-ANN-GD+LR) to 2300X (between [13] and
MLK-SVM-GD+LR). Simulation run-time speed-ups range
from 5X (between [15] and MLK-SVM) to 237X (between
[13] and MLK-ANN), when calibred in CPU hour per layer
per mm2 unit. Within our proposed hierarchical detection
flow, modified ANN kernels result in faster runtime than
modified SVM kernels while SVM kernels outperform ANN
kernels in both hotspot and non-hotspot detection accuracy.
We also notice that within our flow, the run-time overhead
introduced by local refinement steps are negligible in CPU
hour, owing to our ultra-fast hotspot signature characteri-
zation operators and data structures.

Based on the experimentations in Table 6, we give a high
level performance comparison among existing hotspot detec-
tion techniques in Table 7, where we further highlight the
key contributions of our hotspot detection flow compared
with existing works. It can be seen that our method is most
suitable for lithography aware physical design due to its high
accuracy, low false alarm, and very fast speed. While the
machine learning based algorithms still miss some hotspots,
this is acceptable at the physical design stage as a fast and
high-fidelity guidance. If needed, those small number of
missed patterns can be captured and complemented with
pattern matching algorithms to achieve full hotspot detec-
tion coverage, without the enumeration issues that general
pattern matching methods have.

7. CONCLUSION
To alleviate the huge run-time cost of current lithographic

hotspot simulators, in this paper we proposed an ultra-fast
and high fidelity hotspot detection flow providing full lay-
out, feature-centric assessment as improvement over sliding
window or raster scanning techniques. Under the real manu-
facturing conditions, we incorporated a novel set of hotspot
signature measurement, a hierarchically refined classifica-
tion methodology and powerful machine learning kernel im-
plementations into an integrative flow. We implemented
our algorithm with an industry-strength engine [16] under
real manufacturing conditions, and showed that it signif-
icantly outperforms previous state-of-the-art algorithms in
hotspot detection false alarm rate (2.4X to 2300X reduction)
and simulation run-time (5X to 237X reduction), meanwhile
archiving similar or slightly better hotspot detection ac-
curacies. The demonstrated high performance makes our
approach very suitable for identifying lithographic hotspots
and guiding lithography-friendly physical design.

Table 7: Comparisons between existing methods
[13] [19] [15] ours

kernel SVM regression ANN ANN,SVM
window-based yes no yes no

accuracy high medium high high
false alarm high low high low

scanning coverage trade-off full trade-off full
run time slowa medium mediuma very fast

a For scanning window based approaches , run-time can be traded-off
between accuracy and coverage.
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