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ABSTRACT
Electronic Beam Lithography (EBL) is an emerging maskless
nanolithography technology which directly writes the desired
circuit pattern into wafer using e-beam, thus it overcomes the
diffraction limit of light in current optical lithography system.
However, low throughput is its key technical hurdle. In con-
ventional EBL system, each rectangle in the layout will be pro-
jected by one electronic shot, through a Variable Shaped Beam
(VSB). This would be extremely slow. As an improved EBL
technology, Character Projection(CP) shoots complex shapes,
so called characters, by putting them into a pre-designed sten-
cil to increase throughput. However, only a limited number of
characters can be put on the stencil due to its area constraint.
For those patterns not in the stencil, they still need to be writ-
ten by VSB. A key problem is how to select an optimal set of
characters and pack them on the CP stencil to minimize total
processing time. In this paper, we investigate a new problem of
EBL stencil design with overlapped characters. Different from
previous works, besides selecting appropriate characters, their
placements on the stencil are also optimized in our framework.
Our experimental results show that compared to conventional
stencil design methodology without overlapped characters, we
are able to reduce total projection time by 51%.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuit]: Design Aids

General Terms
Algorithms, Design, Performance

Keywords
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1. INTRODUCTION
As aggressive scaling continues, the conventional 193nm op-

tical photolithography technology is facing the great challenge
of printing sub-32nm. For near future, double/multiple pat-
terning lithography has been developed as temporary solution
for 32nm, 22nm, even 16nm, technology [1–3]. In the longer fu-
ture, the semiconductor industries and researchers have been
actively pushing on alternative emerging nanolithography to
print finer feature size below 16nm, such as Electronic Beam
Lithography (EBL), Extreme Ultra Violet (EUV) and nanoim-
print.
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Figure 1: Electron Beam Lithography

EBL [4–6] is a maskless technology which shoots desired
patterns directly into a silicon wafer, with charged particle
beam. The primary advantage is that it is one of the ways
to beat the diffraction limit of light of current well-adopted
optical lithography [7]. However, the key limitation of electron
beam lithography is low throughput.

The conventional type of EBL system is Variable Shaped
Beam (VSB). In VSB, the layout is usually decomposed into
a set of rectangles, and each one would be shot into resist by
dose of electron sequentially. As Fig. 1 (a) shows, the pat-
tern of “EHE” is divided into eleven rectangles and needs total
eleven shots. The whole processing time of this technique in-
creases with number of beam shots. This makes its throughput
very low for modern complicated design, which is commonly
composed of significant number of small rectangles.

The Character Projection (CP) technology [4–6] has been
invented for improving the throughput of VSB methods. The
key idea is to print some complex shapes in one electronic
beam shot, rather than writing multiple small rectangles. This
reduces manufacturing time significantly. In detail, as the
projection system of CP in Fig. 1 (b) illustrates, a library
of layout configurations, called Characters, or Templates,
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are prepared on a stencil first. During manufacturing, if any
character exists in the targeted design, it will be chosen in the
system and projected into the wafer. To print the example
of Fig. 1 (a), suppose two characters “E” and “H” are pre de-
signed for the stencil. By adjusting and aligning the shaping
aperture and stencial, we can print the patterns of “E”, “H”,
“E” in sequential manner, as Fig. 1 (c)-(e) shows. Totally, it
only takes three shots.
Due to less beam shots for the same layout, CP system is

much faster than VSB. However, the number of characters is
limited due to the area constraint of the stencil. As in the
example of Fig. 1 (f), there are only maximum �W/w��H/h�
characters. For modern design, it is not practical to fully make
use of CP, due to numerous distinct circuit patterns. Those
patterns which do not match any character are still required
to be written by VSB.
Several methodologies have been proposed to design and se-

lect group of circuit patterns as characters for minimizing total
projection time of both CP and VSB. In [8], frequently-used
standard cells are greedily chosen as characters, processed by
CP technology. M.Sugihara at el. [9–12] employ integer lin-
ear programming to optimize the throughput, given a set of
character candidates. Recently, EDA vendor D2S inc [4–6]
proposes improving stencil design from a new point of view,
but with no detailed algorithm presented. They show that,
in practice, when individual character/template is designed,
blanking area is usually reserved around its boundaries. By
sharing blanks between adjacent templates, more characters
can be placed on the stencil than the regular design of Fig. 1
(f), better improving the throughput.
The work of [4–6] implies that, to fully minimize the total

projection time of EBL, besides selecting appropriate charac-
ters as [8–12], their relative locations on the stencil should be
taken into account at the same time due to possible overlap-
ping. In the paper, we will investigate on this new problem
of electronic beam lithography stencil design with overlapped
characters. One/two dimensional problem is researched sepa-
rately, depending on whether the available overlapping space
of characters is non-uniform in either horizontal or both di-
rections. The main contributions of our work are stated as
follows.

1. We co optimize the selection process of characters and
their physical placements on stencil for effective EBL
throughput improvement.

2. We propose a four-phase iterative refinement process to
conduct one-dimensional stencil design optimization. A
Hamilton-path based approach has been developed to
solve single-row reordering efficiently and effectively.

3. We develop a Sequence Pair (SP) based simulated an-
nealing framework to optimize general two-dimensional
stencil design. Two SP-related techniques have been pro-
posed to ensure correct and fast character placement
evaluation, and two specialized perturbation methods
have been developed for robust solution improvement of
simulated annealing process.

2. PRELIMINARY AND PROBLEM FORMU-
LATION

2.1 Overlapped Character
Electronic Beam Lithography (EBL) is a maskless technique,

which shoots desired patterns directly into a silicon wafer, and

can potentially combat device parameter variations [13–15].
Various investigation [9–12] have been conducted on the op-
timization of character selection for EPL technology, where
no intersection is allowed between templates on the stencil, as
shown by Fig. 1 (f). Recently, the work of [4–6] shows that
the design of stencil can be further improved by overlapping
adjacent characters, which allows more templates to be put
and increase the throughput.

As pointed out by [4–6], when individual character is de-
signed, blanking space is usually reserved around its enclosed
rectangular circuit pattern, shown by Fig. 2 (a). The reason
is that, when the electron beam is scatted from the shaping
aperture of Fig. 1 (b), it could span larger area on the stencil
than the layout to be printed. In order to avoid projecting any
unwanted image, the white space should be preserved. These
blanking areas offer great opportunity for character sharing.
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Figure 2: Overlapped characters for improving the
stencil densities.

Suppose the required white space around layout A and B
are BlankA and BlankB respectively, in Fig. 2 (a). If the
characters are conventionally aligned by edge as Fig. 2 (b),
it results in a waste of area. The space between layout A
and B is actually BlankA + BlankB, which is more than re-
quired for both patterns. By contrast, we would greatly reduce
the total area of character A and B by sharing an amount of
min(BlankA,BlankB) space. In this case, max(BlankA,BlankB)
white width is still reserved between layout A and B, which is
sufficient for ensuring correct printing image.

2.2 Stencil Design Challenge
The main challenge of stencil design with overlapped charac-

ters comes from the fact that, for each character, the amount
of required blanking space is not uniform, strongly depending
on its enclosed layout patterns. In consequence, for different
placements of characters, the area reduction from template
overlapping may vary a lot. Therefore, unlike the traditional
design of Fig. 1 (f), the number of maximum allowable charac-
ters in the stencil is not fixed. To achieve high quality solution,
the detailed physical placement information of all the charac-
ters must be taken into account. This makes the problem
of stencil design with overlapped characters not only different
from but also more difficult than conventional non-overlapping
one, addressed in [9–12].

As the example of Fig. 3 (a) illustrates, suppose there are
three character candidates A-C, and we would like to pack
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them into a simple stencil of Fig. 3 (b) for minimum projection
time. As easily seen, their blanking spaces are quite different.
In conventional design where overlapping is not considered,
at most two of them can fit. On the other side, when the
blanking space is shared by adjacent characters, the result is
correlated with the detailed physical implementation of stencil,
and could be different from traditional design. If these three
candidates are tried out by the order of A-B-C like Fig. 3 (c),
only A and B can be put in. Patterns C is out of bound
and has to be processed by VSB technique. This does not
lead to higher throughput than conventional non-overlapped
methodology. In contrast, if rearranged as C-B-A as Fig. 3
(d), all of these three patterns can be used as CP characters.
Obviously, it is a better stencil optimization.

A B C

(a) (b)

A B C
Out of
Stencil

(c)

ABC

(d)
Figure 3: The main difficulty of stencil design with
overlapped characters

2.3 Problem Formulation
In this subsection, we will formulate the problem of EBL

stencil design with overlapped characters.
Similar to previous work [9–12], we assume a set of character

candidates have already been given. To model overlapping in-
formation, as Fig. 4 (a) illustrates, assume the blanking spaces
of each candidate ci, from left, right, top and bottom bound-
aries, are li, ri, ti and bi, respectively. The orientation of these
candidates are not allowed to be flipped, since it actually be-
comes a different template, as explained in [10]. When two
candidates ci and cj are put adjacent to each other horizon-
tally, their maximum allowed overlap is set as oHij , which is
min(ri, lj) as shown by Fig. 4 (b). Similarly, Fig. 4 (c) defines
the maximum vertical overlapping margin oVij . o

H
ij and oVij vary
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Figure 4: The dimensional variable of character can-
didates

Moreover, since the manufacturing time of EBL is domi-
nantly determined by electronic beam shooting, in our work,
we make use of total number of shots as the measurement of
projection time. Suppose each candidate ci is referred rci times
in the chip. For each of its appearance, the candidate ci will
be projected by either CP or VSB method, with a number of
shots nCP

i and nV SB
i . The total processing time (number of

shots) of the entire circuit is computed by following equation.

∑

ci∈CCP

rcin
CP
i +

∑

ci∈(CC\CCP )

rcin
V SB
i (1)

CC is the set of all the character candidates. CCP is the
union of selected candidates processed by CP method, which is
a subset of CC .

In our work, for simplification purpose, we only design and
optimize the stencil for single design. The general case of mul-
tiple chips can be easily extended, where the characters would
be reused by different designs. Based on above description,
our optimization problem can be stated as below:

Problem Formulation: Given a design and its set of char-
acter candidate CC , select a subset CCP out of CC as char-
acters, and place them on the stencil S. The objective is to
minimize the total projection time (number of shots) of this
design expressed by Equation (1), while the placement of CCP

is bounded by the outline of S. The width and height of sten-
cil is W and H , respectively, and all the candidate has unique
width w and height h. The maximum overlapping margin be-
tween adjacent characters is given by oHij and oVij .

In this paper, we will first investigate on the special case of
one dimensional stencil design in Section 3, where the amount
of blanking spaces differs only in either horizontal or vertical
direction. Then, in Section 4, the algorithm, for generalized
two dimensional problem, will be developed.

3. ONE DIMENSIONAL STENCIL DESIGN
Normally, each template implements one standard cell. That

is to say, the enclosed circuit patterns of all the characters
have the same height, and their layouts near top and bottom
boundary edges are mostly regular power rails. As a result,
illustrated by Fig. 5 (a), the required blanking spaces on the
top t and bottom b are nearly identical for these candidates.

Therefore, in such case, characters are usually be placed
on the stencil in a row-based manner, shown by Fig. 5 (b).
All rows have a unique height h. The overlapped blanking
margin ho between adjacent rows are also the same, which is
min(ti, bi). In consequence, as Fig. 5 (c) shows, the overlapping-
aware stencil design becomes a one-dimensional problem. The
number of character rows can be pre determined as �(H −
ho)/(h − ho)�). The candidates would be packed into these
rows with maximum width W .
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Figure 5: One-dimensional Stencil Design.
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The overview of our four-phase iterative refinement algo-
rithm for this special one-dimension problem is given in Fig. 6,
and the details will be discussed in following subsections.

3.1 Greedy One Dimensional Bin Packing
To construct a reasonable good starting point, we adopt a

descending best-fit bin packing algorithm to push the character
candidates into stencil, until there is no enough capacity.
Note that the overall projection time (number of shots) of

Objective (1) can also be represented as

∑

ci∈CC

rcin
V SB
i −

∑

ci∈CCP

rci (n
V SB
i − nCP

i ) (2)

where the first part is independent with stencil design. To
reduce the processing time,

∑
ci∈CCP rci (n

V SB
i − nCP

i ) should
be made as large as possible, during greedy bin-packing.
Therefore, as preprocessing, we first assign each candidate ci

a profit value pi, r
c
i (n

V SB
i −nCP

i ). The bigger pi is, the larger
amount of projection efforts can be saved by printing ci using
CP than VSB method. For getting good greedy optimization
result, the ci with larger profit should be given higher priority
to be placed on the stencil. Guided by this heuristic, in the
second step, the character candidates, which have not been
on the stencil yet, will be sorted decreasingly based on their
profits and packed in a sequential manner.
Next, these sorted candidates will be pushed into stencil by

a best-fit packing strategy. When ci is to be packed, the row,
which has the most amount of capacities left after accommo-
dating ci, will be picked. This is to consider the possible shared
space between adjacent objects, when we are computing the
remaining room in each row. As Fig. 7 (a) illustrates, suppose
only two rows are available and candidate C is to be packed
next. It appears that row R1 has more capacity left. However,
as Fig. 7 (b) illustrates, when we try out C in both rows, it is
R2 which has larger remaining room. As a result, candidate
C is packed into R2, shown by Fig. 7 (c).

3.2 Single Row Reordering
After greedy bin packing, there is no room left to accommo-

date more candidates. However, as motivated by Fig. 3, we
can adjust the relative locations of already-placed characters
in each row to shrink its occupied width and increase remain-
ing capacity. This allows pushing in more candidates, which
further reducing the overall projection time. Therefore, in this
phase, our goal is to minimize the total width of its characters
in each row for maximizing remaining capacity.
Suppose row r contains a set of cr0 .... crn characters from left

One-Dimensional Bin Packing

Multi Row Swapping

Inter-Stencil Turning

Single Row Reordering

Result Improved
Yes

End
No

Figure 6: The overview of one dimensional stencil de-
sign with overlapped characters.
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Figure 7: This figure illustrates the procedure of best-
fit bin packing with overlapping awareness.

to right, its total occupied width can be computed as
∑n

i=0 w−∑n−1
i=0 oHi,i+1. It is not difficult to see that

∑n
i=0 w is a constant

as long as the number of characters is not changed. Therefore,
to minimize the total occupied width, the overall overlapped
blanking margin

∑n−1
i=0 oHi,i+1 should be maximized.

To compute optimal character permutation for maximum
amount of shared blanking width, we formulate a minimum
cost Hamiltonian path problem. First of all, a graph G is con-
structed as follows: Each cri is represented by a vertex vri . For
each pair of vri and vrj , we add two directed edges eij and

eji. The associated costs are oHbig − oHij and oHbig − oHji , respec-

tively. oHij/o
H
ij is the shared space when ci is put left/right

adjacent to cj , and oHbig is a constant value, bigger than any of

oHij . To maximize
∑n−1

i=0 oHi,i+1, it suffice to find a path visiting
each node of G exactly once such that the total edge weighs
(
∑

e∈Path(o
H
big − oHij )) along this path is minimized. As Fig. 8

(a) illustrates, a graph for three character placement (A,B,C)
is given. Suppose the minimum cost Hamiltonian path is found
as Fig. 8 (b), Fig. 8 (c) shows its corresponding character place-
ment.

r
Av r

Bv

r
Cv

H H
big jio o−
H H
big ijo o−

(a)

r
Av r

Bv

r
Cv

(b)

A B C

(c)

Figure 8: This figure shows how to optimize the
occupied-width of each row as min-cost Hamiltonian
path problem

Practically, since the problem of minimum cost Hamiltonian
path is NP-hard, it may be expensive to solve the whole row in
one time. In that case, our heuristic is to partition the row into
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multiple overlapped smaller segments, and solve each segment
by Hamiltonian path based method.

3.3 Multiple Row Swapping
After single row reordering, the character permutation within

each row has been extensively optimized. However, it is still
possible to increase their remaining capacities, by swapping
characters from different rows. As Fig 9 illustrates, by swap-
ping r21 and r22, both characters find “better” neighbors with
more overlapped blanking space. For row R1 and R2, their
remaining rooms are both increased.
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(a)

1
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2
1r

3
1r

1
2r

2
2r

3
2r Bigger

R1

R2

(b)

Figure 9: This figure explains the motivation of multi-
row swapping.
The algorithm is briefly explained as follows. We test every

pair of characters from different rows. Only when the remain-
ing capacities of both rows are increased after swapping, it is
considered as a reasonable swap. This ensures, the modified
placement is definitely better than original one. The reason is
that, after swapping, if one row gains more room but another
has less, it is possible that the following optimization is hurt
by the row with shrunk capacity.
After all the reasonable swap pairs are found, they are sorted

increasingly by capacity gains, and performed one by one.
When certain swap is done, the associated characters and their
neighbors are locked. Any swap in the later trials is not allowed
to move these locked characters as well as their neighbors. This
honors previous optimization result.

3.4 Inter Stencil Tuning
The previous single and multiple row optimization are con-

ducted based on the initial solution of bin-packing algorithm
in Section 3.1. This may limit the optimization space. To get
out of local optima, as the last step of ech iteration, we would
like to exchange the placed characters with those which have
not been selected.
Our approach is to randomly pick and exchange two char-

acter candidates, where one is from the stencil and another is
not. The swapping will be accepted, only if the overall projec-
tion time, number of shots, Objective (1) is reduced and the
remaining capacity of any row is not shrunk.

4. TWO DIMENSIONAL STENCIL DESIGN
In this section, we investigate on the general case of EBL

stencil design with overlapped characters. The blanking spaces
of templates are non-uniform along both horizontal and ver-
tical directions. Due to NP-completeness of this problem, we
adopt a simulated-annealing based heuristic approach to per-
form a robust iterative improvement.

4.1 Sequence Pair Representation
To represent the character placement solution, we make use

of sequence pair (SP) proposed in [16].
Given a set of character candidates CC , its SP consists in

two permutations X&Y of these templates (c0, c1...cn), which
specifies their geometry relationships as below.

(X :< .., ci..cj.. >, Y :< ...ci...cj... >) : ci is left to cj (3)

(X :< .., cj ..ci.. >, Y :< ...ci...cj... >) : ci is below cj (4)

Based these constraints, we can map any SP into a solution
of character placement as following procedure:

Procedure 1:
Step1: Compute a packing solution of CC , following simi-

lar methods of [16, 17]. The details will be described in Sec-
tion 4.1.1 and 4.1.2.

Step2: Assuming the left-bottom coordinates of packing re-
sults and stencil are the same, the candidates, which are lo-
cated completely within the outline of stencil, are considered
as selected characters. �

The step1 is the critical one in above transformation. Due to
specific properties of our problem, its implementation actually
differs from the conventional approaches of [16, 17], explained
as follows.

4.1.1 Correct Packing Algorithm
The key step of packing solution evaluation from SP is to de-

termine the physical coordinates of each block. This problem
has been well investigated, when overlapping is not consid-
ered between adjacent blocks. The original algorithm is pro-
posed in [16], and improved by [17] with new solution pruning
technique. The work of [16] is extensible for our overlapping-
enabled character placement problem. However, the key speed-
up idea in [17] does not apply, although it is much faster.
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Figure 10: This figure explains packing evaluation
of [16] based on sequence pair

The method of [16] is based on longest path algorithm, and
starts from constraint graph construction. Given a SP, a H/V
graph is built first to capture the horizontal/vertical relation-
ship between different blocks. Assume there are totally CC

candidates, the H/V graph has |CC |+2 vertexes, one vi for
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each candidate ci plus a source s and sink t. If cj is (left adja-
cent to)/(below) ck, a directed edge ejk is added from vj to vk.
The weight of ejk is the minimum possible horizontal/vertical
distance between the centers of cj and ck. Beside these, there
is a zero-weight edge from source to every vi, and a zero-weight
edge from every vi to sink. For the example of Figure 10 (a),
Figure 10 (b) and (c) show the resulting H and V constraint
graphes, respectively.
After that, the x/y coordinates of these candidates can be

obtained by finding its weighted longest path algorithm from
source. As easy to see, this methodology is also applicable for
our problem, where overlapped space is allowed between adja-
cent vertexes. The only difference is that, when the weights of
edge are assigned, the amount of shared blanking space must
be considered, as highlighted by the red cycles in Figure 10
(b) and (c).

A

B

C

B CX X>
BX

CX

(a) non-overlapping

A

B

C

B CX X=
BX

CX

(b) overlapping

: (    )    (    )  SP X D A C B Y A B D C= =

Figure 11: This figure illustrates the key idea of of [17]

On the other side, the work of [17] does not explicitly build
the constraints graphs but depends on the longest common
subsequence computations. They evaluate the placement of
character candidates much faster than [16], depending on the
following property.

Property 1 Given two blocks B and C, if we put them (right
adjacent to)/below a common component A, then the x/y co-
ordinates of these two blocks should be same.

The correctness of this property can be easily seen for the
conventional packing, as shown by Figure 11 (a), while over-
lapping is not considered. However, it does not hold true, when
the sharing of characters becomes possible. As Figure 11 (b)
illustrates, due to different overlapping margins, the coordi-
nates of B and C are not the same.

4.1.2 Fast Packing Evaluation
After evaluating packing solution, in the step2 of Procedure

1, the candidates outside the outline of stencil will not be taken
as characters. This implies, the detailed locations of these
candidates are not important, and do not have to be computed
in the step1. Great speedup can be achieved by making use of
this property.
In detail, in the implementation of SP-based minimum area

packing, we stop placement evaluation as soon as the contour
of already-packed character candidates is completely outside
the outline of stencil by at least a margin of omax, given that
omax is the maximum value of oHij and oVij .
This strategy will not effect the solution of character place-

ment. For any of unpacked candidates by the stopping time,
it can not be totally fit into the stencil no matter how to push
it around the boundaries of already-packed character clusters.

4.2 Simulated Annealing
During simulated annealing, we continuously make small

modification on sequence pair, and evaluate the resulting sten-
cil design. The new SP/solution will be for sure adopted if
reducing the total time of Objective (1). While it is actu-
ally a worse character placement, this non-improving result is
accepted with probability decreasing over time.

In this subsection, we present two effective SP perturba-
tion methods for better local search towards shorter projection
time: throughput-driven swapping and slack-based insertion.

4.2.1 Throughput-driven Swapping
The first type of perturbation we perform is throughput-

driven swapping. The basic idea is to try reducing overall
projection time by swapping the positions of two candidates
in the X&Y SP. This is equivalent to exchange their relative
locations in the packing solution.
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Figure 12: The figure illustrates throughput-driven
swapping.

Fig. 12 illustrates a motivational example, which has five
blocks A-E to be packed. The required number of shots, to
project any of these candidates once, are assumed as 1 and
10 for CP (nCP

i )and VSB (nV SB
i ) methods respectively. The

digit in the parentheses denotes how many times ri of each
comp<onent, will be used and printed in the design.

Fig. 12 (a) gives a SP representation and its corresponding
stencil design, based on the Procedure 1 in Section 4.1. Fol-
lowing the definition of Objective 1, the total processing time
(number of shots) are 3+2+1+2+10×2 = 28, since A-D are
selected as characters while E is not. If swapping the locations
of C and E in SP as Fig. 12 (b), we would end up with a better
stencil design with less amount processing time. It only takes a
number of 19 shots, which is computed as 3+2+10+2+2 = 19,
in this case.

In the detailed implementation, we enforce two heuristic
swapping constraints, to enable efficient and effective shot num-
ber reduction.

First of all, given a SP, out of the pair of elements to be
changed, we require that one candidate cs, should have been
selected as characters by its corresponding stencil packing,
while the other one, co is not. For the example of Fig. 12 (a),
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we only allow the exchange of the positions between E and any
of A-D. The swapping among any two of A-D is not enabled.
The reason is that if the two candidates to be swapped are
both in or out of stencil already, most likely the new SP gen-
erates a stencil solution with same set of selected characters
and just different geometrical ordering. As an example, if we
swap candidate B and D< which are both already in the sten-
cil, like from Fig. 12 (a) to Fig. 12 (c), the resulting packing
result also selects A-D as characters, still requiring 28 shots
totally.
Secondly, after randomly picking in-stencil candidate cs and

out-of-stencil one co for swapping, we will compute the dif-
ference of their profits po-ps, to decide whether this swapping
would be tried on. The profit po/ps is defined as same as
ri(n

V SB
i − nCP

i ) in Section 3.1, which reflects the reduction
of the shoot number by printing this candidate by CP rather
than VSB. If we swap the locations of cs and co, it is highly
like that cs will be pushed out of stencil but the co would be
selected as character in turn. Assuming all the other candi-
dates stay either in or outside the stencil, as the state before
the swapping, the total shot reduction by this exchange can
be approximated as po-ps. Therefore, if the difference po-ps is
smaller than zero, it is in high possibility that the swapping
under consideration will not lead to better packing result. For
the example of Fig. 12 (a), suppose cs and co are A and E,
respectively, and it turns out po-ps is -9. In this case, the
corresponding stencil design indeed becomes worse, taking 35
shots as Fig. 12 (d) shows.

4.2.2 Slack-based insertion
Given a SP and its corresponding character solution, our

purpose of slack-based insertion is to add-in a new candidate,
which currently is not serving as character, into the stencil.
To ensure robust throughput improvement, we would like to
find a good strategy to insert such extra candidate, so that
all the previously already-placed characters are still kept on
the stencil in most trials. This equals to increase the number
of usable templates. In this subsection, we make use of the
concept of slack, applied in [18], to search such a good insertion
location.
Given a character cs on the stencil, its x/y slack is defined

as the allowed movement range of x/y coordinates of cs, under
the constraint that none of all the other already-placed char-
acters would be pushed outside the stencil after such move.
Fig. 13 (a)-(b) illustrate a simple example, with four charac-
ters A-D. Their leftmost and rightmost packing solutions are
shown by Fig. 13 (a) and (b), respectively. Based on this two
extreme cases, the x slack of C, for example, can be computed
as Xright

c −Xleft
c .

Once slacks are known, we randomly pick a base character
cb, which has large slacks in both x and y directions, and insert
a new candidate cnew before it. The reason is that the location
of such base can be moved in relatively big amount to make
space for additional character. In terms of SP operation, this
can be done by simply changing the position of cnew right be-
fore cb in X and Y permutations. As illustrated by Fig. 13 (c),
suppose the cb and cnew are candidate C and E, respectively.
The resulting new SP is obtained by insert E right in front of
the position of C, as shown by Fig. 13 (d) .

5. EXPERIMENTAL RESULTS
We implement our algorithm in C++ and test on Intel Core

3.0GHz Linux machine with 32G RAM. LKH [19] is chosen as
the solver for min-cost Hamilton path. Moreover, Parquet [18]
is adopted as our simulated annealing framework.
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CX

slack right left
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C C
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E
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Figure 13: The simple example of slack-based inser-
tion.

Table 1: Statistics on testcases.
ckts csize total area total blanks optimal area
1D-1 3.8x3.8 1.444 0.416 1.028
1D-2 4.0x4.0 1.6 0.479 1.121
1D-3 4.2x4.2 1.764 0.514 1.25
1D-4 4.4x4.4 1.936 0.569 1.367
2D-1 3.8x3.8 1.444 0.414 1.03
2D-2 4.0x4.0 1.6 0.529 1.071
2D-3 4.2x4.2 1.764 0.662 1.102
2D-4 4.4x4.4 1.936 0.774 1.162

To test the efficiency of proposed methods, we randomly
generate eight benchmarks. The size of stencil is set as 100um
x 100um, and a total number of 1000 character candidates with
unique size are generated. The sharable blanking area within
each candidate is randomly decided, uniformly distributed be-
tween 0%-50% character width. For the special case of one
dimensional problem, the blanking space along vertical direc-
tion is set as a constant value. Moreover, for each candidate
ci, we randomly assign a triple of value (ri, n

V SB
i , nCP

i ) as its
referred time in chip, and respective number of shots by VSB
and CP. nV SB

i is made 5-10x larger than nCP
i .

The detailed statistical data for individual testcase is shown
in Table 1. The first column denotes the name of benchmarks,
which “1D-x” and “2D-x” are applied for one and two dimen-
sional problem, respectively. “csize” is the size of each char-
acter candidate, formatted by “um x um”. The units of all
the other columns are “1e4um2”. “total area” shows the total
area of all the character candidates, and “total blanks” is the
summation of their sharable blanking space. “optimal area” is
computed as “total area”minus “total blanks”, typically larger
than the area of given stencil. This matches the fact that even
under best possible case of stencil design, where all the blank-
ing area are indeed shared by adjacent characters, the entire
set of the candidates can not be fully pushed into the stencil.

For comparative reason, we implement two different stencil
design approaches. The first one NO-OVERLAP is based on
the work of [12], where no overlapped characters is allowed. A
little difference is that, in its implementation, only one sten-
cil with unique character size is considered. Moreover, for
our problem, their algorithm is somewhat degenerated into
a method of selecting the most profitable candidates, which
profit is judged by ri(n

CP
i − nV SB

i ). In the second compar-
ative approach GREEDY, possible sharing is taken into ac-
count, but a greedy methodology is applied to chose character
candidates. In 1D problem, only the first phase of heuristic De-
scending Best-Fit (DBF) packing in Section 3.1 is performed.
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For two-dimensional problem, 2D DBF packing is conducted.

5.1 One-dimensional Stencil Design
Table 2 lists the comparison of stencil design in one-dimensional

case. “#shot” shows the total processing time (number of
shots) of the circuit by using corresponding stencil design method-
ologies, which is computed by the equation of Objective 1.
“#char” is the number of characters that fits into stencils, and
“#CPU” tells the runtime of these stencil optimization meth-
ods, in terms of seconds.
As we can see, compared toNO-OVERLAP, we are able to

averagely put 42% more characters on the stencil, and reduce
the total projection time (number of shots) by 51%. With
respect to GREEDY algorithm, our approach still achieves
averagely 14% more projection time reduction, by allowing
7% more characters placed. The CPU time of our approach is
relatively large but its absolute value is only around 20s. These
results show the effectiveness and efficiency of our proposed
four-phase iterative refinement algorithm.
For this special one-dimension problem, GREEDY looks

also quite useful. The reason is that the vertical blanking
spaces of these candidates are uniform in this case, and have
been fully shared during the stencil design.

Table 2: Result Comparison for 1D problem
NO-OVERLAP GREEDY our approach

ckts #shot #char CPU(s) #shot #char CPU #shot #char CPU
1D-1 28654 676 1.2 13528 901 2.2 10083 951 22.3
1D-2 41727 625 1.1 17929 836 2.1 14921 880 21.8
1D-3 38460 529 0.9 25155 727 1.9 22503 768 20.6
1D-4 41260 484 0.8 29462 665 1.8 26756 702 20.1

total 150101 2314 4 86074 3129 8 74263 3301 84.8
ratio 2.0 1 0.05 1.16 1.35 0.10 1 1.42 1

5.2 Two-dimensional Stencil Design
Table 3 lists the comparison of stencil design in general two-

dimensional case. The meaning of labels are the same as Ta-
ble 2. Compared to NO-OVERLAP and GREEDY meth-
ods, in average, our proposed SP-based algorithm places 28%
and 24% more characters on stencil, which reduces the pro-
jection time (number of shots) by 31% and 25%, respectively.
The GREEDY algorithm does not work that well in this 2D
problem, because the blanking area varies in both horizontal
and vertical directions and the native first-bin-best-fit packing
very easily get stuck in local optima.
Due to two-dimensional optimization, the runtime of our

approach is much longer than 1D problem, comparatively. It
takes a few hundred seconds, but is still satisfactory. The de-
sign of stencil is only a one-time process before projecting large
volume of chips by EBL. Several minutes preprocessing time
is relatively very tiny in the whole manufacturing procedure.

Table 3: Result Comparison for 2D problem
NO-OVERLAP GREEDY our approach

ckts #shot #char CPU #shot #char CPU #shot #char CPU
2D-1 23319 676 1.3 26832 625 2.3 16877 803 466
2D-2 29368 576 1 25977 642 2.6 20141 750 447
2D-3 32399 526 0.9 30411 558 2.5 < 23850 688 424
2D-4 35410 474 0.8 31930 531 2.7 25278 660 416

total 120496 2252 4 115150 2356 10.1 86146 2901 1755
ratio 1.40 1 0.002 1.33 1.05 0.006 1 1.30 1

6. CONCLUSION
In this paper, we have developed two algorithms for overlap-

ping aware stencil design in electronic beam lithography. The
experimental results show 51% reduction on the total projec-
tion time, compared to the conventional design when the char-
acters are not overlapped.
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