AENEID: A Generic Lithography-Friendly Detailed Router
Based on Post-RET Data Learning and Hotspot Detection

Duo Ding, Jhih-Rong Gao, Kun Yuan and David Z. Pan
ECE Dept. The Univ. of Texas at Austin, Austin, TX 78712
{ding, jrgao, kyuan, dpan}@cerc.utexas.edu

ABSTRACT

In the era of deep sub-wavelength lithography for nanome-
ter VLSI designs, manufacturability and yield issues are crit-
ical and need to be addressed during the key physical design
implementation stage, in particular detailed routing. How-
ever, most existing studies for lithography-friendly routing
suffer from either huge run-time due to the intensive litho-
graphic computations involved, or severe loss of quality of
results because of the inaccurate predictive models. In this
paper, we propose AENEID - a fast, generic and high per-
formance lithography-friendly detailed router for enhanced
manufacturability. AENEID combines novel hotspot detec-
tion and routing path prediction techniques through mod-
ern data learning methods and applies them at the detailed
routing stage to drive high fidelity lithography-friendly rout-
ing. Compared with existing litho-friendly routing works,
AENEID demonstrates 26% to 66% (avg. 50%) of lithog-
raphy hotspot reduction at the cost of only 18%-38% (avg.
30%) of run-time overhead.

Categories and Subject Descriptors

B.7.2 [Hardware, Integrated Circuit]: Design Aids
General Terms

Algorithms, Design and Performance

Keywords

Detailed Routing, Design for Manufacturability, Hotpost De-
tection, Data Learning

1. INTRODUCTION

As a consequence of the shrinking technology process and
the increasing chip complexity, the design and manufactur-
ing cycles start to see more and more interactions for modern
VLSI ICs. As lithography-induced yield is a critical factor to
optimize for volume manufacturing of nanometer 1Cs, vari-
ous resolution enhancement techniques (RET), such as opti-
cal proximity correction (OPC), off-axis illumination (OAI),
phase shift mask (PSM), source-mask optimization (SMO),
and double patterning technology (DPT) are employed to en-
hance layout printability and yield.

However, RET during mask synthesis alone is not enough
due to widening manufacturing gaps [1], which require in-
creasing cooperation of physical design methods to generate
lithography-friendly layouts to start with. Several works have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2011, June 5-10, 2011, San Diego, California, USA.

Copyright 2011 ACM 978-1-4503-0636-2/11/06 ...$10.00.

been proposed to incorporate accurate lithographic models
or predictive models into physical design stages, in particu-
lar the routing stages, to ensure layout printability. In [2],
post-routing ripup-&-reroute was proposed to remove lithog-
raphy hotspots, guided by fast lithography simulations. In [3],
an OPC-cost aware router was proposed utilizing post-layout
OPC models characterized by quasi-inverse lithography tech-
niques. OPC-aware maze routing methods are also proposed
based on multi-constrained shortest path optimization with
sub-gradient method [4] and optical proximity error (OPE)
metrics [5]. In [6], a litho-friendly detailed router was pro-
posed based on weak grid types of predictive OPC metrics
that are updated on a per-grid basis. However, these exist-
ing studies all suffer from one or more of the following issues:
(1) huge run-time due to accurate but slow lithographic sim-
ulations; (2) over simplified predictive models severely limit
the solution space; (3) particularly designed to work only for
certain classes of RETs (e.g., OPC, etc.) under certain data
fitting assumptions, but not generic enough to handle new
types of RETs (e.g., Litho-Etch-Litho-Etch Double Pattern-
ing, Self-Aligned Double Patterning, Sub-Resolution Assist
Features Insertion) and evolving manufacturing conditions.

To address these concerns, modern graph theory and data
mining/learning methods have recently been adopted to build
reliable and high performance lithography hotspot detection
engines. [7] proposed a graph pattern based hotspot filter-
ing method to reduce the hotspot candidate searching space
without compromising the overall detection quality. Concept
of range pattern is later introduced in [8] to accurately and
compactly represent process hotspots. In [9], ripup-&-reroute
techniques are proposed for hotspot removal, utilizing a pre-
defined pattern matching library. Although generally fast,
issues with graph/pattern matching techniques lie in detec-
tion coverage and scalability: (1) hotspot patterns are very
difficult to enumerate - too much patterns may constrain the
solution space, while too few patterns suffer from high detec-
tion false-alarms; (2) high false-alarms in the physical design
stages introduce heavy workload for post synthesis correction;
(3) pattern definition is highly dependent on design rules and
process technology, therefore increases the development bur-
den as technology evolves.

With data mining techniques, further improvements were
later made in [10], where a support vector machine (SVM)-
based hotspot detection method is utilized through perform-
ing 2D distance transform and histogram extraction. Also
in [11], SVM is employed for hotspot detection through clas-
sification of layout density metrics. However, the issues with
the above approaches lie in run time and detection coverage,
since 2D transforms and density extractions can be expensive
to perform, while detection windows for the layout images are
hard to anchor for full chip level detections. In [12], critical
hotspot signature is proposed and extracted through certain
special edge-based metrics. Although such edge-based extrac-
tions operate much faster compared with [10,11], its chip-level
prediction still faces similar issues, such as scanning window

42.4

@
€Y (b)

Figure 1: A case of RET dependent layout printability

coverage, etc. To further improve runtime and detection cov-
erage, a hierarchically refined machine learning framework is
proposed in [13] for fast speed high performance hotspot de-
tection using both Artificial Neural Network (ANN) and SVM
classifications.

Yet there has been no work so far to apply such data learn-
ing hotspot detection framework directly to physical design
in a correct-by-construction manner. This is mainly because
hotspot detection requires post layouts as inputs, thus the
lithography cost cannot be updated in time to guide the phys-
ical design. To address the aforementioned limitations, in this
paper for the first time we propose AENEID, a lithography-
friendly detailed router that is seamlessly integrated with mod-
ern data learning techniques and novel predictive models for
litho-aware path prediction.

The rest of the paper is organized as follows, in Section 2,
we elaborate the motivation of this work and summarize our
main contributions. In Section 3 we explain the formulation
and overall flow of AENEID. In Section 4, we describe the
key novel techniques employed for the hotspot detection and
routing path prediction procedures. In Section 5 we evaluate
AENEID with various industry strength benchmarks under
industry strength RET, we also present and discuss the ex-
perimental results compared with some existing study. We
conclude the paper in Section 6.

2. MOTIVATION AND CONTRIBUTIONS

In this section, we explain the post-RET hotspot detection
dilemma in the detailed routing stage and introduce two most
critical considerations in AENFEID: (1) fast and accurate litho-
graphic hotspot characterization that drives the litho-friendly
router; (2) look-ahead routing path prediction that adjusts
the litho-cost assigned to the router for enhanced yield and
routability.

With the rapid advancement of modern lithography tech-
nology and RET techniques, real process hotspots are getting

less as process matures and RET improves, however real /residual

lithography hotspots are becoming more critical to the nanome-
ter IC design. In the mask synthesis stage, process hotspots
are highly dependent on the RETs employed: an effective
RET can print a layout pattern reliably (Fig. 1(a)), whereas a
poorly setup RET may generate many false-alarm “hotspots”
(Fig. 1(b)) that will not be present under real industry-strength
manufacturing condition [13]. With such considerations, data
learning models [10-13] become especially suitable for guiding
detailed routers due to their satisfactory performance. How-
ever, they must be properly sped up before incorporating into
inner design loops, due to the strict run-time requirement in
the routing stage.

In addition to strict run-time requirement, another chal-
lenge lies in the proper modification of data learning kernels
to comply with the incremental mechanism in the detailed
routing stage. With the example in Fig. 2(a)-(b), we show a
hotspot detection dilemma in the detailed routing stage.

In Fig. 2(a), the shadowed regions are metal blockages;
Pinl1-Pin2, Pin3-Pin4 are 2 nets yet to be routed in the de-
tailed routing stage, which means at the current step the
bottom-right corner is a blank region. On one hand, the de-
tailed routing paths from Pinl to Pin2 and from Pin3 to Pin4

796

Pin2 Pin2
o X R Pl
iun-characterized :potential hotspots
H region Pin4 missed
Pinl‘X:] Ping <--=-=" Pinl % ping D<=
() (b)

Figure 2: The lithography hotspot detection dilemma in the

detailed routing stage

are to be optimized depending on the cost updates to be pro-
vided by a hotspot detection engine; on the other hand, a
hotspot detection engine must first have a routing path in or-
der to provide the routing cost updates. In other words, the
lithography cost cannot be updated in time to guide routing in
a correct-by-construction manner. Consequently, we are left
with a un-characterized region shown in Fig. 2(a). Within
this region, detailed routing might be performed in a lithog-
raphy unaware manner which will potentially result in large
amount of lithography hotspots (Fig. 2(b)).

To eliminate un-characterized regions, we propose for the
first time a novel set of predictive formulae on top of existing
hotspot detection kernels, to predict the routing path with
the least expected lithographic cost. Such a set of formulae is
developed a priori through accurate lithographic simulations
of various layout samples at a one time cost. Once completed,
it can be rapidly applied to compensate existing hotspot de-
tectors in the detailed routing stage. More details will be
explained in Section 4.

With these motivations and considerations, we propose AENEID,

the first correct-by-construction detailed router formulation
incorporating advanced data learning techniques and routing
path predictive formulae for lithographic yield improvement.
We summarize the main contributions of AENFEID as follows,

e We propose a correct-by-construction detailed routing
flow that is generic and adaptive to any existing RETs
without any lithographic simulations involved during
the routing stage.

e We employ modern data learning techniques for fast and
accurate lithography hotspot detection.

We develop lithography-friendly routing path prediction
model to resolve the hotspot detection dilemma in the
detailed routing stage.

We integrate the hotspot detection and routing path
prediction techniques into a scalable and high perfor-
mance litho-friendly detailed router and achieve very
promising results.

3. AENEID FORMULATION & OVERALL FLOW

3.1 Problem Formulation

The objective in our detailed routing is to minimize total
wirelength (number of grids in set P of total routing paths)
with the constraint to keep the lithography cost litho(e) on
each routing grid e under a given threshold L. Therefore we
can formulate our lithograph-friendly detailed routing prob-
lem as follows:

m}in: Doeep L 1)
s.t: lithole) <L Vee P

42.4

If we treat the costs for all the grids as a weight-vector,
this problem can be viewed as a multi-constraint shortest
path (MCSP) problem [14] which is proven to be NP-hard.
Lagrangian relaxation can be used to solve MCSP by relax-
ing the constraints into the objective function by introducing
Lagrangian multiplier A. as the weights on the constraints.
Then we can relax the original formulation as [4,6]:

min {z 1: litho(e) < L,Ve € P}
ecP
> i ; —L):
> maxmin Z 1+ Ae(litho(e) — L) : Ae > 0 (2)
ecP
Equation(2) shows that the optimal solution of Equation(1)
can be obtained by maximizing the lower bound of the follow-
ing Lagrangian subproblem:

mFi’n © Yeep L+ Ac(litho(e) — L) (3)
s.t.: Ae >0 Vee P

After assigning 1 + Aclitho(e) as the weight of each grid
e, Equation(3) can be solved by min-cost path algorithm.
Then we can iteratively solve Equation(3) and adjust the La-
grangian multiplier to obtain the maximum lower bound for
the relaxed problem in Equation(2). Based on the formulation
here, we explain our detailed router in Section 3.2.

3.2 Overall Flow

Since maximizing Equation(3) is a convex programming
problem, we can apply subgradient method to solve it. As
shown in Fig. 3, the key steps of AENFEID are as follows.

Routing Path
[Initialize Lagrangian Multiplier] Prediction Kernel

l Hotspot

—E Solve the MCSP Problem] Detection Kernel

topping criteria
atisfied?
N

g"[Update Layout Fragmentation Database] 3

solution

— [Update Lithography Cost : litho(e)

[Update Lagrangian Multiplier]

Figure 3: AENEID detailed routing flow chart

e Step 1: Initialize Lagrangian multipliers A with small
non-zero values for faster convergence.

e Step 2: For each net, solve Equation(3) by finding its
min-cost path. A*-tree technique is used here to prevent
unnecessary path finding.

e Step 3: update A by max (0, Ae + 0 X litho(e)) accord-
ing to the result from Step 2. Here the update of
litho(e) consisting of two parts, whose values are cal-
culated by 2 pre-established kernels.

e Step 4: repeat from Step 2 until the maximum itera-
tion number is reached. Finally we can obtain a conver-
gent solution.

In Fig. 3, Step 3 is the most critical step for AENEID,
since it is in charge of litho-cost updates for every loop of the
detailed routing. Inside the Lithography Cost Update proce-
dure of Step 3 are the two most important contributions of
this work, namely the Hotspot Detection (HD) technique and
the Routing Path Prediction (RPP) technique, which we will
elaborate in the following section.

797

4. DATA LEARNING AND HOTSPOT PRE-
DICTION

In the detailed routing flow in Section 3.2 we represent
the layout contents (polygons) with fragmentation-structured
database meanwhile maintain a litho-cost map for the entire
set of routing grids according to the current routing density.
The lithography cost litho(e) is then iteratively updated for
each grid e. In AENEID, litho(e) is calculated in two parts
in Equation(4):

litho(e) = litho(e)™” + litho(e)®*"F (4)

where litho(e)?P is calculated using the Hotspot Detection

technique and litho(e)®FF is calculated with the Routing Path
Prediction technique. Depending on whether the neighbor-
hood has been populated with wire segments or not, litho(e)HD
and litho(e)®*FF combine hotspot litho-cost of the current
step layout and of the future routing steps together to pro-
vide enhanced lithography-friendliness and improved routabil-
ity. Unlike the existing works such as [6] that only considers
litho(e)™? term when updating litho-cost metrics, AENEID
benefits greatly from such a combination of litho-costs that
we propose, as we will show later in Section 5.

4.1 Hotspot Detection Technique

>| hotspot signature characterization
0| special data learning kernels

A small set
of data for
learning

A medium set
of data for
validation

<> CALIBRE simulator

Hotspot Detection
Kernel

Figure 4: Development of the HD Kernel

Hotspot Detection technique aims at establishing a compact
kernel model to calculate the degree of printability (manu-
facturability) of certain layout pattern via data mining and
classification methods. As shown in Fig. 4, we develop our
HD kernel based on [13], with the following modifications:
(1) fine-tuned parameters for enhanced speed and detection
accuracy of Support Vector Machine classifier; (2) adjustment
of the “hotspot signature metrics” definitions to better take
care of line-end and jog characterizations; (3) instead of using
an effective radius r, we query the top N nearest neighbor
fragments from the database and characterize the context ac-
cordingly for better focused meanwhile faster hotspot detec-
tion. Please refer to Section 5 for more details regarding the
classification and validation accuracies. Please refer to [13]
for details of Fig. 5 regarding layout fragmentation.

Once established, the HD kernel will be used in the detailed
routing stage for calculating litho(e)™? which is the 1st part

. Hotspot Detection (HD) Kernel}
input output

routing | routing | routing
grid #1 rid #2 | grid #3
[]:x:x:n:{:tp R

DD‘:DQDUDEJ #4 F ~ #6
L
x

(a) (b)

Figure 5: Applying the HD Kernel for litho-cost update

42.4

of litho(e). As depicted in Fig. 5(a)(b), HD kernel intakes
the fragmentation database and returns a quick estimation of
layout printability by characterizing the context of fragment
F. Since the HD kernel is derived a priori at a one time
cost, it can be used as a quick look-up knowledge base to
characterize hotspot conditions even in the inner design loops.

Since HD kernel calculates litho-cost based on database
fragments, its result litho(F) must be properly assigned to
litho(e) to guide the grid-based detailed routing. Here we use
the method shown in Fig. 5(b) to map litho(F') onto routing
grids. Given an effective radius R, litho(F') is used to update
all the unrouted grids that lie within the radius, i.e., grid 1,
2 and 6. In section 4.3 we will show more details on the frag-
mentation database update and grid-based cost assignment.

As explained in Section 2, HD itself is not sufficient to guide
a correct-by-construction router since it only characterizes the
contexts of already existing polygons in the layout. We need
the Routing Path Prediction (RPP) technique to further en-
hance the lithography-printability on the routes that fall into
un-characterized regions.

4.2 Routing Path Prediction Technique

RPP technique is very important to resolve un-characterized
regions and further improve the router’s lithography friend-
liness. In the follow subsection, we describe in detail the
development of RPP kernel and its application to calculate
litho(e)®F'F which is the 2nd part of lithography cost litho(e).

limited available
routing tracks

limited
routing
tracks

A
XOTTTT]

(c) (d)
Figure 6: A motivational example for lithography-friendly

routing path prediction

The development of RPP involves intensive lithographic
computations since it is in nature a greedy searching algo-
rithm. For this paper, we pre-establish RPP at a one time
cost and build a multi-objective compact model on top of its
knowledge base to allow fast applications inside AENFEID’s
inner design loop.

RPP’s optimization objective is given as follows:

N
min{E[Z litho(route?)|route’]}, w.rt i (5)
j=i+1

where route® is the current iteration in the detailed router
at which point all the routes from 0 to ¢ — 1 are already
fixed. E[-] denotes the mathematical expectation operation.
Equation(5) aims to find the best route ¢ to take among pos-
sible routes ¢ to N, so that the overall potential lithogra-
phy printability is maximized with possible subsequent routes
taken into considerations.

798

With the example shown in Fig. 6(a)-(d), we elaborate the
development of RPP. Given certain characterized layout con-
text (blockages X,Y,Z) and a pair of pins to route (A,B),
we illustrate several possible routes in Fig. 6(a)-(d). With
each possible route, the number of remaining available rout-
ing tracks also varies. In Fig. 6(a)(c), there are still available
tracks running from left to right side, but for Fig. 6(b)(d), all
the tracks are limited to local scale. In this case, RPP will
be established in 3 steps. Step 1: explore a wide range of
possible routes given the available routing resources. Virtual
blockages are placed to help generate a variety of alternative
routing paths for Equation.5; Step 2: run accurate litho-
graphic simulations for all (a)-(d) layout patterns and assess
printability; Step 3: update two priority queues based on
Step 2 and recommend/encourage a preferable route that:
(1) gives the least number of hotspots; (2) provides the most
number of available tracks so that subsequent routes can be
made easier. Tradeoffs need to be sought if the two queues
return different results.

Due to the huge data volume of the resulting knowledge
base, we employ a robust neural network classifier to construct
the actual prediction model to incorporate into AENEID.
With the RPP kernel ready, we apply it to predict routing
paths given the context environment of a net to be routed. In
the detailed routing engine, litho(e)™"'F lying on the paths
that are favored by RPP kernel will be adjusted to encour-
age litho-friendly routing. Thus the litho(e)®F” is updated

iteratively inside the router.
Routing Path Prediction
(RPP) Kernel Processing 1

not recommended
path

MPI A 1000} 045! 05
02 | 0.00 ! 0.00 p,N_%

0.00

(@ (b)
Figure 7: The fragment-based litho-cost map update based
on Path Prediction (RPP)

In Fig. 7, we show our layout density based multi-objective
neural network model. In Fig. 7(a), the input to RPP kernel
is a vector consists of the pin locations of the net to be routed
and the density grid (not routing grid) array whose elements
signify blockage densities. RPP returns a set of grid loca-
tions (region) of preferred routes under lithography-friendly
considerations. Based on this information, all the litho(e)
touching this path or region are updated accordingly. Please
refer to Section 5 for further details regarding kernel training
and validations.

4.3 Fragmentation-based Update

We build our layout database using fragment data struc-
tures due to the unique advantages of fragmentation based
layout pattern characterization. In this subsection, we de-
scribe our layout representation techniques in detail.

Conceptually, fragments are defined as vectors lying on the
edges of all polygons in the layout. A fragment based lay-
out database makes it very efficient to query entries such as
nearest neighbors and polygon width (max distance between
internally facing fragments), etc. It also provides satisfactory

42.4

p P1 P2 P3 P4
X Y X Y
—— —— :'=
a || a | a |
(n] D= [} ﬂ=)~
gef IF— fqecl IP=— fcl

(a) (b) (©)

Figure 8: Illustration for the fragment database update
analyzing resolution (polygon edges) and detection coverage
(the whole layout) [13]. Under such a database structure, we
use two key techniques for fast data access speed, namely, the
sweep line algorithm and the Red-Black Binary Search Tree.

AENEID requires each fragment to keep updating its neigh-
boring fragments information in real time, since new frag-
ments are introduced into the database as each additional net
is routed. Obviously this updating procedure would be in-
voked frequently whenever the status (occupied/non-occupied)
on the routing grid e is changed, thus it needs to be properly
taken care of to minimize the runtime degradation. Under
such a consideration, we propose a sweep line algorithm to
obtain the neighboring fragments for a given routing path.

Take Fig. 8 as an example, assume there are three existing
fragments a, b and ¢ on the routing grid shown in Fig. 8(a).
The arrow appears if two fragments are neighboring to each
other. If a new route p is added as shown in Fig. 8(b), all
fragments affected by p need to be updated. The algorithm
sweeps the routing grid from left to right, each time a new
fragment is detected by the sweep line, it checks if there is a
pre-swept fragment neighboring to it and do the updating if
necessary. Fig. 8(c) shows the final result and we can also see
that p and fragment a are decomposed to accurately reflect
the neighboring situation. By using this algorithm, the up-
dating can be done in O(log N), where N is the total fragment
number in the database. Overall, the effort for the router to
interact with our litho-cost related models is O(klog N) time,
where k is the total number of rip-up and route operations.

To effectively update the litho-cost map and identify /query
fragments by certain specified layout region, we use an RB-
tree to store the information of all fragments. By the prop-
erty of RB-tree, locating fragments within a given region can
be done in O(log N) time, where N is the number of total
fragments in the routing grid. Therefore we can update the
litho-cost map in O(log N) time whenever a path is routed or
ripped up.

5. EXPERIMENTAL RESULTS

We implemented AENEID in C++ and evaluated it with
testing cases in 45nm MI1-M2 technology process under in-
dustry strength Optical Proximity Correction recipes. All
simulations are performed on Linux workstations with 4GB
memory and Intel Xeon 2.66GHz CPU. In the layout valida-
tion baselines, we employed accurate lithographic simulations
to locate all the real hotspots based on an edge placement
error (EPE) threshold of 8nm. Inside AENEID, we used an
aggressive lithography cost upper-bound L to yield the least
number of hotspots. AFENFEID can be further sped up by
fine-tuning L properly.

5.1 Kernel Training & Validation

Accordingly to the flow shown in Fig. 9, we implement the
data learning techniques in C++ and complete the knowledge
base update via iterations of training and validation.

For the HD kernel model, we use a v-Class Support Vec-
tor Machine classifier. We perform supervised data learning
over an 80X80 um? design consisting of 40K sample patterns

799

Kernel model construction Kernel model validation

{ design layouts for learning }

design layouts for vaIidation]
~

RET
o> oo >

[HD kernel development
{ (RPP kernel development

@ (b)

Figure 9: Kernel training and validation procedures

RPP kernel application J

{ HD kernel application }
i

R\

cold-spots

J
)

properly labeled by accurate lithographic simulators. Then
the established HD kernel is validated and tested with vari-
ous different design samples under the same process technol-
ogy. HD shows 92% of accuracy and 3% of false-alarms for
the 40K training patterns, about 88% of accuracy and 8% of
false-alarms among another 70K new testing patterns. Such
performance is very satisfactory compared with existing stud-
ies. The total run-time for the HD kernel establishment has
a one time cost of around 15 min.

For the RPP kernel, we first use the proposed greedy search
algorithm combined with accurate lithographic simulations.
Then we build a multi-objective neural network data learning
model on top of the derived database using 3 hidden layer neu-
rons and a resilient conjugal gradient learning function with
MSE target 0.1. The greedy search is carried out over an
80X80 um? design. The neural network model is trained and
validated on 200K sample vectors, tested on another 100K
samples. RPP demonstrates an average 87% accuracy in the
training set, and 80% of accuracy in the testing set. Consid-
ering the fact that density grids are usually set much larger
than the routing grids, RPP performs well within its error tol-
erance. The total run-time for the RPP kernel establishment
has a one time cost of around 3 hours.

5.2 AENEID Experimental Results

[design samples for testing]

{ ELIAD Detailed Routing]| {[AENEID Detailed Routing|}

.| GDS layout after routing]} [GDS layout after routing]j

Chotspors > Ceold-spois

Figure 10: The validation flow for ELIAD and AENEID

We test AENEID and compare it with [6] according to the
flow chart shown in Fig. 10, where accurate lithography sim-
ulations are employed for hotspots calibration based on 8nm
of EPE threshold under industry strength OPC setups with
45nm M1-M2 process.

Testing Benchmarks of AENEID: Table 1 lists 3 industry-
strength benchmarks employed to evaluate AENEID. These
testing cases have not gone through the training or validation

Table 1: Circuit benchmarks for testing AENEID
Benchmarks CK1 CK2 CK3
Layout Size 50X50um? | 100X100um? | 160X160um?
Nets to route 0.45K 1.48K 3.4K
M1 Blockage # 1K 8.8K 13.1K
M1 Fragment # 12.2K 41K 152.6K
M2 Blockage # 0.14K 0.47K 2K
M2 Fragment # 0.56K 1.9K 8.3K

42.4

Table 2: Result comparison between ELIAD [6] and our proposed AENEID
ELIAD AENEID
HD HD + RPP
Circuit CK1 CK2 CK3 CK1 CK2 CK3 CK1 CK2 CK3
Circuit size um? 502 1007 1602 502 1002 1602 507 1002 1602
Wire-length um 859.8 5509.0 24789.2 859.3 5502.0 24797.0 859.1 5502.0 24797.5
Run-time sec 6 297 2773 8 409 3291 8 400 3279
Run-time overhead % - - - 33 38 19 33 35 18
Metal layer M1 | M2 | M1 | M2 | M1 | M2 || M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2
Hotspot # 17 3 65 10 | 162 | 23 11 2 34 7 90 17 8 2 22 5 58 15
Hotspot reduc % - - - - - - 35 33 48 30 44 26 53 33 66 50 64 35
Avg. hotspot reduc % - 36 50
Avg. extra run-time % - 30 29

process of the HD/RPP kernels thus are considered generic
and unbiased. Also in Table 1 we show the numbers of initial
routing blockages and fragments on M1 and M2 layers, which
come from the placement of standard cells.

In Table 2 we list the experimental result comparisons be-
tween ELIAD [6] and AENEID, in terms of hotspot number
reduction, total wirelength and run-time. On AENFEIDs side,
we run the simulation with 2 options in the litho(e) update
step: (1) HD only; (2) HD + RPP.

There are several key observations to make in Table 2.
First, compared with ELIAD, AENEID HD demonstrates
about 26%-48% (avg. 36%) hotspot reduction at only 30%
of average extra run-time; while AENEID HD+RPP shows
35%-66% (avg. 50%) hotspot reduction at only 29% of aver-
age run-time overhead. This shows us: (1) HD kernel proves
to be compact and accurate than the predictive model used in
ELIAD; (2) RPP kernel resolves the un-characterized regions
thus further reduces the hotpots and improves printability.

Second, HD+RPP results in even smaller run-time over-
head than HD. This is mainly because the RPP kernel has
reduced the number of rip-up and re-route nets, thus ends up
saving some run-time than HD alone.

Third, AENEID demonstrates similar wirelength to ELIAD,
this is mostly because we employ a similar optimization for-
mulation. This also shows us that HD and RPP kernels did
not bring obvious degradation to the total wirelength.

In Fig. 11, we show the hotspot calibration result visually
with: (a) ELIAD on CK3; (b) AENEID HD on CK3; and
(¢) AENEID HD+RPP on CK3. Combined with Table 2, we
conclude that AENEID demonstrates greatly enhanced lay-
out printability at acceptable run-time overhead, meanwhile
its flow is generic and adaptive to RETs (not only limited to
OPC/ORC, etc.). For more break-down details of the simu-
lation, please refer to Table 2.

(a) ELIAD on CK3 (b) AENEID-HD on CK3 (c) AENEID-HD+RPP on CK3

Figure 11: Comparisons of lithography hotspot numbers be-
tween ELIAD and AENEID on CK3

6. CONCLUSION

In this paper for the first time, we proposed AENEID -
a fast, generic and high performance lithography-friendly de-
tailed router for enhanced manufacturability at advanced pro-
cess technology nodes, offering advantageous features as fol-
lows, (1) it combines modern data learning methods and novel

800

hotspot prediction techniques to develop compact kernel mod-
els through analyzing and learning from a relatively small set
of lithography hotspot samples under real industry strength
manufacturing conditions; (2) it applies the pre-established
kernels at the detailed routing stage to drive fast high fidelity
lithography-friendly interconnect synthesis; (3) its flow and
data learning procedures are generic to any RETSs, not just
limited to certain design patterns or OPC setups. AENEID is
simulated and compared with existing state-of-the-art studies
over various industry strength testing cases, demonstrating a
significant 22%-66% (50% on average) of lithography hotspot
reduction at the cost of only 18%-38% (30% on average) of
run-time overhead.

7. ACKNOWLEDGMENT

This work is supported in part by SRC, NSF Career Award
and equipment donations from Intel.

8[.1 | REFERENCES

Ed. Roseboom, M. Rossman, F.-C. Chang, and P. Hurat.
Automated Full-Chip Hotspot Detection and Removal Flow for
Interconnect Layers of Cell-Based Designs. In Proc. of SPIE,
volume 6521, 2007.

[2] J. Mitra, P. Yu, and D. Z. Pan. RADAR: RET-aware detailed
routing using fast lithography simulation. In Proc. Design
Automation Conf., 2005.

[3] T.-C. Chen, G.-W. Liao, and Y.-W. Chang. Predictive Formulae
for OPC with Applications to Lithography-Friendly Routing. In
Proc. Design Automation Conf., 2008.

[4] L.-D. Huang and M. D. F. Wong. Optical Proximity Correction
(OPC). In Proc. Design Automation Conf., 2004.

[5] Y.-R. Wu, M.-C. Tsai, and T.-C. Wang. Maze Routing with OPC
Consideration. In Proc. Asia and South Pacific Design
Automation Conf., 2005.

[6] M. Cho, K. Yuan, Y. Ban, and D. Z. Pan. ELIAD: Efficient
Lithography Aware Detailed Routing Algorithm with Compact
and Macro Post-OPC Printability Prediction. In IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 09.

[7] A. B. Kahng, C.-H. Park, and X. Xu. Fast Dual Graph based
Hotspot Detection. In Proc. of SPIE, volume 6349, 2006.

[8] H. Yao, S. Sinha, C. C. Chiang, X. Hong, and Y. Cai. Efficient
Process Hotspot Detection using Rang Pattern Matching. In
Proc. Int. Conf. on Computer Aided Design, 2006.

[9] F. Yang, Y. Cai, Q. Zhou, and J. Hu. SAT Based Multi-Net
Rip-up-and-Reroute for Manufacturing Hotspot Removal. In
Proc. Design, Automation and Test in Eurpoe, 2010.

[10] D. Gagi Drmanac, F. Liu, and L.-C. Wang. Predicting Variability
in Nanoscale Lithography Processes. In Proc. Design
Automation Conf., San Francisco, CA, 2009.

[11] J.-Y. Wuu, F. G. Pikus, J. A. Torres, and M. Marek-Sadowska.
Detecting Context Sensitive Hot Spots in Standard Cell
Libraries. In Proc. of SPIE, 2009.

[12] D. Ding, X. Wu, J. Ghosh, and D. Z. Pan. Machine Learning
based Lithographic Hotspot Detection with Critical Feature
Extraction and Classification. In International Conference for
Integrated Circuit Design Technology, 2009.

[13] D. Ding, J. A. Torres, F. G. Pikus, and D. Z. Pan. High
Performance Lithographic Hotspot Detection using Hierarchically
Refined Machine Learning. In Proc. Asia and South Pacific
Design Automation Conf., 2011.

[14] J. Dong, J. Zhang, and Z. Chen. Neural Network based
Algorithm for Multi-Constrained Shortest Path Problem. In
Proc. Int. Symp. on Neural Networks, 2007.

42.4

