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Abstract—The semiconductor industry is facing a critical
research challenge: design future high performance and energy
efficient systems while satisfying historical standards for reli-
ability and lower costs. The primary cause of this challenge
is device and circuit parameter variability, which results from
the manufacturing process and system operation. As technology
scales, the adverse impact of these variations on system-level
metrics increases. In this paper, we describe an interdisciplinary
effort toward robust and resilient designs that mitigate the
effects of device and circuit parameter variations in order to
enhance system performance, energy efficiency, and reliability.
Collaboration between the technology, CAD, circuit, and system
levels of the compute hierarchy can foster the development of
cost-effective and efficient solutions.

I. INTRODUCTION

Variability in device and circuit parameters is emerging as

a critical challenge in the semiconductor industry. Parameter

variations degrade the performance, energy efficiency, and reli-

ability of microprocessor products across all market segments,

which range from the small embedded cores in a system-on-

chip (SoC) to large multi-core servers. As technology scales,

the effects of device and circuit parameter variability on

system-level metrics is expected to worsen. For these reasons,

error-tolerant designs will significantly enhance the value of

future systems.

In this paper, we describe our collaborative vision for robust

and resilient designs from the bottom process technology up to

the system level of the hierarchy. In Section II, we highlight the

technology challenges by summarizing the variability sources

and projecting the failure probability for an SRAM bit cell in

future generations. In order to reduce the manufacturing vari-

ability, we present recent advances in CAD tools in Section III.

In collaboration with process technology and CAD, Section IV

encompasses our review of the key trade-offs in error-detection

and recovery circuits that can be made to enhance micropro-

cessor performance and energy efficiency. Since a hardware-

only solution is limited, we describe the potential system-

level benefits of abstracting circuit-level information to the

architecture and software layers in Section V. In Section VI,

we conclude by emphasizing the potential opportunity for

future robust and resilient system designs by exploiting the

interaction of hardware and software.

II. TECHNOLOGY

The increase in manufacturing-induced variability causes

the blurring of the boundary between catastrophic (hard) faults

that are traditionally caused by topological changes in circuits

due to manufacturing defects, and parametric (soft) faults

related to device and interconnect variability. As this variabil-

ity increases, it can cause circuits to exhibit faulty behavior

similar to that caused by catastrophic defects. As an example,

it has been the case for several technology generations that

increasing threshold voltage variability in small MOSFET

devices due to phenomena like Random Dopant Fluctuations

(RDF) [1] and Line Edge Roughness (LER) [2] can cause a

SRAM cell to be so asymmetric that it is only capable of

storing one Boolean value instead of the two it can normally

store. This causes the SRAM to behave as if it is stuck at one

logic value, which will cause that particular SRAM cell to fail

a write test. This type of phenomenon is already pervasive in

SRAM at the 32nm node, and forward projections show that

this type of behavior will continue, become more probable,

and increase in scope to include other critical circuit types

such as latches and register files. The sources of such failures

may be categorized as follows:

• Process Variations — Statistical variations of device

parameters such as channel length, threshold voltage,

and carrier mobility. Channel length variability results

from LER and other patterning fidelity issues, whereas

threshold voltage variations are primarily induced by

random dopant fluctuations.

• Lifetime Variations — Variations that shift physical pa-

rameters over the operating life of a circuit. The most

significant are Vth shifts that are caused by negative-bias

temperature instability (NBTI) and hot-carrier injection

(HCI), and gate current shifts that are caused by time-

dependent dielectric breakdown (TDDB).

• External Noise — Noise outside the external circuit,

such as environmental/power supply noise and energetic

particles that cause single-event-upsets.

• Intrinsic Noise — Noise sources inherent to normal

device operation that become significant at small feature

sizes. These include shot noise, thermal noise, and ran-

dom telegraph noise.
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To make predictions about the impact of these types of

phenomena on future technologies, one of the authors (Nassif)

has been working with International Technology Roadmap

for Semiconductors (ITRS [3]) to develop an open predictive

roadmap of circuit resilience metrics for future technolo-

gies [4]. The purpose behind the roadmap is to motivate

research and development in this area by showing the potential

future impact of scaling if no technology or circuit innovation

takes place. To this end, the roadmap looks at three canonical

building block parts of standard digital integrated circuits:

an SRAM bitcell, a latch, and a CMOS inverter. These

three circuits are good surrogates for major components of a

digital CMOS design: storage (SRAM bitcell), synchronization

(latch), and logic functions (inverter). Of course, it is common

to have millions of SRAM bits, latches, and inverters in current

high-performance microprocessors.
We obtained failure probabilities for the three canonical

circuits in future high-performance (HP) technology nodes by

simulating their behavior under the influence of manufactur-

ing process variability, aging, and environmental fluctuations

(primarily temperature and power supply). The simulations

used the Predictive Technology Model (PTM) with variability

estimates for both general logic and SRAM circuits for bulk

CMOS technologies down to the 16nm node. We have been

developing and refining this work constantly since the initial

publication in [4], and here we will show some recent results

specific to the SRAM.
We considered two distinct failure modes for the SRAM:

(1) the writability fail, in which the SRAM is unable to store

one of the two Boolean values, and (2) the read disturb fail,

in which the act of reading an SRAM causes the contents

of the cell to reverse polarity. In this roadmap study we

attempt to predict the impact of scaling independent of other

possible effects. Therefore, we are developing a circuit scaling

methodology to port designs from one technology to another

using the same general circuit topology while making appro-

priate adjustments to device sizes, P to N-channel transistor

ratios, timing, and so on. For example, we do not change the

circuit topology from the standard six-transistor cell because

changing this cell topology has been reported to be a difficult

choice for future technologies [5].
Fig. 1 shows the failure rates for the SRAM as predicted via

this roadmap. The x-axis shows the relevant technology nodes

and the y-axis shows the estimated SRAM bit-cell failure rate

due to manufacturing-induced variability. The figure shows

four curves. The ones labelled Write and Disturb show the

failure rates for a conventionally scaled SRAM bit cell due to

write and read-disturb mechanisms, and the curves labelled

Write(Big) and Disturb(Big) show the failure rates for an

SRAM bit cell, which is approximately 40 percent larger. We

can make the following observations using the figure:

1) SRAM failure rates, which are already a significant

problem that requires extensive design intervention (such

as the introduction of redundancy and error correction),

will continue to be a problem and will require even

more circuit and architectural innovations to combat
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Fig. 2. SRAM write failures versus power supply voltage.

increasing manufacturing variability.

2) Enlarging the SRAM bit cell (reverse scaling) is mod-

erately effective at controlling the impact of variability

and may be used locally to create hardened portions of

a design, but at a significant cost in layout density.

An important lever in reducing the impact of variability

is the power supply. Designers would agree that raising the

power supply voltage can significantly reduce circuit failure

rates due to variability. Of course, this comes at the expense of

additional power consumption, which is already a major factor

for many types of designs. In order to understand the impact

of power supply voltage on SRAM failure rates, we performed

another study similar to that above in which we include the

dependence of failure rates on power supply voltage. The

range studied was from 10 percent below the nominal, which

is a common worst-case assumption in digital circuit design,

to 20 percent above the nominal. We show the results in Fig. 2,

in which the x-axis is the power supply (as a percentage of the

nominal supply for each technology node), and the y-axis is

the probability of failure. To simplify the plot, we plot only the

results for the SRAM Write failure. It is clear that the power

supply has a very strong impact on SRAM Write failures and

changes the failure rate by one order of magnitude over the

range studies.
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This observation leads to a clear engineering trade-off

between power and robustness. Absent other sources of inno-

vation at the device and circuit levels, one of the few effective

levers for reducing circuit fail rates is power. But given that

power itself is now one of the major design drivers, designers

and technologists will have to take great care when developing

balanced solutions for this problem.

III. COMPUTER AIDED DESIGN

Computer aided design tools, including modeling and op-

timizations, play very important roles in obtaining robust

designs. For systematic variations that are often layout-

dependent, researchers need to develop high-fidelity yet effi-

cient models in order to capture those variations. These models

can then be used to guide physical synthesis and mask synthe-

sis to mitigate such variation-induced impact. Meanwhile, re-

searchers shall develop effective variation-tolerant techniques

for random variations in order to make the design tolerant

to those unwanted variations. As explained in Section II,

variations can result from the manufacturing process, aging,

or operational conditions. In this section, we give examples

in order to illustrate variational modeling issues and CAD

optimizations.

A. Variational Modeling and Hotspot Detection

To support robust designs, we need to be able to model

the variations, reliability, hotspots, and so forth efficiently, at

desirable accuracy, and with the proper level of abstractions.

To model the root causes of systematic lithography-induced

variations, researchers proposed variational lithography mod-

eling in [6]. This type of modeling was then used to perform

true process variation aware optical proximity correction (PV-

OPC). Variational lithography modeling takes into considera-

tion two main sources of process variations: exposure dosage

and focus. Based on the kernel decompositions, we can obtain

closed-form models. To accurately model the electrical char-

acterizations of non-ideal/non-rectangular gates, researchers

often use slicing techniques [7], [8] to obtain the equivalent

gate lengths.

As the feature size gets smaller, LER becomes more im-

portant because LER does not scale. LER depends on the

development process, including exposure dose and thermal

dose. Although LER is very much stochastic in nature, Ban et

al [9] showed that it indeed displays certain layout-dependent

variations. Thus, undesirable LER effects can be mitigated

through certain layout optimizations.

For 22nm and 14nm nodes, double patterning lithography

(DPL) becomes mandatory in order to use the mainstream

193nm immersion lithography to reach sub-80nm pitch size.

Since DPL uses two masks to print dense features of the same

layer, overlay is a major source of variations. For transistor

layers, researchers observed the bimodal distribution [10].

For metal layers, overlay affects line width and spacing and

therefore needs to be considered for parasitic extraction and

timing analysis as well [11].

Due to extreme scaling, lithography hotspot (logic or elec-

trical failure in a chip) is a key issue for physical veri-

fication. Existing works for lithography hotspot characteri-

zation/identification fall into two major categories: pattern

matching techniques [12], [13] and machine learning/data

mining [14]–[16] techniques. Although pattern matching meth-

ods yield high searching accuracy, they suffer from issues

such as lack of pattern flexibility and explosion of pattern

enumeration. On the other hand, machine learning based

methods provide highly flexible models with low false alarms,

but their accuracies still need to be improved. Most recently,

[17] proposed a systematic meta-classification and detection

that combines the strength of pattern matching and machine

learning and showed very good trade-off.

B. Mask Synthesis

We can use variational modeling to guide more robust mask

synthesis. Conventional mask synthesis, such as OPC, is not

explicitly variation-aware or design aware. However, if we

can pass the root-causes of these variations and their design

impacts earlier on, mask synthesis can be more robust and cost

effective.

For example, in [6], the compact variational lithography

modeling is used to explicitly guide PV-OPC. It requires about

2-3× runtime of that for the conventional OPC but can reduce

the CD error under variation significantly. This in turn reduces

electrical performance (e.g., timing and leakage) variations.

In [18], researchers proposed electrically driven OPC that

minimizes the error in saturation current between printed and

target shapes. Such design aware OPC can also help to reduce

the mask complexity as not all the features need the same

amount of extreme resolution enhancement.

One of the most fundamental problems with double pat-

terning lithography is mask decomposition. To make the DPL

tolerant to the overlay variations, [19] proposed a novel layout

decomposition framework based on the min-cut partitioning
formulation, in which balance density and overlay compen-

sation can be modeled. Fig. 3 shows the effectiveness of the

overlay compensation strategies during layout compensation.

With a small penalty of stitch insertion, the overall timing

variation of a critical path can be reduced significantly from

over 9 percent to almost nothing. As the technology further

scales to 14nm, 11nm, and beyond, new emerging lithography

such as triple patterning lithography [20] and extreme ultra-

violet lithography will require more robust mask synthesis to

link the design and process more closely together.

C. Cell and Phyical Designs

Standard cells are basic building blocks for VLSI designs.

Thus, their robustness is essential. Typically, standard cell area

is one of the most important metrics, along with other key

electrical measurements like timing and power. On the other

hand, area compaction, if not done properly, can make the

cell more prone to variations. It is challenging to deal with

area, performance, and DFM trade-off. In [21], researchers

proposed a total-sensitivity based standard cell DFM flow. The
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Fig. 3. DPL layout decomposition with overlay compensation.

sensitivity metric consists of the device/transistor criticality,

the non-rectangular gate impact due to lithography printability,

and process-variations (e.g., dosage and defocus). The total

sensitivity modeling is built into a cell layout optimization

engine to minimize the performance gap between process

corners.

Routing is another key step that interacts with lower level

manufacturing process variations. Many key manufacturing

issues (e.g., topography variation due to chemical mechanical

polishing or CMP, random defects, printability due to lithog-

raphy limitations) are tightly coupled with interconnects/wires

that are determined during routing. Holistic treatment must

be used for manufacturability aware routing, including both

the rule-based approach and the model-based approach. Dif-

ferent yield-loss mechanisms, such as topography variations

after CMP [22], random defects [23], via failure [24], and

lithography [25], [26] must be considered in a systematic

manner. In [27], researchers suggest a possible DFM-aware

routing flow (e.g., as shown in Fig. 4) in which different yield

loss mechanisms are handled mainly at the stages that are

more effective for them (e.g., global routing for CMP varia-

tion optimization, track routing for random defect minimiza-

tion, construct-by-correction detailed routing for lithography

hotspot minimization, post-routing optimization for redundant

via insertion, and layer assignment/post-routing optimization

for antenna effect mitigation). It may also be necessary to

consider two or more manufacturability issues simultaneously

(e.g., double patterning and redundant via together during

routing [28], [29]).

Clock skew has global span in nature and, thus, is very

sensitive to variations. Using the same principle, we should try

to model and mitigate the predictable systematic variations as

much as possible. For example, as shown in [30], the thermal

profile can be used to make clock network more aware of the

temperature distributions. Meanwhile, clock delay/skew will

be susceptible to unbalanced aging. In [31], [32], researchers

proposed novel circuit and CAD techniques for using NAND

and NOR gates intelligently for clock gating such that the

resulting NBTI-induced clock skew is minimized. To have

ultimate robustness with respect to all sources of variations,

Global Routing

Lithography enhancement

Antenna avoidance

Redundant via insertion

Random defects minimization
Track Routing

Detailed Routing

Post Routing

Manufacturing

CMP variation Optimization

Fig. 4. A practical manufacturability aware routing flow.

cross link insertion [33], [34] and clock meshes [35] have to

be used, which require careful planning and synthesis to obtain

the skew target while minimizing the total wirelength/power.

IV. RESILIENT CIRCUIT DESIGN

Circuit designers work with process technology and CAD

in order to gain a more accurate understanding of the vari-

ation sources and the impact of these variations on circuit

performance, energy, and reliability. For each process tech-

nology node, advanced test-chip designs allow us to get direct

measurements of process variations and lifetime variations, as

described in Section II. From these measurements, we can

construct variation models and apply them to CAD tools such

as those discussed in Section III. These CAD tools provide

the opportunity to explore a wide range of design trade-offs

for optimizing circuit performance, energy, and reliability.

This section focuses on the design trade-offs for resilient

error-detection and recovery circuits [36]. Conventional mi-

croprocessor designs apply clock frequency (FCLK ) and/or

supply voltage (VCC) guardbands to ensure correct function-

ality within the presence of worst-case dynamic variations.

These inflexible designs cannot exploit opportunities for higher

performance by increasing FCLK or lower energy by reducing

VCC during favorable typical-case operating conditions. Since

most systems usually operate at nominal conditions in which

worst-case scenarios rarely occur, these infrequent dynamic

parameter variations severely limit the performance and energy

efficiency of conventional designs. Resilient circuits enable

the microprocessor to operate at a higher FCLK and/or lower

VCC as compared to a conventional design. When a dynamic

parameter variation induces a timing error, the resilient cir-

cuits detect and correct the error. Although error recovery

requires additional clock cycles, the gains from mitigating the

guardbands for infrequent dynamic variations far outweigh the

recovery overhead, resulting in higher overall performance and

energy efficiency [36], [37].

A. Error Detection

In this subsection, we review two circuit designs for timing-

error detection: (1) the embedded error-detection sequential

(EDS) circuit design [36]–[43] and (2) the tunable replica cir-

cuit (TRC) design [36]. In the embedded EDS design, an EDS

circuit replaces the receiving flip-flop of critical paths to detect
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late timing transitions during the high clock phase, which

defines the error-detection window. The fundamental trade-

off in the EDS circuit is max-delay versus min-delay. The

width of the error-detection window determines the maximum

potential benefit in FCLK as well as the min-delay penalty.

For a target error-detection window, pre-silicon design satisfies

the min-delay requirements with buffer insertion and sizing. In

addition, a scan-configurable duty-cycle control circuit allows

post-silicon tuning of the high clock phase to maximize the

error-detection window while avoiding min-delay errors. An

OR tree combines the error signals from each EDS circuit in a

pipeline stage to produce a single pipeline-error signal, which

is pipelined to the write-back stage to invalidate the errant

instruction and to initiate error recovery [36]

In comparison to the embedded EDS design, the TRC

design is less intrusive [36]. The TRC detects timing failures

for a scan-configurable buffer delay chain with the input

transitioning every cycle. A TRC is placed adjacent to each

pipeline stage. Post-silicon calibration of the buffer delay chain

ensures the TRC always fails if any critical path fails in the

pipeline stage due to a dynamic variation. Thus, the TRC is

tuned slower than the critical path. The TRC and the paths in

the pipeline stage use the same local VCC and clock, which

enables the TRC to track critical-path delay changes due to

VCC droops while capturing clock-to-data correlations. If a

dynamic variation induces a late timing transition in the TRC,

the circuit generates an error signal that represents the single

pipeline-error signal. As with the embedded EDS design, the

single pipeline-error signal is pipelined to the write-back stage

to invalidate the errant instruction and to enable recovery.

Table I lists the key trade-offs between the embedded

EDS and TRC designs. The EDS design detects critical-path

timing failures for fast, slow, long-range, and local dynamic

variations. In contrast, the TRC design cannot detect path-

specific or highly-localized dynamic variations (e.g., delay

push-out from cross-coupling capacitance). The TRC requires

a delay guardband to ensure the TRC delay is always slower

than critical-path delays, thus preventing the possibility of

exploiting path-activation rates for higher performance. Fur-

thermore, the TRC design may initiate an error recovery when

an actual error did not occur. This results in unnecessary

recovery cycles. In comparison to the EDS design, the TRC

design significantly reduces the design complexity overhead.

In particular, the TRC design does not affect the min-delay

paths in the core, has lower clocking energy, and does not

require a duty-cycle control circuit. While the core min-

delay constraints limit the error-detection window for the EDS

design and, consequently, the maximum potential benefits, the

TRC design provides a larger error-detection window to detect

a wider range of dynamic delay variation. Both designs require

post-silicon calibration, which affects testing costs.

B. Error Recovery

In this subsection, we review two techniques for error

recovery: (1) instruction replay at 1
2 FCLK [36]–[38], and

TABLE I
EDS VERSUS TRC DESIGN TRADE-OFFS [36]

EDS Design TRC Design

Dynamic Variation
Detected

Slow & Fast,
Long-Range & Local

Slow & Fast,
Long-Range

Exploit Path
Activation Yes No

False Error
Recovery No Yes

Design Complexity High Low

Min-Delay
Overhead Yes No

Clock Energy
Overhead Yes Negligible

Clock Duty-Cycle
Control Required Not Required

Maximum
Potential Benefit

Limited by Core
Min-Delay Paths

Not Limited by
Core Min-Delay Paths

Post-Si Calibration Clock Duty-Cycle TRC Delays

(2) multiple-issue instruction replay at FCLK [36]. Reducing

FCLK in half ensures that the replayed instruction executes

correctly even if dynamic variations persist. When initiating an

error recovery, the error-control unit (ECU) signals the clock

generator to reduce FCLK in half via a clock-divider circuit

to avoid relocking of the phase-locked loop (PLL). While

FCLK reduces in half, the duty-cycle control circuit main-

tains a constant high-phase clock delay to provide min-delay

protection for the embedded EDS design. After the replayed

instruction finishes, the ECU signals the clock generator to

resume at the target FCLK .

The motivation for the multiple-issue instruction replay

design is to correct the errant instruction without changing

FCLK . This algorithm issues the errant instruction multiple

(N ) times. The first N−1 issues are replica instructions, which

do not affect the architecture state. The N th issue is a valid

instruction, which is allowed to commit data to the architec-

tural state. The replica instructions flow through the pipeline

to set up the register nodes for the valid instruction. Any

error that occurs in the execution of the replica instructions is

ignored, and if the number of replica instructions is sufficient,

the register inputs for each pipeline stage statically settle to

the correct value. This allows the valid instruction to execute

correctly. If an insufficient number of replica instructions are

issued such that an error occurs during the execution of the

valid instruction, then the errant instruction is replayed a

2nd time with N equal to the number of pipeline stages to

guarantee correct operation. Since this error-recovery design

relies on setting up path nodes, this technique is directly

applicable to static-CMOS logic circuits. This technique is not

applicable to dynamic logic circuits.

C. Measurements

A 45nm microprocessor core integrates the resilient error-

detection and recovery circuits presented in the subsections
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Fig. 5. Measured throughput normalized to the conventional maximum
throughput, and recovery cycles as a percentage of total cycles versus
FCLK [36].

IV-A and IV-B to allow a direct comparison of the relative

trade-offs [36]. In Fig. 5, the core without resilient circuits

(i.e., conventional design) operates at a maximum clock fre-

quency (FMAX ) of 1.45GHz at 1.0V. When a 10 percent

VCC droop occurs, the FMAX reduces to 1.26GHz. As illus-

trated by the shaded region in Fig. 5, the difference between

these two FMAX values represents the FCLK guardband for

a 10 percent VCC droop in the conventional design. Enabling

EDS or TRC allows the infrequent errors from the VCC droop

to be detected and corrected, resulting in a higher FCLK and

throughput (TP). The optimal FCLK for the resilient designs

(1.46GHz for EDS, 1.42GHz for TRC) occurs at the point of

maximum TP. Pushing FCLK beyond this point reduces TP

because the increasing number of recovery cycles outweighs

the benefit of a larger FCLK . In comparison to the conventional

design, EDS and TRC circuits improve TP by 16 percent and

12 percent, respectively, at 1.0V. Although the EDS design

provides a larger benefit at 1.0V, the error-detection window,

and corresponding potential TP gain, is limited by core min-

delay constraints. In contrast, the core min-delay constraints

do not limit the error-detection window for the TRC design,

which allows the TRC design to capture a wider range of

dynamic delay variation. In Fig. 6 at low VCC , the impact of

variations increases and TRC provides more throughput gain

than EDS (51 percent vs. 28 percent at 0.6V).

Fig. 7 evaluates the two error-recovery techniques by com-

paring the average number of recovery cycles per error.

The figure shows measurements for the instruction replay at
1
2 FCLK and the multiple-issue (MI) instruction replay at

FCLK with N representing the number of issues. Measured

performance for the core pipeline demonstrates that issuing

only one replica instruction incurs the least number of recovery

cycles per error and results in a 46 percent reduction as

compared to replaying at 1
2 FCLK . While the reduced number

of recovery cycles per error improves performance, the salient

Fig. 6. Measured throughput gain versus VCC [36].

Fig. 7. Error recovery circuit analysis. Measured average recovery cycles
per error for instruction replay at 1

2
FCLK (left-most bar) and multiple-issue

instruction replay at FCLK where N represents the number of issues [36].

advantage of the multiple-issue instruction replay is correcting

errant instructions without changing FCLK .

The resilient error-detection and recovery circuits miti-

gate the guardbands for infrequent dynamic variations to

enhance performance and energy efficiency. Thus, the number

of VCC droops that occur during program execution for a

specific VCC droop magnitude directly affects the benefits

of the resilient design. Fig. 8 plots the measured cumulative

distribution of VCC samples for 881 programs executing on

the Intel R© CoreTM2 Duo processor [44]. An oscilloscope

probes the VCC sense pins on the package in order to collect

the VCC noise measurements at a sampling frequency that

is nearly equal to the core FCLK (i.e., ∼1 sample/cycle).

The runtimes for the 881 programs range from 27 seconds to

approximately 2 hours with an average runtime of around 30

minutes. The measurements in Fig. 8 provide insight into the

VCC droop occurrences during program execution. A detailed

analysis indicates that the optimum recovery rate to maximize

throughput in Fig. 5 corresponds to the VCC droop sampling

probability of 2.5x10−3 in Fig. 8. From these measurements,

VCC droop magnitudes that occur less than 0.25 percent

(VCC ≥ 3 percent) are infrequent and, thus, can be effectively

mitigated by the resilient circuits. However, VCC droop mag-

nitudes that occur greater than 0.25 percent (VCC ≤ 3 percent)

are too frequent to reduce with the resilient hardware. In

this case, the increase in the number of recovery cycles

outweighs the FCLK gain, resulting in lower throughput.
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Frequent VCC droops or persistent variations can result in

long bursts of timing errors that degrade throughput. Thus, an

adaptive clock control circuit can monitor the recovery cycles

to optimize FCLK for the current operating environment [36].

Although the resilient circuits ensure correct system oper-

ation within the presence of dynamic variations, a hardware-

only solution is purely reactive. Allowing software, such as the

operating system or some form of runtime layer, to monitor

the recovery cycles in a resilient hardware might enable a

more efficient system design by anticipating future events

based on the workload. From Fig. 8, we can observe that the

occurrence of VCC droops varies widely across the different

programs. By providing software the capability to monitor

recovery cycles in the resilient hardware, we can track the

optimum FCLK setting for each workload, store these values,

and then reuse this information during subsequent executions.

In this way, software can predict the optimal FCLK setting

based on previous measurements to enhance the performance

and energy efficiency of the system over the duration of its

lifetime.

V. COLLABORATIVE SYSTEM DESIGN

In the future, we will require better integration and col-

laboration between hardware and software. As technology

trends force us to build toward typical-case designs, error-

detection and recovery mechanisms will become pervasive

both in the microprocessor and system on chip designs. To

sustain continued increases in performance, we must identify

and develop new machine organizations that are capable of

dynamically detecting and recovering from errors in the field

across all layers of the computing stack, including computer

architecture, system software, and applications. The benefits

are two fold: (1) this eliminates performance inefficiencies

that arise at each layer from maintaining strict abstraction

between hardware and software, and (2) it eliminates power

and area overheads that arise from the use of circuit- and

microarchitectural-level techniques that mitigate the various

sources of failures (see Section II).

We must look for ways to build reliable systems from

unreliable devices using cross-layer solutions. Conventional
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Fig. 9. Resilient system stack overview (adapted from [45], [46]).

belief is that hardware is perfect and software is “buggy.”

However, we are beginning to accept the fact that this dif-

ference will blur towards software. A cross-layer solution

will rely on hardware for fail-safe execution, but when it is

possible it will attempt to optimize away recurring sources

of errors via software techniques. Such an approach will

eliminate recurring hardware penalties that arise from the

hardware’s limited view of execution activity. For instance,

in a large chip multiprocessor, one processor core might not

have knowledge about another processor core’s activity even

though each processor core interferes with the other’s work.

State-of-the-art resilient systems, such as that presented in

Section IV, represent effort at a single layer. The left side of

Fig. 9 (Conventional Single-Layer Resilience) illustrates the

situation. Error detection and recovery at the hardware level

guarantee correctness and hide any notion of failures and error

recoveries from the software system stack. But therein lies

the “Achilles’ heel” of the design: hardware-only solutions

are reactive and are often difficult to implement efficiently.

They introduce power, area, and performance overheads dur-

ing typical-case operation for corner-case errors that occur

very infrequently. In addition, they have limited knowledge

about execution activity. Clock gating is one example of

such an innovation. It is useful for power management, but

this technique has led to new problems that require us to

include additional circuits and microarchitectural techniques.

For example, clock gating in high-performance processors can

cause unacceptable stresses on the power delivery network.

Although the resulting inductive noise, or L di
dt , can be handled

using mechanisms to reduce voltage swings caused by large

dynamic current, those mechanisms incur their own set of

problems and performance impacts. The end result of this is

a reactive approach to the design of high-performance, low-

cost processors that resembles the children’s game “Whack-A-
Mole”: see a problem, design a solution, optimize the solution,

look for the next problem, and repeat.

The whack-a-mole situation is best understood by examin-

ing the L di
dt effect closely. We explored voltage variation trends

in the SPEC compute-intensive benchmark suite. We setup a

framework similar to [47], in which we included a version of
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the Wattch architectural-level power simulator that calculated

voltage variation every cycle [48]. The framework performed

a convolution of Wattch’s current estimates and an impulse

response to the power-supply network for parameters derived

from [49]. Resonance frequency for the power-supply network

was 50 MHz. We simulated an 8-way superscalar, out-of-order

processor. This setup allowed us to determine the number of

voltage induced errors across different voltage margins.

We characterized the number of distinct errors that occurred

during program execution, associating errors with static pro-

gram code locations. Table II shows the number of different

program counter locations and the absolute number of errors

over a window of 100 million execution cycles. The total errors

column represents the number of hardware error-recoveries

that were required. The average number of total errors is large,

in the thousands. Interestingly, however, the number of distinct

program locations that map to these errors are significantly

smaller, typically around tens of instructions. For example, one

distinct program location in benchmark ammp is responsible

for 94 error recoveries. In the case of the swim benchmark, we

can avoid 218,188 error-recoveries if we remedy just 5 distinct

program locations. This analysis strongly indicates that errors

are tightly associated with few static program locations, which

in turn is indicative of source code-level error-prone loops.

Ideally, if we could remedy all the static problematic pro-

gram locations, then overall system reliability, performance,

energy-efficiency would improve significantly because fewer

hardware error-recoveries would be required. In this particular

analysis, we simulated only 100 million instructions. But the

case becomes even more compelling as we scale the number of

instructions executed from 100 million to 1 and 10 billion. The

number of distinct program locations stays roughly constant,

while the number of errors increases with instruction count.

A. Software-Assisted Hardware Reliability

The goal is to mitigate reliability problems that can no

longer be addressed efficiently at the device and circuit levels.

Based on the data presented in the previous section, we claim

that hardware-based solutions work well for intermittent errors

that degrade reliability due to program activity. The best way

to handle an error-prone program loop is through code trans-

formations at the software layer. Typically, we have several

options when creating the order of instructions in the software

at the software layer, or when selecting the threads. Many of

these options result in comparable system performance. The

software layer seeks to eliminate emergencies from recurring

in the future by giving hints to the hardware, code scheduling,

and dynamic optimizations such as thread scheduling. Note

that in such a system, the hardware-layer is responsible

for guaranteeing reliable operation without the assistance of

software. An advantage of this multi-layered approach is that it

allows the hardware to focus on guaranteeing correct operation

for the initial exceptional event while the software focuses on

eliminating or reducing the performance impact in the future.

Currently, we do not comprehensively design software sys-

tems to receive error notifications from hardware. For instance,

when thermal emergencies activate hardware throttling, soft-

ware can only query the processor for the number of cycles

during which the processor was throttled. The software layer

does not receive intelligent information about the instruction

sequences or program architectural state. This is primarily

because there is a general lack of understanding about machine

activity and how that activity relates to code behavior that can

trigger dangerous hardware events. Even if we were able to

develop algorithms for identifying and optimizing potentially

dangerous code behavior, such as that characterized by Gupta

et al. [50] for voltage emergencies, the decision regarding

whether or not to have software intervene would depend on

the characteristics of the underlying system. For instance, we

must know the characteristics of the power-supply network

and operating voltage range of the target processor in order to

cope with external sources of noise.

Therefore, we must extend the hardware so that it provides

intelligent feedback to a runtime software layer that is ded-

icated to maintaining and managing system reliability. Such

a dynamic optimizer must be inherently fine-grained, code-

aware, and adaptive to the current execution environment. The

software-based optimization framework can be implemented

within a virtual machine monitor, a runtime compiler, or an

operating system. By operating in lazy optimization mode the

optimizer can wait until hardware intervention to determine

whether a similar error has occurred in the past, and decide

whether to make the active code region a candidate for error

“optimization.” If required, then software can re-optimize the

error-prone code and cache a version of the optimized code

that exhibits more stable behavior. In an ideal case, only one

iteration of an error will require hardware intervention (to

guarantee fail-safe execution). All subsequent invocations of

that code will execute the optimized error-free cache version.

The solid lines in Fig. 9 on the right side (Future Cross-

Layer Resilience) provide a high-level view of a software-

assisted hardware reliability management framework. The

previously-proposed hardware-based voltage control mecha-

nisms in Section IV remain intact, while new extensions are

shown at the software level. The bottom layer includes low-

level device and circuit blocks that provide sensed information

to the architectural level. The architectural level collects all

voltage sensor information that is filtered and combined with

information about active code and thread sequences along with

microarchitectural events before passing on the information

to the software level. In the event of an error, the hardware

control mechanism intercepts execution and performs vari-

ous actions to correct the error. Simultaneously, the control

mechanism provides feedback to the dynamic optimizer. Us-

ing feedback from the hardware, the optimizer performs the

following five actions: (1) do root-cause analysis to identify the

problematic program and error-prone code hotspot, (2) decide

whether the identified error hotspot qualifies as a candidate

for modifications, (3) determine the set of modifications to

perform at the compiler or operating system level, (4) execute

the best plan of action, and (5) resume execution.

Recently, researchers have done work that has demonstrated
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TABLE II
NUMBER OF ERRORS VERSUS DISTINCT ERROR-PRONE PROGRAM LOCATIONS

SPEC Integer Benchmarks SPEC Floating point Benchmarks

Benchmark Total Errors Distinct Program Locations Benchmark Total Errors Distinct Program Locations

gzip 57376 47 wupwise 54 4

vpr 45789 86 swim 218193 5

gcc 6346 64 art 59133 11

mcf 3525 37 mgrid 176668 24

crafty 201847 329 applu 119133 18

parser 28049 278 mesa 98509 102

eon 306698 40 galgel 58914 7

perlbmk 35 4 equake 119753 7

gap 6528 45 facerec 99140 14

vortex 139072 197 sixtrack 55234 88

bzip2 1284 12 ammp 94 1

twolf 98947 57 apsi 241056 37

much success in software-assisted hardware reliability. At

the operating system level, researchers have demonstrated

scheduling algorithms that lessen aging stress while tak-

ing process variations into account by intelligently mapping

threads to multiple cores [51]–[55]. At the compiler-level,

researchers have demonstrated how extrinsic power supply

noise (or voltage variation) can be damped via instruction re-

scheduling, both statically [56], [57] and dynamically [58].

Performing root-cause analysis is critical for several of these

works, which is why anomaly detection has emerged as an

important area of research [59]–[61]. These are all but a few

samples that demonstrate that cross-layer software-assisted

hardware reliability is feasible.

To facilitate cross-layer solutions at large-scale, we must

first break the strict abstraction that the industry has driven

between hardware and software. This effort will involve an

interdisciplinary effort that spans from device physics to VLSI

circuits to computer architecture and end-user system software

and applications. The process of designing such a system

will provide a new foundation for system design in which

performance, reliability, and cost are all balanced goals.

VI. CONCLUSION

Reliability issues are real. While it may be feasible to

stretch historically established industry techniques to combat

reliability problems, such techniques are unlikely to be sustain-

able in the long-run. For example, we could continue to use

FCLK guardbands to address VCC droops, but the degradation

in power and performance will become larger in the future.

Robust and resilient designs could mitigate such detrimental

effects and provide significant benefits. Therefore, researchers

should explore these new designs and also harness the synergy

that arises from information exchange across the technology,

CAD, circuit, and system layers. A synergistic approach pro-

vides us with an unique opportunity to optimize design trade-

offs from a system-level perspective. The benefits are that we

can achieve new levels of cost-efficiency, and build efficient

robust and resilient solutions that meet future demands for

high performance, energy-efficiency and reliability.
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